
HAL Id: hal-00807354
https://hal.science/hal-00807354

Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-Simulation of Functional SystemC TLM Models with
Power/Thermal Solvers

Tayeb Bouhadiba, Matthieu Moy, Florence Maraninchi, Jérôme Cornet,
Laurent Maillet-Contoz, Ilija Materic

To cite this version:
Tayeb Bouhadiba, Matthieu Moy, Florence Maraninchi, Jérôme Cornet, Laurent Maillet-Contoz, et al..
Co-Simulation of Functional SystemC TLM Models with Power/Thermal Solvers. Virtual Prototyping
of Parallel and Embedded Systems (VIPES), May 2013, Boston, United States. �hal-00807354�

https://hal.science/hal-00807354
https://hal.archives-ouvertes.fr

Co-Simulation of Functional SystemC TLM Models
with Power/Thermal Solvers

Tayeb Bouhadiba
CNRS, Verimag

Tayeb.Bouhadiba@imag.fr

Matthieu Moy
Grenoble INP, Verimag

Matthieu.Moy@imag.fr

Florence Maraninchi
Grenoble INP, Verimag

Florence.Maraninchi@imag.fr

Jerome Cornet
STMicroelectronics

Jerome.Cornet@st.com

Laurent Maillet-Contoz
STMicroelectronics

Laurent.Maillet-Contoz@st.com

Ilija Materic
Docea Power

Ilija.Materic@doceapower.com

Abstract— Modern systems-on-chips need sophisticated
power-management policies to control their power consumption
and temperature. These power-management policies are usually
implemented partly in software, with hardware support. They
need to be validated early, hence power and temperature-aware
simulation techniques at the system-level need to be developed.
Existing approaches for system-level power and thermal analysis
usually either completely abstract the functionality (allowing only
simple scenarios to be simulated), or run the functional simulation
independently from the non-functional one.

The approach presented in this paper allows a coupled
simulation of a SystemC/TLM model, possibly including the
actual embedded software, with a power and temperature solver
such as ATMI or the commercial tool ACEplorer. Power and
temperature analysis is done based on the stimuli sent by the
SystemC/TLM platform, which in turn can take decisions based
on the non-functional simulation.

I. INTRODUCTION

Today’s highly integrated electronic chips have millions of
transistors and consume lot of power (couple of tens of Watts).
This introduces several problems: most obvious are battery life
for portable devices as well as heating of devices integrating
these chips. In addition, even for devices that are continuously
plugged to power supply, power consumption has an impact
on operating costs and chip reliability.

Reducing power consumption and heating problems re-
quires that these issues be taken into account throughout
the design of the chip. This means estimating power and
thermal behavior very early, but also designing a “power-
aware” embedded software, that can react upon given pow-
er/temperature conditions (switching blocks off or degrading
quality of service).

Early power and temperature estimation is tackled using
standalone power/thermal model simulations. With such sim-
ulations, stimuli are produced through manually written high-
level scenarios that depict activations, power-state changes, etc.
For each component in the model, the stimuli describe for a
given use-case the evolution of a set of parameters, including
the electrical state (voltage, frequency) and the activity (kind
of computation being performed, or traffic for components like
buses and memories), which influences the current intensity.

Writing a power-aware embedded software requires more.
Hand-written scenarios are too abstract: they can validate de-
sign choices, but not the actual software implementation. RTL
simulators, on the other hand, are far too slow to execute non-
trivial embedded software, even without power/temperature
instrumentation. Also, they are not available in the early phases
of the design flow. A TLM simulation is therefore needed; it
has enough detail to execute the actual embedded software,
but is still fast enough to run non-trivial applications. The
TLM model must be augmented with non-functional aspects
to show the developer the effect of running the embedded
software from the power/thermal point of view. The result of
TLM simulations can hardly be as precise as RTL or gate-
level simulation, but they are the only option for early system-
level modeling, and an improvement compared to handwritten
scenarios.

TLM models can be instrumented to produce the stimuli
traces described above, which can be imported in the pow-
er/thermal simulator to perform an offline analysis. A VCD
(Value Change Dump) or other standard description may be
used for that purpose. However, with this technique, it is not
possible to test power management strategies, because there is
no feedback loop between the functional behavior of the TLM
simulation and power/thermal estimation.

In this work, we address this particular point: we propose
a cosimulation method to integrate a TLM simulation with a
power/thermal simulation done in parallel. Figure 1 is an archi-
tectural view of the cosimulation. The simulations act on each
other: the TLM simulation (a1) provides functional stimuli
(and possibly threshold temperatures) for the power simulation
(a2); the thermal solver uses the non-functional model (actual
consumption in different mode of operations for each compo-
nent) to provide power values for the thermal simulation (a3)
based on a thermal model (floorplan, thermal conductivity); the
latter influences the functional behavior through temperature
feedback, or interrupt notifications if threshold temperatures
are reached. The exchange between (a2) and (a3) describes a
possible temperature-dependent power analysis computation.

The contributions of this paper are:

• We describe an interface to let a timed functional model
of an SoC communicate with an external power/temperature
(i.e., non-functional) solver. This is a cross-language interface,

mailto:Tayeb.Bouhadiba@imag.fr
mailto:Matthieu.Moy@imag.fr
mailto:Florence.Maraninchi@imag.fr
mailto:Jerome.Cornet@st.com
mailto:Laurent.Maillet-Contoz@st.com
mailto:Ilija.Materic@doceapower.com

Computation

Power

b

a2

a3
a1

Temperature

Functional+Time

TLM

Temperature
[+ Thresholds reached ? + date]

+ Temperature thresholds

(Watts or Amperes)
Power values(e.g. RUN, IDLE, OFF, ...)

Functional stimuli

+ Temperature thresholds

Fig. 1. a1, a2, a3: one step of the co-simulation principle, b: tempera-
ture/power consumption feedback effect

that might be used locally or over the network. It is generic
in two senses: it allows connecting to multiple non-functional
solvers without changing the functional model, and it allows
several strategies for coupled simulation, leaving room for op-
timizations and performance/precision trade-off. We consider
SystemC functional models, but any discrete-event simulator
with a notion of simulated time could be used instead.

• We present and compare techniques using this interface
to run a coupled simulation, allowing the functional model to
access power and temperature values computed by the solver
to take decisions in the functional simulation. These techniques
were implemented both with a simple temperature solver and
an industrial power and temperature analysis tool. The imple-
mentation of the interface on the functional side is available
as a library that can run on any SystemC implementation.

II. RELATED WORK

The significant contribution of static power in today’s
SoCs consumption, and its dependency on temperature, makes
it no longer possible to rely on simple power simulators
without power/temperature feedback loop. Instruction-based
TLM power simulators [1], or state-based ones [2], are fed
by functional stimuli to estimate power consumption, indepen-
dently from SoC temperature. We target thermal aware power
analysis, like it is done in tools featuring power/temperature
feedback [3].

Thermal simulations rely on the well established duality of
heat transfer and electrical phenomena. This led to modeling
thermal properties by means of RC-circuits, and using numer-
ical solvers to compute temperature evolution. In the context
of TLM, this means that there is a need for mixing discrete
simulations with continuous ones. The problem then falls
in the domain of modeling and simulation of heterogeneous
systems. Tools encompassing heterogeneous modeling have
been proposed. Ptolemy [4], for instance allows to describe
distinct models of computation, and to organize them into a
hierarchy to model heterogeneity [5]. In Ptolemy, the embed-
ded model of computation must synchronize its clock with the
upper-level one, based on the time-stamp of the exchanged
data. The authors in [6] propose heterogeneous modeling
of synchronous reactive programs together with differential
equations for modeling physical phenomena. VulcaNoCs [7]
allows for modeling the functional behavior of Networks-on-
Chips with cycle accurate SystemC-TLM, and relies on the
Electrical Linear Network model of computation provided by
SystemC-AMS [8] to implement the RC-Circuit modeling the
thermal behavior. VulcaNoCs targets proactive thermal man-
agement. Therefore, there is no feedback of temperature in the

BUS

VGA

MEMSENS

CPU

p() v()
1 vga : : v () {
2 whi le (1) {
3 s e t _ p w r (" a c t i v i t y " , " w a i t ") ;
4 / / w a i t f o r t h e n e x t r e f r e s h

5 w a i t (8 , sc_ms) ;
6 / / l oad image and w a i t

7 / / t h e t i m e i t t a k e s

8 load_img () ;
9 s e t _ p w r (" a c t i v i t y " , " l o a d ") ;

10 w a i t (3 , sc_ms) ;
11 }
12 }

(a) (b)

Fig. 2. Example TLM model and SystemC code of the threads

functional model for the validation of reactive power/thermal
management.

Contrary to VulcaNoCs, we use external, domain specific,
tools for thermal simulation (e.g., HotSpot [9], ATMI [10],
Aceplorer [3], etc.) and we need to feedback power/tempera-
ture in the functional model. Power/temperature modeling tools
can provide more features and be less error prone than user
written solvers based on general purpose tools. When using
external tools, the traditional approach is to dump the power
traces in a file (e.g. using VCD file), and to perform the
analysis offline. Therefore, the result of power and temperature
analysis cannot be used by the functional simulation. For that
purpose, we propose the cosimulation of SystemC/TLM with
external power/thermal simulators.

Cosimulation of SystemC and external tools (e.g.,
Simulink) has been proposed in [11], [12], [13]. We could use
the proposed API in [12], but the type of the exchange between
simulators in our approach is richer than simple signals.
We also distinguish our work in the possible optimizations
when synchronizing simulators. Indeed, their optimizations are
guided by data exchange periodicity (e.g., sampling periods
which are application-dependent), and may rely on the heavy
mechanism of rollback in SystemC. Our improvements are
better; in particular because of the type of the exchanges
wich enable temporal decoupling of simulators, and even their
parallelization. From the implementation point of view, we do
not patch the SystemC scheduler as they do.

III. SYSTEMC AND TLM

Transaction Level Modeling (TLM) is an approach to
virtual prototyping of Systems-On-a-Chip (SoCs). In TLM,
hardware components and interconnects are modeled by means
of modules that communicate through transactions. The refer-
ence implementation of TLM is provided as SystemC specific
libraries and templates. SystemC which is a C++ library,
including a simulation engine, has become the reference in
the industry as well as an IEEE standard [14].

Figure 2-(a) is an example model of a simple SoC made of
a CPU, a VGA controller, a memory MEM, and a temperature
sensor SENS. The sensor may be configured to send interrupts
to the CPU (through the signal connecting the components)
when the temperature reaches some threshold values. The
behavior of the system consists in displaying images. The CPU
writes images to the memory, and configures the VGA with the
address of the image to be displayed.

(2) CPU activity

(3) CPU volt-freq

(5) VGA activity

(6) BUS traffic

(7) MEM traffic

(1) process p

(4) process v

wait(6, SC_MS)

compute

wait

wait(8, SC_MS)

load

compute

wait(6, SC_MS)

idle

wait(2, SC_MS)

6 8 11

30 Mb/s

20 Mb/s 1 Mb/s

1 Mb/s 60 Mb/s

40 Mb/s

5 V - 50 MHz 3 V - 20 MHz 5 V - 50 MHz

wait(3, SC_MS)

Simulated time0

Fig. 3. Power Parameter Trace of the Example in Section III

The behavior of the simulation is defined by the execution
of the threads as managed by the SystemC scheduler. The sim-
ulation produces a set of simulation instants t0 = 0, t1, t2, . . .;
at each instant, some of the threads execute part of their
behavior (the code between two wait(...) statements) atomically
and suspend themselves by calling wait(...), which schedules
them to be woken up later in the simulation (either at a
particular time, or when a particular event is triggered). We
use the term simulation intervals to refer to the successive
adjacent intervals [t0, t1], [t1, t2], Of course, since SystemC
is a simulation language, the simulated time is different from
the wall-clock time. It should be noted that computations
occur only at simulation instants: the simulation intervals only
correspond to the increment of simulated time in the scheduler.

Modeling an action that takes time (say, load_img(), taking
3 ms) is not directly possible in SystemC, which can express
only instantaneous computations. The duration can be mod-
eled with a wait(time) statement. One has to choose at which
simulation instant the action should be executed. A common
practice is to run the functional behavior first, followed by the
wait statement (e.g. load_img(); wait(3, SC_MS);). If the duration of
the action depends on the actual computation being performed,
we would let load_img compute a duration t, and the following
wait can be performed as wait(t). A particular case of this is
TLM-2’s temporal decoupling [14], where t is computed by
maintaining a local clock, which is reset to 0 upon calling wait.
In this paper, we follow these guidelines to model tasks that
take time; i.e., “run the functional behavior first, and call wait
afterwards to model its duration”.

IV. POWER INSTRUMENTATION OF TL-MODELS

Power instrumentation is out of the scope of the paper, this
section gives an insight of the kind of information we rely on
during the cosimulation, and how it is obtained.

Because the same functional platform may be used with
several power models, we do not back-annotate SystemC code
directly with numerical values, but instead apply the separation
of concerns principle [15] and keep the numerical values in
a separate model. We extend SystemC modules with a set
of power parameters that might be of several types (voltage,
frequency, circuit activity, etc.). The value of each parameter
is set by the functional model at appropriate points in time.
For example, the calls to set_pwr at lines 3 and 9 (Figure 2)
set the parameter activity to the corresponding mode, and allow
producing line (5) in the execution trace of Figure 3.

Power instrumentation benefits from the guideline in which
the functional behavior is simulated first in zero-time, then

the wait statement declares its duration. During the simulation
instant t and before the simulation jumps to the next instant,
we are able to set power parameters, and compute the time ∆t
for which these states hold.

Instrumented SystemC/TLM models generate a trace of
power parameters; that is, simulation intervals associated with
components’ power parameters. Fig. 3 depicts the power trace
of the individual components of the platform in Fig. 2. Traces
(2) and (3) in Fig. 3 depict the activity and electrical parameters
of the CPU as set by the behavior of the process p() of the CPU.
Trace (5) depicts the activity parameter of the VGA as set by the
process v(). The execution of p() and v() generate transactions.
The observed transactions on each of the BUS and MEM are
quantified to computed average traffic frequencies resulting in
traces (6) and (7) of Fig. 3.

From such traces, a power simulator can compute power
traces that associate each component with its static and dy-
namic power consumption. Static and dynamic power con-
sumption are functions of power states. Notice that static power
computation may depend on system temperature.

V. SYSTEMC AND POWER/TEMPERATURE SOLVER
COSIMULATION INTERFACE

This section presents an approach where an external solver
can be used, but without the drawback of offline analysis.
We co-simulate the functional behavior with the power and
temperature solver, which allows a bidirectional interaction be-
tween the functional behavior and the non-functional aspects:
the functionality can for example change depending on the
temperature of the system, and the temperature still depends
on power consumption hence on the functionality.

SystemC

P/T Solver

Simulated time

wait

Fig. 4. Simulated time in both simulators

Figure 4 illustrates the relationship between simulated time
on the functional (SystemC) and non-functional (Power/Tem-
perature) simulators. On the SystemC side, all computations
are done at well-defined simulation instants. On the non-
functional side, the behavior within simulation intervals is
continuous. In most cases, this continuity is simulated using
iterations over time internally, possibly with a variable step (as
shown on the figure). We consider the simulation intervals as
“black boxes” and do not want to rely on internal implemen-
tation details of the solver. Note that this relationship between
simulated times does not necessarily force the order in which
the simulations will be executed (see Section VI for details).

Figure 5 illustrates the global view of the cosimulation
architecture. On the left part is the SystemC functional model
instrumented with power parameters. On the right-hand side
of the figure is the temperature solver. The SystemC com-
ponent SYNCHRO is added between the platform itself and
the power/temperature solver to deal with data exchange and
synchronization between simulators. The SYNCHRO compo-
nent implements several synchronization strategies; they are

BUS

CPU VGA

SYNCHRO

MEMSENS

req
ue

st

res
po

ns
e P/T SOLVER

co
-si

mula
tio

n
int

erf
ac

e
(T

hr
ift

)

Fig. 5. Architectural View of the Cosimulation

discussed in Section VI. The next section describes the type
of exchanges that happen between the simulators.

A. Description and Implementation of the Interface

The discrete simulator (e.g., SystemC) produces the trace
that is exploited by the continuous simulators (e.g., temperature
solver). At some point in the cosimulation, the SystemC model
sends a request describing the evolution of power parameters
during an interval of simulated time (one, or possibly several
simulation intervals). The non-functional solver will reply
with a response that describes the result of simulation on the
requested time interval.

The information contained in a request is similar to the one
contained in execution traces used in offline analysis, but de-
scribe only the evolution of parameters during the time interval
[ti, tj] (one, or several simulation intervals); it is comparable to
the information available in VCD files. The implementation of
the co-simulation interface uses Thrift [16], an efficient, cross-
language and cross-platform remote procedure call protocol.
The description of the thrift interface is provided in [17].

1) The request: A request is a struct composed of three
main fields: (i) until_date is the time horizon to which the
solver should advance in order to synchronize with the Sys-
temC simulation; (ii) value_changes is a list of components’
power states time-stamped with the date at which they changed
their value; (iii) halt_conditions is a list of threshold values on
which the simulation should be interrupted (e.g. temperature
goes over a threshold, and the functional simulation should
react immediately with an emergency stop). The solver should
stop when one of these thresholds is crossed, and indicate the
date at which it happened (i.e., zero-crossings).

2) The response: Based on the request it receives, the
solver computes the components’ power consumption and
temperature over interval [ti, tj] and construct a response. The
response is a struct composed of the following fields:
(i) halt_date is the simulated time reached by the solver;
(ii) changed_values is a list of power and temperature values
time-stamped with the dates at which they were reached; (iii)
halt_causes is a list of conditions causing the termination of
the solver computation. The computed values at time tj (a
response) are sent back to the SystemC functional model. If the
simulation stopped because of a halt_condition, the response
mentions which condition was triggered.

The component SYNCHRO decides when the non-functional
simulation should be performed, and is in charge of construct-
ing the request, and dispatching non-functional values to the

appropriate components (e.g., informing the SENS component
of the new temperature value).

VI. COSIMULATION STRATEGIES

Section V described the interface between the functional
and non-functional solvers and the data-exchange between
them, but left apart the question of synchronization: when
should non-functional simulations be triggered, and on which
time intervals. We now describe the various possible strategies.

A. Simulate Intervals One by One (Lockstep)

A possible cosimulation strategy is to synchronize simu-
lators at the end of each simulation instant (lockstep strategy,
Figure 6). Suppose the current simulation instant is ti. All
eligible processes at instant ti execute (Fig 6.(1)). Before the
SystemC scheduler jumps to instant ti+1, the SYNCHRO com-
ponent suspends the SystemC model, constructs a request

according to power states and halt conditions. The time horizon
of the requested simulation is set to the next SystemC instant
ti+1 (6.(2)).

SystemC

P/T Solver
Simulated time

(1)

end of instant ti instant ti+1

(2)

non-functional simu (3)

(4)

...

Fig. 6. lockstep cosimulation strategy. For clarity, simulated instants are
represented with a non-null width.

Upon receiving the request, the solver computes com-
ponents’ temperature according to the received power states
(6.(3)). The temperature is computed until the time horizon
ti+1 if no halt condition was encountered. The SYNCHRO
component receives the response of the solver, updates reg-
isters of the temperature sensors, and resumes the SystemC
execution (6.(4)). The updated temperature is valid for the Sys-
temC instant ti+1. Components executing at this instant will
access the right temperature. “Suspending” and “resuming” the
simulation is performed by sending the request and waiting for
the response. Since SystemC simulation is sequential, waiting
for the response effectively suspends the simulation.

1) Interrupt Triggered by Non-Functional Solver: In case
the solver encounters a halt condition at time ti + δt (where
ti + δt < ti+1), it stops the non-functional simulation at that
time (See Fig 7). The response of the solver (7.(4)) gives
component temperatures at ti + δt and the halt_conditions
encountered. The SYNCHRO component receiving the solver
response programs the temperature sensor to trigger an inter-
rupt at ti + δt (using a timed event notification in SystemC).
The consequence of such an interrupt, is to create a new
SystemC instant to which the scheduler will jump instead of
resuming the simulation at ti+1. This is possible without any
backtrack in SystemC: indeed, the simulator was suspended
at the end of simulation instant ti and before jumping to the
instant ti+1, and can still notify an event at time ti + δt.

B. Optimization in the Absence of Non-Functional Interrupts

The benefit of the lockstep synchronization lies in the
fact that the non-functional simulator runs between simulation

SystemC

P/T Solver
Simulated time

(1)

end of
instant ti

expected
next instant

(2)

(3)

halt_condition
reached

(4)
δt

created
instant

process IT

Fig. 7. lockstep cosimulation strategy with interrupt

instants, hence it is possible to interrupt the non-functional
simulation on halt_conditions. These interrupts may change
the future of the simulation without questioning its past (i.e.,
no backtrack). However, the lockstep strategy requires a round-
trip between simulators for each simulation instant, which may
result in non-negligible simulation overhead.

1) Functional Ahead Strategy: In the absence of non-
functional interrupts, we can perform better, avoiding switch-
ing simulators at each SystemC instant (functional ahead
strategy, see Figure 8). Synchronization is performed only
when it is required. The SystemC simulation may run multiple
instants ahead of the solver, until a non-functional value is
required (e.g. there is a read access on a temperature solver,
(8.(1)), and a single request is made for the set of time
intervals corresponding to the instants executed (8.(2)). The
non-functional simulator then simulates the trace (8.(3)). Note
that in this case, the power parameters may change while the
request is processed (this is the reason why a request contains
a set of value changes with the associated simulation time,
and not only a set of values). The response (8.(4)) contains
the values that were required on the SystemC side.

SystemC

Simulated time
P/T Solver

Functional (1)

SystemC reads
temperature

(2)

Non-functional (3)

(4)

...

Fig. 8. functional ahead strategy, in the absence of interrupt

2) Running both Simulations in Parallel: An improvement
over the functional ahead strategy is to run the simulators
in parallel. When the functional simulation does not need
any non-functional values, the execution follows a simple
producer-consumer scheme (the functional simulation pro-
duces requests that are consumed by the non-functional simula-
tor). When the functional simulation requires a non-functional
value, a synchronization is triggered: the functional simulator
is blocked until it receives the last response, which contains
the required values.

C. Dynamic Selection of Strategy

We propose a technique to select and change strategies at
runtime, according to observations of the functional configura-
tion. We may for instance exchange, at runtime, lockstep and
functional ahead strategy during simulation. For the sake of
cosimulation speed, functional ahead strategy is preferred, but
the lockstep must be used to raise interrupts correctly.

The decision on which strategy to use starting from instant
t relies on the information we have on interrupts. If we expect
an interrupt for the next simulation interval then the lockstep
strategy must be used, in order to prevent SystemC from
advancing at a time greater than the occurrence date of the
interrupt. Otherwise, select the functional ahead strategy. At
the end of each simulation instant, the SYNCHRO component
checks a sensor’s register to update the strategy.

VII. IMPLEMENTATION

We provide an implementation of the SYNCHRO compo-
nent, as part of a synchronization library for SystemC/thermal
solver cosimulation. The SYNCHRO component provides the
above mentioned synchronization strategies. When to synchro-
nize with the solver is up to the strategy being used; but this
always happens at the end of a simulation instant.

In order to execute code at the end of simulation instants,
we add a wrapper method for the sc_start() method of SystemC.
The wrapper method performs instant-by-instant simulation: it
calls sc_start(next_t) in a loop with next_t being the date of the
nearest event. next_t is returned by the SystemC API.

The SYNCHRO component uses the thrift interface to
call the thermal solver (e.g., ATMI [10], HotSpot [9] and
Aceplorer [3]) locally or remotely over the network.

VIII. EXPERIMENTAL RESULTS

A. Validation of Power/Thermal Management Policies

Figure 9 illustrates power/thermal plotting of the example
of section III. The CPU implements a power/thermal man-
agement policy, sensitive to temperature sensor interrupts.
Interrupts notify two situations: i) the system is heating up
(e.g., instants 0.78s and 1.33s in Figure 9); the CPU, then,
scales down its voltage and frequency; and this impacts power
consumption (see Figure 9); ii) the temperature is cooling
down to a normal value (e.g., instant 1.17s in Figure 9). The
CPU, then, scales up its voltage and frequency.

We use ATMI as a thermal solver, extended with a module
to translate power states (those in Figure 3) into power values.
Since the power management is sensitive to sensor interrupts,
we use the lockstep strategy to synchronize simulators.

 40

 50

 60

 0.4 1.2

 2

 4

 0.2 0.8

 45

P
o
w

e
r

(W
a
tt

)

 12

 6

 65

 55

simulated time (s)

Temperature
Interrupt

Power consumption
10

8

0.4 0.6 1 1.2 1.4

1.410.80.60.2

Te
m

pe
ra

tu
re

(o
C

el
ci

us
)

Fig. 9. Power and thermal simulation for the case study of section III

We compared the performances of different simulation
strategies on a video decoding TL-Model, where the embedded
software polls the sensor temperature to decide on the power
configuration (no interrupts). Table I shows execution time for
the 3 strategies described above with different simulation time
step, using ATMI as a temperature solver. We can see that
the functional ahead strategy performs similarly or better than
lockstep. The benefit of parallel depends on the granularity,
and the parallel version can actually perform worse than the
sequential ones. A more detailed analysis of the performance
of the parallel strategy is provided in [17]. Table II is
a summary of simulation speeds. We distinguish the time
taken by the SystemC part (SC), the ATMI part, and the
connection between them (between parentheses is the num-
ber of exchanges between the simulators). We can see that
the overhead of connection is small, and even with thermal
simulation, coarse-grain simulations remain much faster than
low-level ones.

strategy
lockstep functional ahead parallel

ATMI Step

1000 µs 0:59 0:59 1:17
100 µs 1:45 1:48 1:07
10 µs 11:30 10:57 9:53

TABLE I. TIMINGS FOR DIFFERENT STRATEGIES (MINUTES:SECONDS)

Time SystemC/TLM ATMI Connection
1-inst. 1028s 48.8% 41.2% 11% (15.7E+6)
100-inst. 185s 5.2% 94.5% 0.03% (0.15E+6)
Coarse-grain 139s 5% 95% ≈ 0% (128)

TABLE II. EXECUTION TIMES AND CONTRIBUTIONS OF THE

SIMULATOR PARTS, FOR SIMULATING 0.5s OF THE SYSTEM

We also performed experiments using Aceplorer as a pow-
er/temperature solver, which was modified to allow cosimula-
tion through the Thrift interface. The SystemC/TLM platform
models the video subsystem of an SoC. While the platform
itself is relatively simple, it was written using STMicroelec-
tronics’s state-of-the-art development kits (several hundred
thousands lines of code in total). Simulating 16 seconds of
simulated time takes 1 hour 36 minutes, most of which is
due to the thermal simulation: simulation time drops below
2 minutes in the absence of thermal model. The case study
was briefly presented in [18]. Simulation results are provided
in [17].

IX. CONCLUSION

We present an approach for power/thermal simulation for
functional TLM models. The cosimulation principles make
it possible to take advantage of existing, domain specific
tools and enable feedback of non-functional properties in
the functional model. The approach features a cross-language
cosimulation interface that enables local or remote execution
of the solver in a transparent way.

The type of the exchange as defined by the cosimulation in-
terface imposes separation of concerns when modeling power.
The cosimulation framework is thus generic: the same func-
tional model may be analyzed according to distinct power/ther-
mal models, describing distinct physical and architectural
parameters of the chip, possibly modeled with distinct domain-
specific tools. The cosimulation interface is independent from
the simulators synchronization, and was though in order to
operate with multiple synchronization strategies. We presented
these strategies and show some comparison results for local

executions. Remote execution performance were not showed
because of lack of space.

Future work will consider two directions: i) performance
analysis: comprises the comparison of distinct power/ther-
mal simulators, and an in-depth analysis of the cosimulation
strategies both in local and remote executions. ii) Extensions
with other non-functional properties: we want to extend the
modeling with the behavior of battery level indicators, in order
to validate power-saving strategies early, or to simulate the
battery discharge profile and lifetime.

REFERENCES

[1] N. Dhanwada, I.-C. Lin, and V. Narayanan, “A power estimation
methodology for systemc transaction level models,” in Proceedings of

the 3rd, ser. CODES+ISSS ’05. New York, NY, USA: ACM, 2005,
pp. 142–147.

[2] H. Lebreton and P. Vivet, “Power modeling in SystemC at transaction
level, application to a DVFS architecture,” in Symposium on VLSI.

ISVLSI’08. IEEE, 2008, pp. 463–466.

[3] http://www.doceapower.com.

[4] http://ptolemy.eecs.berkeley.edu.

[5] J. Liu and E. A. Lee, “A component-based approach to modeling
and simulating mixed-signal and hybrid systems,” ACM Trans. Model.

Comput. Simul., vol. 12, no. 4, pp. 343–368, Oct. 2002.

[6] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet, “A hybrid
synchronous language with hierarchical automata: static typing and
translation to synchronous code,” in EMSOFT ’11. New York, NY,
USA: ACM, 2011, pp. 137–148.

[7] T. Wegner, C. Cornelius, M. Gag, A. Tockhorn, and A. Uhrmacher,
“Simulation of thermal behavior for networks-on-chip,” in NORCHIP,

2010, nov. 2010, pp. 1 –4.

[8] SystemC AMS LRM, Accellera Systems Initiative, 2011.

[9] W. Huang, S. Member, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, M. R. Stan, S. Member, and S. Member, “Hotspot: A
compact thermal modeling method for CMOS VLSI systems,” IEEE

Transactions on VLSI Systems, vol. 14, pp. 501–513, 2006.

[10] P. Michaud and Y. Sazeides, “ATMI: analytical model of temperature in
microprocessors,” Third Annual Workshop on Modeling, Benchmarking

and Simulation (MoBS), 2007.

[11] F. Bouchhima, G. Nicolescu, E. M. Aboulhamid, and M. Abid,
“Discrete-continuous simulation model for accurate validation in
component-based heterogeneous soc design,” in IEEE International

Workshop on Rapid System Prototyping. IEEE Computer Society, 2005.

[12] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E. Aboulhamid,
“A systemc/simulink co-simulation framework for continuous/discrete-
events simulation,” in Behavioral Modeling and Simulation Workshop,

Proceedings of the 2006 IEEE International, sept. 2006, pp. 1 –6.

[13] L. Gheorghe, F. Bouchhima, G. Nicolescu, and H. Boucheneb, “Se-
mantics for model-based validation of continuous/discrete systems,” in
DATE. IEEE, 2008, pp. 498–503.

[14] IEEE 1666 Standard: SystemC Language Reference Manual, Open
SystemC Initiative, 2011. [Online]. Available: http://www.accellera.org/

[15] S. Kaiser, I. Materic, and R. Saade, “Esl solutions for low power
design,” in Proceedings of the International Conference on Computer-

Aided Design. IEEE Press, 2010, pp. 340–343.

[16] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-
language services implementation,” Facebook White Paper, 2007.

[17] T. Bouhadiba, C. Helmstetter, M. Moy, F. Maraninchi, J. Cornet,
L. Maillet-Contoz, and I. Materic, “Co-simulation of functional
SystemC TLM models with power/thermal solvers,” Verimag Research
Report, Tech. Rep. TR-2012-21, 2012. [Online]. Available: http:
//www-verimag.imag.fr/Rapports-Techniques,28.html

[18] J. Cornet, L. Maillet-Contoz, I. Materic, S. Kaiser, H. Boussetta,
T. Bouhadiba, M. Moy, and F. Maraninchi, “Co-Simulation of a Sys-
temC TLM Virtual Platform with a Power Simulator at the Architectural
Level: Case of a Set-Top Box,” in Design Automation Conference, San
Francisco, États-Unis, Jun 2012, p. SESSION 10U: USER TRACK.

http://www.accellera.org/
http://www-verimag.imag.fr/Rapports-Techniques,28.html
http://www-verimag.imag.fr/Rapports-Techniques,28.html

