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Chapitre 1

Numerical modeling of granular media made
of polyhedral particles

1.1. Introduction

As soon as we are interested in the simulation of interaatbjgcts raises the is-
sue of the choice of a relevant numerical model and of teehmrisproaches suitable
to the solving strategy. It concerns the choice of objeclis behavior (which reduces
to kinematic parametrization if they are considered asl)jgibject shape description,
contact behavior, contact detection technics and soltirgegy (e.g. time evolution,
time integration, contact solver, etc.) The principal diffty comes from the choice
of a model and numerical technics and strategies. Howeveelm@nd strategies are
usually related. Various models and strategies are alngi@$ented in this book (chap-
ters??, ??, ?? and??) which explains why this chapter only focuses on speciéisiti
and sophistications necessary to the modeling of colleaifoobjects with complex
shapes described by polyhedra.

The geometrical description of objects shape is a crucialtgoncerning the mo-
deling of granular material, particularly when real makedre studied. An obvious
but too naive choice should be to adopt an “exact” descriptibis irrelevant due
to the poor gain of taking into account the microscopic canxity of object surface
(multi-scale or fractal) with respect to the macroscopidsd phenomenon. On the
contrary a too rough geometrical description needs todlte ad hoc interaction law

Chapitre rédigé par FrédéricuBols.



12 Modélisation numérique discrete

able to mimic its phenomenology but difficult to characteri€onsidering the mode-
ling of granular material made of non spheric grains, oneficathvarious approaches
in the literature :

— some authors, for obvious technical reasons, keep a spheéscription of
grains and introduce some additional sophistications @ itfteraction law to fit
the macroscopic behavior of the granular material : rolfirigtion interaction law
[ZHO 02, EST 08], modified kinematic of grains through coasting the spin
[CAL 03], etc.

— others proposed to use grains made of an assembly of sggblergsror clump),
or approximated by super-ellipsoids (also known as supadudcs) [HOG 98], sphe-
roides [LEE 03], spherolines [POU 05], spheropolyhedral[GA], etc.

— others use polyhedral description.

One can notice that literature concerning the modeling ofaxt between polyhe-
dral surface is abundant and comes from various community :

— mechanics of materials and structures (usually througfie falement technic),
— mechanisms and robots,

— virtual reality, physically based animation, haptic deg,

— granular materials.

Unfortunately all these related works are not obviouslyl@xable due to some
granular material modeling specificities :

— it concerns large and dense collections of objects whichns& large set of
potential interactions (neighborhood), frar? for small examples ta0® for repre-
sentative ones,

— alarge number of interaction are really acting at the same;t

—dynamics is necessary to compute the rigid body motion aonstrained
objects. A suitable numerical treatment is necessary duthdostiff interaction
constraints,

— usually the solution is not unique.

In this chapter, as in the whole book, we only consider rigidibs. However many
ideas can be adapted to deformable objects. One considstesrsgnade ofV 3D rigid
objects. Each object is defined by a set of generalized cuates; (¢) € IR™ defining
its current configuration. A body occupy the domairP;(t) € R? in the current
configuration defined from the initial configuration throuBHt) = (¢, q(t)) P (to)-
Without going into details of the various interaction lansed in the modeling of
granular material one needs to compdt;(t), P;(t)) the signed distance between
objectsP;(t) and P;(t). In case of separation this distance is strictly positinease
interpenetration this distance is strictly negative anadase of grazing contact the
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distance is equal to zero. Additionally one needs to defirengact frame and various
quantities.

This chapter is formally splitted in three parts dedicated t

—the continuous modeling : rigid body dynamics and parawmetion (g(t)
choice), geometric description of objectsH{(t) choice) and contact detection (com-
putation ofd(q(t))),

— specificities of taking into account polyhedral partiaglesumerical implemen-
tation,

— applications, and especially results obtained with thiewsme developed by
LMGCL.

1.2. Rigid body dynamics and parametrization

The Newton-Euler formalism is classically used when madgdjranular material.
The velocity of a rigid body is decomposed in terms of a tratishal velocity of its
center of inertiawg = ¢ and the angular velocit{ expressed in its inertia frame.
Denoting R the rotation matrix from the global frame to the inertia fignone can
write :

Q=R"R
whereQz = Q x z.
Using these notations one can write Newton-Euler equaiiocase of nonexistence
of contact forces, as :

M@G = Fea:t
IQ + QxIQ = ]\/[ext
bo — v (1.1)
R = RQ

where M = ml3.3 is the mass matrix (diagonal and constant) witithe mass/
the inertia matrix (diagonal and constant).

This rough choice of generalized coordinates= [z¢, R] and velocitiesy =
[va, Q] = T(q)¢ can be improved in terms of number of variables or suitabibt
time integration. In such improvement, the rotation matniy be related to the angu-
lar parametrization of the object orientation, 9= R(©). Various possibilities are
available [CRI 97, IBR 97, GER 01, KOZ 10] such as Euler or @ardngles , qua-
ternions, etc. However, if an explicit or precise paranzetion is not required, using
the rotation matrix is sufficient.

1. Imgc90 [DUB 03].
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Concluding on this topic, one can remark that generally 4 doin-linear for any
plain objects (not spheres). To avoid this problem it is jldego express the Euler
equation in the global frameus(= RX2); an arising drawback is that the inertia matrix
won’t be any more constant and diagonal.

1.3. Geometrical description of objects

When considering complex-shape objects two geometricakliradion are gene-
rally possible :

— Constructive Solid Geometry (CSG). This technic deseriaesolid object as
the combination of basic volumes (cylinder, sphere, camre, etc.) through boolean
operations (union, intersection, subtraction, etc.). #stdr of spheres can be seen as
a simple CSG model. An object described by this technic hgsedéct” boundary
since each basic component is well defined. It allows to caengap and local frame
precisely. However for complex-shape solids this apprasbss relevant due to the
heaviness of the modelisation.

— Boundary Representation (Brep). This technic consisteddeling the skin of
solids sewing geometrical tiles defined by canonical sesdgenerally B-spline, Bé-
zier or NURBS). Each tile is defined through a parametric deton. Such Brep
model contains two kinds of data : topological and geomaitigurfaces, curves and
points). Principal topological data are faces, edges antitgs. A face is a limited
part of a surface (restriction). An edge is a limited part afuave. A vertex lays on
a point. A Brep model can be obtained from a CSG model (therapnts generally
impossible). Actually even if this technic is mainly usedtald CAD model, it is still
few employed for contact modeling due to the necessity ofmding in an effective
manner the distance between parametrized surfaces [JOH 04]

A way to overcome the drawbacks of these geometrical magiétichnics consist
in describing objects with polyhedra obtained from sudacivolumic mesh (for tech-
nical details see for example [LAU 05, GEU 09]). In the foliog polyhedra means
either simple objects (tetrahedra, cube) or complex onesy Bon-convex, described
by closed triangulated surface, etc

In order to manage such polyhedral surfaces some dataistgacare relevant.
They allow to find faces or edges adjacent to a vertex, fagaset to an edge, edges
limiting a face, etc. Various data structures exist [LIN BER 04]; anyway half-edge
structure is efficient [ALU 05].

An other practical advantage of possessing a polyhedratigésn of an object
is to be able to compute some relevant mechanical quargitiets as center of inertia
(OG), mass fn) and inertia matrix{) (in a global frame @, R). Two approaches are
possible :
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— if a volumic mesh is available, one computes for each elémehthe mesh its
center of inertia @G*°), mass () and inertia matrix {¢) in a local frame G¢, R)
(see [TON 04, SAU 04b] for details) and then uses the clalsgitations to obtain :

mo= Y me (1.2)
mOG = Y m°OG* (1.3)
I = > I°+mdr(0,G%) (1.4)

wheredr (O, G°) is a diagonal matrix which terms are the distance betweeaxes
of the frame Q, R) and G¢, R).

— if a surfacic mesh is available same quantities can be ctedghrough surface
integrals, see [MIR 96a, EBE 09].

When the mesh loses some topological properties, due totdeéfethe CAD for
example, one speaks of “polygon soup”. This kind of desiciipivon't be considered
in this chapter.

In order to increase continuity of polyhedral surfaces spbelyhedron can be
introduced [POU 05, GAL 08]. This surfaces are build swegiihre elements (face,
edge, vertex) with sphere; one also speaks of Swept Sphduen®o(SSV). More
precisely this object are build using the Minkowski sum oftset of points :

AeB={x+y:2€ A,y € B} (1.5)

Recently a more “generic” approach was considered reptiageabjects by a
cloud of points [KLE 05]. This approach allow to manage datming from 3D laser
scanning measure.

1.4. Contact detection
1.4.1. Introduction

When performing contact detection various informationsexgected depending
on the interaction law and on the numerical strategy usedlt@ she problem.

For example when modeling unilateral contact with a gapi&ii approach (NSCD
chapter??) one needs to compute precisely the separation distandh. wocity-
Moreau approach (NSCD chapt? and event driven chapt@f) one needs to know
if objects are touching and to evaluate the pre-contactivelaelocity. With a defor-
mable contact approach (Molecular dynamics chap®rone needs to evaluate the
penetration depth and the pre-contact relative velocity.
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Practically one needs to know the signed distance (intetpation/separation)
between two objects, contact locus (not necessarily ujjdoeal frame, relative ve-
locities, etc. The literature on contact or collision détatis huge and one can find
some reviews in papers [LIN 98, JIM 01, TES 05], PhD thesis K15, OND 06,
ERL 04] and books [BER 04, ERI 05] .

1.4.2. Hierarchy of contact detection

Contact detection represents an important part of gramaégerial modeling, in
terms of reliability of the solution but also computatioebrt. In order to reduce this
computational effort due to the complexity of algorithmesh methods are splitted in
various stages :

— broad phase : it consists in building a list of adjacent ciisjén a given neigh-
borhood (tolerance). This stage used a rough descriptitheofeometry of objects
mainly based on bounding volumes;

— narrow phase : this phase (hot mandatory) tries to improedtoad phase de-
tection. For simple objects it can consist in eliminatindgries of the list in some
straightforward situation. For more complex objects it cansist in specifying which
parts of the objects are potentially concerned by contact;;

— contact determination : at this stage one evaluate pawbjetts in contact and
contact loci, local frames, distances, etc. Depending enntimerical strategy this
stage can be adapted.

1.4.3. Broad phase

The aim of this phase is to build quickly a list of adjacenteat$. It is mainly
based on the proximity of bounding volumes of objects.

Various bounding volumes (BV) exist as illustrated on tharfigl.1 : sphere, Axis
Aligned Bounding Box (AABB), Oriented Bounding Box (OBB) screte Orienta-
tion Polytope (kDOP), convex hull, etc.

Once evaluating the bounding volume of each objects, iterisinly three proxi-
mity detection approaches :

— space subdivision [MIR 96b]. This approach rely essdgtiah a bounding
sphere approximation of objects. Basically one builds astzort box-mesh where cell
size is taken as the diameter of the largest object of the Isar®mce computed in
which cell (or box) an object is located, rough proximity mngputed with objects
populating the same cell and the surrounding cells. This istevious method which
works fine with dense samples made of objects with boundihgrepradius of the
same order. In case of loose samples the mesh size can béantgnrt a large amount
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Sphére ABB Enveloppe convexe

DEGE R

Figure 1.1. Various bounding volumes

of cells of the box-mesh are useless. This can be managegl aifiimked-cell dedica-
ted storage technic as explained in [MUN 04]. In case of yigiolydisperse media a
hierarchic subdivision approach can be more relevant (@& D7] and [OND 06] for

a discussion). Various hierarchic subdivision technisExbctree, kd-tree, bsp-tree,
etc. Due to the computational effort of such technics theyfew used.

Figure 1.2. broad detection : space subdivision

— shadow overlap on an axis (sort and sweep [BAR 90] or sweeppanne
[COH 95]). This approach rely essentially on a AABB approatian of objects. In
a first step one projects the bounding boxes on axes (figuje HoB each axis one
sorts the projected intervals in apparition order. Then ©weeps each axis in order
to build an active interval list : an interval is added to tigt bnce its beginning is
reached and is removed once its end is reached. Each time imteeval is added to
the list it means it interacts with intervals in the list, is@ch a case the proximity list
related to the given axis is increased. The final proximgyil the intersection of the
lists build for each axis. Even if this method is not obviougmplement this approach
works well. Its main drawback comes from some clusteringatff appearing when
the sample flatten along one axis. See [ZOM 02] for some opétiuns.
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Figure 1.3. broad detection : sweep and prune

— triangulation [FER 02]. This approach uses a triangutatiba set of nodes (the
center or inertia of objects for example) to determine aajaobjects. This technic is
few used and mainly for spheres.

1.4.4. Narrow phase

This optional phase uses the adjacent list build during toadphase in order to
remove trivial undesirable cases.

For simple convex objects previous methods can be repeatedf space partition
was used a local shadow overlap on various axes can also foerped.

For more complex objects (large amount of faces or non cQrevéroundary vo-
lume hierarchy (BVH) can be build in order to compute the tbng volume of sub-
parts of an object. The aim is to build progressively a treenetthe leafs are basic
primitives (triangle) or set of primitives. Each node of thee contains a set of sub-
nodes and their bounding volume (BV). The narrow detectsesithese BV-BV de-
tections. Different approaches were used : [HUB 95] for spheBER 97, GOT 96]
for AABB, [KLO 98] for k-DOP and finally [BAR 96] for convex hill Other tech-
nics exists using spatial subdivision of objet (shape iedéent) as octree or bsp-tree.
One can also mention technics based on distance field torperfarrow detection
[TES 05].

Some of these BVH decomposition are performed in a prepsougstage which
makes them even more efficient.
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1.4.5. Contact detection between convex polyhedra

Before diving into the details of contact detection techies) some preliminary
ideas need to be introduced.

First its important to remember that different situatioresmappear (grazing, sepa-
rated or penetrated contact) and that various numericdlodstare available to detect
them.

Admitting that ideal grazing contact situation appearsious cases are possible :
one contact point (figure 1.4), contact line (figure 1.5) artaeot surface (figure 1.6).

(@) 2w | (©)

Figure 1.4. One contact point situations

@ N )

Figure 1.5. contact line situations

Considering these obvious situations raises some issues :

— How to model contact transmitted by a line or a surface ? 8sital choice is to
assume it can be replaced by a finite number of contact p@ie&sKigures 1.4, 1.5 and
1.6). Some fictitious concavity of line or surface can be asiias in [MOR 03]. Even
if this choice seems interesting it introduces a local noiqweness of the contact
force distribution. In some obvious situations one carouitice additional relations
between nodal contact forces to recover uniqueness [MORBR,07].
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(b)

Figure 1.6. contact surface situations

— How many contact points are necessary ? Without any motidicaf the inter-
action law, a contact line can be represented by two poirdsaactontact surface by
three points. Selecting the nodes at the intersection addiyes delimiting the contact
surface seems to be a solution. But as illustrated figuret 1séniot so easy to select
only three points. A lazy solution is to put a large amount oiihps and let the nu-
merical method select which one is transmitting a contactefoThis solution raises
collateral problems in terms of management of data : meniaey eecovery between
two steps, etc.

— How to determine contact node position ? Mechanical staistiould be increa-
sed if the nodes are positioned on the edges delimiting theacbsurface (figure 1.6)
but from a practical point of view it is better to positionghodes inside the contact
surface.

Anyway in the following we assume it is relevant to model emttwith a reduced
number of points. Therefore the various situations (figute$, 1.5 and 1.6) reduces
to look for a limited number of scenario : vertex-vertex, tegredge, vertex-face,
edge-edge [LIN 93]. Once performed the contact point dietecrises the problem
of the local frame definition. In some degenerated situatimertex-vertex, vertex-
edge, edge-edge) the uniqueness of the normal is lost aedds Ito difficulties in
contact force computation.

However the ideal grazing contact situation is too restecand few encountered.
Practically it is necessary to manage properly the seghiaetact situation. A first
set of methods are based on the fact that if two convex potgha separated (even
grazing) it exists a separating plane, e.g. a plane thatalefio subspaces each one
containing an object. The separating plane is not uniqueainynsituations. But when
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it exists it can be chosen as a face of one of the two polyhedrarallel to two edges
(one for each polyhedron) and containing one of these ediges¢rmal of the plane
is the cross product of the directions of the two edges) [BAR 9

—(a)

Figure 1.7. Separating plane

To summarize, finding a separating plane leads to the fatthbawo polyhedra
are not interpenetrating. This method is not giving any &alfithe distance between
the two objects. The separating axis method (also namedshaderlap method by
Moreau) is a dual approach. For further details see [EBE AU, &4b].

Cundall has proposed a method suitable for computing thardie between two
polyhedraA and B [CUN 88] using the idea of separating plane : the common plane
method. One note& 4 (respGp) the inertia center ofA (resp.B) and X 4 (resp.

X p) its set of vertices. Considering a plaRecontaining the poinfi/ = % and
perpendicular to a normal vectar one define the signed distances :

d+ min{n - MX : X € X4} (1.6)
d~ = max{n-MX:X € Xg} a.7)

The goal of the method is to find such thatd™ — d~ is maximal. It is an iterative
method based on perturbation of the orientation of the nbweetor. The process is
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initialized using the vector which links the center of thgemlts or with a previous

guess. The main advantage is that it can give a solution evéegenerated situations.
The main drawbacks comes from the slow converging iteragtieeess and its poor
precision. Using some optimization it can be used for modetiolyhedral granular

materials [NEZ 04, PER 07, CHA 08]. This method works evenifberpenetrated

objects. It was also successfully used to model masonrgtsties and fractured rock
mass [PER 07, RAF 08].

In order to compute more precisely the minimal distance betwto objects one
can use the Voronoiregion, which allows to do a partitionpgzce around a convex
polyhedron based on its elements (vertex, edge, face).guhkis unique partition,
for a given point outside a polyhedron, it is possible to find hearest element, as
illustrated figure 1.8.

Figure 1.8. Voronoiregion

Based on this property iterative algorithms evaluatingrttirimal distance bet-
ween the set of elements of polyhedra were developed [LIN.-BN 93]. The mini-
mal distance between two convex polyhedron is the mininshdce between the sets
of elements. The original method, only able to manage sépgrar grazing contact,
was extended to interpenetrated contact [MIR 98].

This method was used to model polyhedral granular mateinatgder to find
a common plane [NEZ 06]. This rely on the property that thertstsp link vector
between two convex polyhedra can be taken as the normal ebthenon plane.

A totally different and original method developed to con®tite distance bet-
ween any convex object can be used [GIL 88]. It relies on theviing mathematical
notions :
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— support function of an object, which for a vector ¢) gives the pointCC' such
that :

sc(v) € Candv - s¢(v) = max{v-z:z € C} (1.8)

— convex combination of a set of poinis:
conv(X) = {Z i Z)\i =1, >0} (1.9)
i=1 =1

— proximal point to the origin of the points of a convex et

v(Q) € Qand|[v(Q)| = min{|lz| : z € Q} (1.10)

In order to compute the minimal distance of a convex(séb the origin one can
use the following iterative descent method (see figure 1.9) :

— One initialize the method defining a vectgrin the direction of the convex set
C, a set of point¥, = () and computinguy = s¢(—vo)

— For each iteratiork one computes, = v(conv(Wi_1 U wi—1)) and Wy as
being the smallest sé&f of W, _; Uwy_1 such thaby, € conv(X) andwy, = sc(—vg)

— One stops the process when for examplg|| is no more varying (see [BER 04]
for discussions).

In order to use this method one needs to observe that congphiendistance bet-
ween two convex objectd and B is equivalent to compute the distance to the origin
of the convex se€ which is their Minkowski difference :

d(A,B) =min{|lxr —y||:x € A,y € B} =v(A© B) (1.11)

From a practical point of view it is not necessary to buildone only needs to
be able to compute the support function of the convexCs&t/hich can be computed
using the support function of andB :

s40B(v) = 54(v) — sp(—v) (1.12)

For polytopes the support point are the vertices, whichdéa@asier computation
and insure convergence in a finite number of iteration. It estended to contact
with interpenetration [JOU 97, BER 04]. This method was ssstully used to model
polyhedral granular materials [PET 01].

Concerning contact detection with interpenetration a fmpethod based on the
intersection of soup of triangles can be used [MOL 97, O'R@8] 03]. It was suc-
cessfully used to model ballast [SAU 04b].
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@k=0W =10 (b) k=1, W = {wo}

(C)k‘:2,W:{w0,w1} (d)k:37W:{w07w2}

Figure 1.9. iterations of the GJK method

Finally it can be mentioned that contact detection methadsldped by the finite
element community are also available [LAU 02].

All the available methods are now presented. More or lesswhege all extended
to contact with interpenetration in order to give the intretration depth, e.g. the
smallest translation needed to obtain a grazing contactioDgly one can consider
the orientation of this vector as the normal vector at theadrpoint. Unfortunately
this choice is not relevant in some degenerated situatfang¢ 1.10a).

A pseudo energy minimization was proposed to solve thislpmFEN 04]. Any-
way it seems that a natural solution consist in using thealdy®f interpenetration,
which uses the consistency of the path followed by objeatsigRly, knowing a sepa-
rated configuration and a velocity it is possible to build enmal vector (figure 1.10b).

In order to control interpenetration between objects omeaxapt the time step
[ACA 08] or interpolate the trajectory in order to evaluabe fposition of objects to
grazing contact [BAR 89, BAR 90]. Depending on the solvirmg&gy one adopts the
suitable solution.
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Figure 1.10. Spacial consistency to insure suitable normal definition

Once computed the distance and the normal between objeetsie®ds to define
the contact locus (e.g. where the contact forces will aat)y ©ontact occurring along
a line or surface raise issues. The following approach attolwild this points :

— build a common plane (as meant by cundall) betwéemd B objects.

—do a projection on this plane of a subséf (resp.X§) of the vertices ofd
(resp.B ) nearer to the plane than a given toleran¢igure 1.11a)

— build the convex hull of the projected nodEs and X (figure 1.11b)
— compute the intersection of these convex hulls (figured).11

— choose contact points in this domain and rebuild distanoemal, etc. (fi-
gure 1.11d)

To conclude one can mention the elegant method proposed bR [0TEto per-
form contact detection between polygonal surfaces usihgrsppolygons which al-
lows to obtain unicity and continuity of normal along thefage. Sphero-polygons
were already used to model granular materials [PET 01, GAL 08

1.4.6. Contact detection between non convex polyhedra

Contact detection between non convex polyhedra is a difftask. Most of the
methods split the problem using one of the following two aaghes :

— abounding box hierarchy as explained in sectionl.4.4e®mo bounding boxes
are crossing contact detection technics between the podygarfaces embedded may
be performed as explained in section 1.4.5.
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|
'y

Q) (b)

ay,
ay,

(c) (d)

Figure 1.11. Steps to compute contact points

— a decomposition of non convex object in a set of convex ébjeduster). Such
decomposition may be performed by hand or automaticalli [L8, RAT 09].
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1.5. Numerical implementation
1.5.1. Introduction

Taking into account polyhedral particles in a modelingwafe of granular mate-
rial is not an impossible task. The main difficulty comes froomtact detection. In the
following ( 1.5.2) we give a list of existing libraries based the methods presented
before. However it remains necessary to adapt the contaettre the numerical stra-
tegy used to model the problem (see section 1.5.3).To cdache will detail some
choices made in the software we develop (section 1.5.4).

1.5.2. Libraries dedicated to contact detection

Variousopen sourcdibraries, using the algorithms described before, ardaivia
on the WEB :

— I-collide [COH 95] : this tool rely on the Lin-Canny algdrinh which uses the
Voroniregion [LIN 91, LIN 93]. It can take into account largellection of convex or
poly-convex objects, sorting potential couples of coritacbbjects with ssweep and
prunemethod. It can use temporal coherence to improve detection.

http://www.cs.unc.edu/~geom/I_COLLIDE.html

— RAPID [GOT 96] : this tool compute contact considering padgiral surface as a
polygon souplt uses a bounding box hierarchy (OBB tree) of objects.peigicularly
suitable for objects made of a large number of triangles.

http://www.cs.unc.edu/ geom/0BB/0BBT.html

— V-collide [HUD 97] : this tool uses the narrow detection afdllide and the fine
detection of RAPID.
http://www.cs.unc.edu/ geom/V_COLLIDE.html

— V-clip [MIR 98] : this tool rely on an extension of the Lin-@ay algorithm due
to Mirtich, which can cope with interpenetrating objectsdétects contact only bet-
ween two objects.

http://www.cs.sunysb.edu/"algorith/implement/V-CLIP/distrib/

— SOLID [BER 04] : this tool uses a GJK method and a bounding lierarchy
(AABB). It allows to perform contact detection between rigiddeformable objects.

http://www.win.tue.nl/cs/“gino/solid/

— PQP [LAR 00] : this tool consider objects as a polygon soup ases swept
sphere volumes to search contacts.

http://www.cs.unc.edu/~geom/SSV
— CollDet proposes a large set of tools in a framework ableetdopm contact

detection.
http://cg.in.tu-clausthal.de/research/colldet/index.shtml
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Additional informations are available on the following weike :
http://gamma.cs.unc.edu/research/collision/packages.html

1.5.3. Problemsrelated to numerical strategy

Various paradigm of numerical strategy exist and are ptesén this book. Wi-
thout coming into the details of such methods some, rematksad to their use with
polyhedral particles can be made :

— static or quasi-static methods (chap®). Considering polyhedral particles
seems straightforward once contact detection (taking &mmount several contact
points) is performed.

— explicit contact methods (chapt@?). These methods assume contact force is
proportional to some overlap between particles. Theraf@eesults of such methods
are deeply depending on the interpenetration distance @maah vector computation.
Introducing several contact points to model linear or ssgfaontact may be tricky
with respect to there number, location and to the value ofithiity [ZAV 09]. Using
too small rigidity vanishes the interest of using polyhédrapes because it won't res-
pect the geometrical constraints. Using too stiff rigiditpys introduce some nume-
rical troubleshooting as oscillations. Furthermore itrsedlifficult to give a physical
meaning to contact rigidity.

— event-capturing methods (chapt&). As previously this method depends on
the precision of contact detection, especially the nornegtar. When considering
interaction law written in terms of relative velocity onlyaging or interpenetrated
potential contact are treated, which rely essentially enkhowledge of the normal
vector at contact point. However it implies that the impegigitity constraint is only
controlled by the choice of the time step. Considering axt#on law written in terms
of distance allows to achieve impenetrability constraomtdny reasonable time step.
However the contact frame is implicit (it depends on the wvkms). It is relevant
to use an explicit configuration but its choice is not unigd@e can consider the
configuration known at the beginning of the time step or atesortermediate time. A
leapfrogapproach was proposed by Moreau [MOR 03].

— event-driven methods (chapt®?). In this method the only difficulty is to eva-
luate precisely impact time in order to sort contact eventsdrive the simulation.

Furthermore one needs to notice that when considering pdhgh particles the
non linear term appearing in the Euler equation (1.1) no maréshes. In a confined
and dense granular material, where the spin velocity is Isihaan be relevant to
integrate it explicitly or to make it vanishing.

A technical problem arise when considering interactionslamith internal va-
riables (damage, cumulated path, etc) as cohesive modekéonple. In this situation
it is necessary to find a relevant way to store contact higimsing a Verlet mapping
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for example) which may be tricky when considering severaltact points between
two objects.

1.5.4. Choices madein LMGC software

Modeling of polyhedral granular media was initiated at LM@@ing the PhD of
Saussine [DUB 03, SAU 04b]. Many improvements are still penfed, for example
see the work of Pérales et al [PER 07]. Here we will summaxneeschoices we did
in our software?.

As presented in section 1.2, object orientation may be dgyethe rotation ma-
trix R independently of any parametrization. However one needgedgrate the spin
velocity 2 to update the rotation matrix at each time step. Two methoelavailable :

— if the spin rotation is very small a kind of linearization yrize performed. Each
vector of the inertia frame! is modified due to an increment of rotatidxt(2 using
the following relation :

el = el + AtQ x e (1.13)

This obvious technic needs some re-orthogonalizationegstienframe to keep nume-
rical precision.

— to overcome the previous method drawback we use the digoproposed by
Hugheset al. [HUG 80] which preserves orthogonality and metric of thenpipal
inertia frame.

Concerning contact detection the following steps are peréal :

— space subdivision broad phase. Big particles are notderei when computing
the size of the boxes.

— narrow phase : obvious non contact situation are removagd aseparating axis
technic éhadow-overlap The axis are taken in the set of the normal vectors to the
triangular faces of the polyhedra.

— contact detection : two methods are used.
- triangle intersections [SAU 04b] which can only be usedhwibntact law
written in term of relative velocity,
- common plane (as meant by Cundall) [PER 07] which can be wihdany
interaction law. The normal to the plane can be determinadjusrious technics.

The code was modularly designed in order to mix various mgchmodels (ri-

gid, deformable, etc), to perform contact detection betwegious shapes and to use
various simulation strategies.

2. available at http ://www.Imgc.univ-montp2.fr/~dubois/LMGC90
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1.6. Examples
1.6.1. Ordered media

Masonry structures can be considered as an ordered discegli@ made of poly-
hedral objects.

A first example (more details in [SAU 04b]) is based on an expental work due
to C. Fort (Marseille). It consists in submitting a wall madfevood bricks to a ground
translation. The wall is made of 105 bricks putted on 10 lay&wo dimensions of
bricks are used, large ones (95) which meadidre=- 4.9cm, L = 12.4cm andl =
6.2cm, and small ones (10) with divided by 2. The numerical results were obtained
considering a friction coefficient betwe8ré and0.7. Figure 1.12 shows the relevance
of the numerical solution compared to the experimentallt@su

Figure 1.12. Experimental and numerical displacement pattern of a wall submitted to
foundation differential motion

A second example concerns the computation of the equitibstate under gravity
of the “Pont du Gard” (South of France) [CHE 04]. The bridgemiade of 35000
blocks (figures 1.13 a and b) which dimension were obtainetégsures. The pillars
settle on rigid foundations. Friction coefficient is takesa = 0.3. Figure 1.13c
shows the distribution of contact pressure supported bgkisland figure 1.13d shows
the contact network at blocks interfaces.
This example illustrated the capability of the method to eiddrge systems.

1.6.2. Disordered media

Concerning shape of objects, size distribution, compaetty granular materials
are more disordered than masonry structures. However ingdebls are the same.

In the following are presented some results of studies paed at LMGC in col-
laboration with SNCF on the modeling of ballast [SAU 04b, SBdh, AZE 07a]. For
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Figure 1.13. Pont du Gard modeling. (a) an (b) geometry, (c) pressure on bjg¢dkgontact
forces

all examples particle shapes come from digitalized grdiash particle belongs bet-
ween 8 vertices and 12 faces to 27 vertices and 70 faces (seedmple figure 1.14).
For such granular material one can study the influence ofcimsthapes on its macro-
scopic behavior (force transmission, texture, etc.).

We can start considering a tri-axial test with quasi-stiaiid [AZE 07b, AZE 09].

The sample is made of 36933 polyhedra (figure 1.15) : 50% willameterdmin =
2,5¢cm, 34% with a diameteB, 75¢m and 16% with a diametetmaxz = 5¢m. This
size distribution is a relevant approximation of ballastenial. Such sample contains
7.1 10° vertices and more thar)® faces.

The friction coefficient between grains is equabtd and between grains and box
walls to0. Normal and tangential restitution are taken equdl.tbhe sample is sub-
mitted to a vertical rate of deformation (by the vertical valhile applying a constant
horizontal stress. In [AZE 09] a detailed analysis of theariat rheology is given.
It can be related to the contact force distribution. Figurkslgives the probability
density function of punctual, linear and surface contaatds, as well as the contact
network.

On can also consider the dynamical behavior of such maféi 06, AZE 08].
As an illustration we consider a sample made of 1200 pastieith the same property
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Figure 1.14. Sample of digitalized ballast grains (courtesy of SNCF)

than before. The sample fill a cubic box (figurel.17) and igvstibd to a cyclic
horizontal forcef (¢) :

f(t) — (fmaz '2+_ fmzn) _ (fmaz g fmin)sin(wt),

wheref,,.. andf,,;, are the maximum and the minimum of the compression force.

Understanding the compaction behavior of the material (§ifj18) needs once
more to analyze local behavior as the contact force didtdbuand evolution (fi-
gure 1.19).

1.6.3. Conclusion

There are no insurmountable conceptual or technical istlkésg into account
polyhedral particles in a discrete media simulation as smabjects kinematics and
contact detection are managed. However specific difficuiteaning from the chosen
simulation strategies may arise.

Building a simulation tool remains only the first step in th@lgsis. Due to the
deep influence of particle geometry on sample macroscopiaviar specific post-
processing tools need to be developed and are not a staightll adaption of exis-
ting one.
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Figure 1.15. Triaxial test : sample geometry

To conclude one have to notice that a fine study of the influefitke modeling
choices on the macroscopic behavior is not available.

| want to thanks people who contribute to the developmenhefrhodeling tool
(Gilles Saussine, Robert Pérales) and the analysis mdtgd@-arhang Radjai, Emi-
lien Azéma, Ali Rafiee, Marc Vinches).
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