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The authors discuss how general regularization schemes, in particular linear regularization schemes and projection schemes, can be used to design tests for signal detection in statistical inverse problems. It is shown that such tests can attain the minimax separation rates when the regularization parameter is chosen appropriately. It is also shown how to modify these tests in order to obtain (up to a log log factor) a test which adapts to the unknown smoothness in the alternative. Moreover, the authors discuss how the so-called direct and indirect tests are related via interpolation properties.

Introduction and motivation

Statistical inverse problems have been intensively studied over the last years. Mainly, estimation of indirectly observed signals was considered. On the other hand, there are only a few studies concerned with signal detection, which is a problem of statistical testing. This is the core of the present paper. Precisely, we consider a statistical problem in Hilbert space, where we are given two Hilbert spaces H and K along with a (compact) linear operator T : H → K. Given the (unknown) element f ∈ H we observe (1.1)

Y = T f + σξ,
where ξ is a Gaussian white noise, and σ is a positive noise level. A large amount of attention has been payed to the estimation issue, where one wants to estimate the function f of interest, and control the associated error. We refer for instance to [START_REF] Engl | of Mathematics and its Applications[END_REF] for a review of existing methods in a deterministic setting (ξ is a deterministic error satisfying ξ ≤ 1). In the statistical framework, the noise ξ is not assumed to be bounded. In this case, there is a slight abuse of notation in using (1.1). We assume in fact that for all g ∈ K, we can observe Y, g = T f, g + σ ξ, g , where •, • denotes the scalar product in K. Details will be given in Section 2. In this context, we mention [START_REF] Bissantz | Convergence rates of general regularization methods for statistical inverse problems and applications[END_REF] or [START_REF] Cavalier | Inverse problems in statistics[END_REF] among others for a review of existing methodologies and related rates of convergence for estimation under Gaussian white noise. In this study, our aim is to test the null hypothesis that the (underlying true) signal f corresponds to a given signal f 0 against a non-parametric alternative. More formally, we test (1.2)

H 0 : f = f 0 , against H 1,ρ : f -f 0 ∈ E, f -f 0 ≥ ρ,
where E is a subset of H, and ρ > 0 a given radius. The subset E can be understood as a smoothness constraint on the remainder ff 0 , while the quantity ρ measures the amount of signal, different from f 0 , available in the observation. Following the setting, (1.2) is known as a goodness-of-fit or a signal detection (when f 0 = 0) testing problem. In the direct case, i.e. when T = Id, this problem has been widely investigated. We mention for instance seminal investigations proposed in [START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF][START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF][START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF]. We refer also to [START_REF] Baraud | Non-asymptotic minimax rates of testing in signal detection[END_REF] where a non-asymptotic approach is proposed. Concerning testing in inverse problems there exists, up to our knowledge, only few references, as e.g. [START_REF] Ingster | Minimax signal detection in ill-posed inverse problems[END_REF] and [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF]. In these contributions, a preliminary estimator f for the underlying signal f is used. This estimator is based on a spectral cut-off scheme in [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF], or on a refined version using Pinsker's filter in [START_REF] Ingster | Minimax signal detection in ill-posed inverse problems[END_REF]. All these approaches are based on the same truncated singular value decomposition (see Section 3.1 for more details). Here we shall consider general linear estimators f = RY , using the data Y . Plainly, since f 0 and hence T f 0 are given, we can constrain the analysis to testing whether f = 0 (no signal) against the alternative H 1,ρ : f ∈ E, f ≥ ρ, and we discuss this simplified model from now on.

In the following, we will deal with level-α tests, i.e. measurable functions of the data with values in {0, 1}. By convention, we reject H 0 if the test is equal to 1 and do not reject this hypothesis, otherwise. We are interested in the optimal value of ρ (see (1.2)) for which a prescribed level for the second kind error can be attained. More formally, given a fixed value of β ∈]0, 1[ and a level-α test, we are interested in the radius ρ(Φ α , β, E) defined as

ρ(Φ α , β, E) = inf ρ ∈ R + : sup f ∈E, f >ρ P f (Φ α = 0) ≤ β .
From this, the minimax separation radius ρ(α, β, E) can be defined as the smallest radius over all possible testing procedures, i.e.

ρ(α, β, E) = arg min

Φα ρ(Φ α , β, E), and the minimum is over all level-α tests Φ α . We stress that this minimax separation radius will depend on the noise level σ, and on spectral properties, both of the operator T which governs the equation (1.1), and of the class E, describing the smoothness of the alternative. Lower (and upper) bounds have already been established in order to characterize the behavior of this radius for different kind of smoothness assumptions (see for instance [START_REF] Ingster | Minimax signal detection in ill-posed inverse problems[END_REF] or [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF]). Recent analysis of (classical) inverse problems adopts a different approach by measuring the smoothness inherent in the class E relative to the operator T . By doing so, a unified treatment of moderately, severely and mildly ill-posed problems is possible. We take this paradigm here and consider the classes E as source sets, see details in § 3.

Also, previous analysis was restricted to the truncated singular value decomposition of the underlying operator T . This limits the applicability of the test procedures, since often a singular value decomposition is hardly available, for instance when considering partial differential equations on domains with noisy boundary data. Therefore, the objective in this study is to propose alternative testing procedures that match the previous minimax bounds.

To this end we first consider general linear regularization in terms of an operator R (Sections 2.2 & 2.3), and we shall then specify these as linear regularization (in Section 3.1) or projection schemes (in Section 3.2), respectively. In each case, we derive the corresponding minimax separation radii. Next the relation between testing based on the estimation of f (inverse test), and test based on the estimation of T f (direct test) is discussed in Section 4. Such discussion can already be found in [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF]. However, here we highlight that the relation between both problems can be seen as a result of interpolation between smoothness spaces, the one which describes the signal f and the one which characterizes the smoothness of T f . Finally, we shall establish in Section 5 an adaptive test, which is based on a finite family of non-adaptive tests. It will be shown that this adaptive test, with an appropriately constructed finite family, is (up to a log log factor) as good as the best among the whole family of tests.

Construction and calibration of the test

Considering the testing problem (1.2), most of the related tests are based on an estimation of f 2 ( ff 0 2 in the general case). Then, the idea is to reject H 0 as soon as this estimation becomes too large with respect to a prescribed threshold. As outlined above, in order to estimate f 2 where f ∈ H, from the observations Y , cf. (1.1), we shall use a general linear reconstruction operator R : K → H.

2.1. Notation and assumptions. First we will specify the assumption on the noise ξ in (1.1).

Assumption A1 (Gaussian white noise). The noise ξ is a weak random element in K, which has absolute weak second moments. Specifically, for all g, g 1 , g 2 ∈ K, we have ξ, g ∼ N (0, g 2 ), (and

E [ ξ, g 1 ξ, g 2 ] = g 1 , g 2 ).
Notice that the second property is a consequence of the first, because bilinear forms in Hilbert space are determined by their values at the diagonal. Under such assumption, given any linear reconstruction operator R : K → H the element RY belongs to H almost surely, provided that R is a Hilbert-Schmidt operator (Sazonov's Theorem). When specifying the reconstruction R in Sections 3.1 & 3.2, we shall always make sure that this is the case. Then the application of R to the data Y may be decomposed as

(2.1) RY = RT f + σRξ = f R + σRξ, f ∈ H,
where f R := RT f denotes the noiseless (deterministic part) of RY . Along with the reconstruction RY the following quantities will prove important. First, we can compute the bias variance decomposition

(2.2) E RY 2 = RT f 2 + σ 2 E Rξ 2 = f R 2 + S 2
R , where we introduce the variance of the estimator as

(2.3) S 2 R := σ 2 E Rξ 2 = σ 2 tr [R * R] ,
which is finite if R is a Hilbert-Schmidt operator. In addition the following weak variance will play a role.

(2.4)

v 2 R := σ 2 sup w ≤1 E | Rξ, w | 2 = σ 2 R 2 .
Below, if R is clear from the context we sometimes abbreviate S = S R and v = v R . We will need more precise representation of the trace and norm as above in terms of the representation of the operator R. Suppose that we have given R in terms of its singular value decomposition as

(2.5) Rg = ∞ j=1 λ j ψ j , g φ j , g ∈ K,
where we assume that both sequences {ψ j } j∈N and {φ j } j∈N are orthonormal bases in K and H, respectively. Moreover, the sequence λ j , j = 1, 2, . . . is assumed nonnegative and arranged in non-increasing order. Then the following is well-known.

Lemma 2.1. Let R be as in (2.5). Then

(1) tr [R * R] = ∞ j=1 λ 2 j , and (2) R 2 = sup ∞ j=1 λ 2 j . From this we can see that v 2 R ≤ S 2
R , and typically these quantities differ by order. Some explicit computations will be provided below.

2.2.

Construction of the test and control of the first kind error. We see from (2.2) that the quantity RY 2 -S 2 R is an unbiased estimator for the norm of f R 2 . If R is chosen appropriately, this term is an approximation of f 2 , whose value is of first importance when considering the problem (1.2). Therefore, we shall use a threshold for RY 2 -S 2 R to describe the test. Let α ∈ (0, 1) be the prescribed level for the first kind error, and we agree to abbreviate x α := log(1/α). We define the test Φ α,R as

(2.6) Φ α,R = 1 { RY 2 -S 2 R >tR,α} , where t R,α denotes the 1 -α quantile of the variable RY 2 -S 2
R under H 0 . Due to the definition of the threshold t R,α , the test Φ α,R is a level-α test. Indeed

P H0 (Φ α,R = 1) = P H0 ( RY 2 -S 2 R > t R,α ) = α. We emphasize that under H 0 the distribution of RY 2 -S 2 R = σ 2 ( Rξ 2 -tr [R * R]
) only depends on the chosen reconstruction R. Hence the quantile can be determined, at least approximately. Proposition 2.1 below establishes an upper bound for this quantile. Proposition 2.1. Let α be a fixed level. Then

t R,α ≤ 2 √ 2x α S R v R + 2v 2 R x α
, where the quantities S 2 R and v 2 R have been introduced in (2.3) and (2.4). Proof. First notice that under H 0 , RY 2 = σRξ 2 . Then we get

P H0 ( RY 2 -S 2 R > 2 √ 2x α S R v R + 2v 2 R x α ) = P H0 σRξ 2 -S 2 R > 2 √ 2x α S R v R + 2v 2 R x α = P H0 σRξ 2 -E σRξ 2 > 2 √ 2x α S R v R + 2v 2 R x α ≤ exp - 2x α v 2 R 2v 2 R = α,
where we have used Lemma A.1 with x = √ 2x α v R , in order to get the last inequality. Hence,

P H0 ( RY 2 -S 2 R > 2 √ 2x α S R v R + 2v 2 R x α )
≤ α, which leads to the desired result.

2.3.

Controlling the second kind error. Here, our aim is to control the second kind error by some prescribed level β > 0, and again we abbreviate x β := log(1/β). To this end, we have to exhibit conditions on f for which the probability P f (Φ α = 0) will be bounded by β. By construction of the above test this amounts to bounding

P f (Φ α = 0) = P f ( RY 2 -S 2 ≤ t R,α ) = P f ( RY 2 -E RY 2 ≤ t R,α + S 2 -E RY 2 ) = P f ( RY 2 -E RY 2 ≤ t R,α -f R 2 ), (2.7)
where the latter follows from (2.2). In this section, we will investigate the lowest possible value of f R 2 for which the previous probability can be bounded by β.

Let β ∈]0, 1[ be fixed. For all f ∈ H, we denote by t R,β (f ) the β-quantile of the variable RY 2 -S 2 . In other words (2.8)

P f RY 2 -E RY 2 ≤ t R,β (f ) = β.
Then, we get from (2.7) and (2.8) that P f (Φ α,R = 0) will be bounded by β as soon as

(2.9) t R,α -f R 2 ≤ t R,β (f ) ⇔ f R 2 ≥ t R,α -t R,β (f ).
We have already an upper bound on the 1α-quantile t α,R . In order to conclude this discussion, we need a lower bound on t R,β (f ).

Lemma 2.2. Let the reconstruction R be given as in (2.5), and let

(2.10) Σ := ∞ j=1 σ 4 j + 2 ∞ j=1 σ 2 j θ 2 j . Then t R,β (f ) ≥ -2 Σx β .
Proof. We first show the relation of the problem to a specific sequence space model. By construction of R, using (2.5), we can expand

RY = ∞ j=1 λ j ψ j , Y φ j = ∞ j=1 λ j ψ j , T f φ j + σ ∞ j=1 λ j ψ j , ξ φ j , = ∞ j=1 θ j φ j + ∞ j=1 σ j ε j φ j ,
where θ j := λ j ψ j , T f and σ j := σλ j for all j ∈ N, and the ε j are i.i.d. standard Gaussian random variables. Then, we can apply Lemma A.2, which gives

P ( RY 2 -E RY 2 ≤ -2 Σx β ) ≤ β,
which completed the proof.

We are now able to find a condition on f R 2 in order to control the second kind error. We introduce the following quantity

(2.11) C * α,β = (4 √ x β + 4 √ 2x α ),
which is a function of α and β, only.

Proposition 2.2. Let us consider the test Φ α,R as introduced in (2.6), and let

(2.12) r 2 (Φ α,R , β) := C * α,β Sv + (4x α + 8x β )v 2 . Then sup f, fR 2 ≥r 2 (Φα,R,β) P f (Φ α,R = 0) ≤ β.
Proof. The equation (2.9) provides a condition for which P f (Φ α = 0) ≤ β. Using Proposition 2.1 and Lemma 2.2, we see that this condition is satisfied as soon as

f R 2 ≥ 2 Σx β + 2 √ 2x α Sv + 2v 2 x α . Now we bound Σ = σ 4 +∞ j=1 λ 4 j + 2σ 2 +∞ j=1 λ 2 j × λ 2 j ψ j , T f 2 , ≤ S 2 v 2 + 2v 2 f R 2 .
Using the inequality (ab ≤ a 2 /2 + b 2 /2 for all a, b ∈ R), we get

2 Σx β ≤ 2Sv √ x β + 2 2x β f v, ≤ 2Sv √ x β + 1 2 f 2 + 4x β v 2 .
In particular, the condition (2.9) will be satisfied as soon as

1 2 f R 2 ≥ (2 √ x β + 2 √ 2x α )Sv + v 2 (2x α + 4x β ).
Remark 2.1. Please note that the condition on f R 2 is (as most of the results presented below) non-asymptotic, i.e. we do not require that σ → 0. Using, the property v ≤ S, we can obtain the simple bound

(2.13) r 2 (Φ α , β) ≤ C α,β Sv, where C α,β = 4 √ x β + 4 √ 2x α + 4x α + 8x β .
In an asymptotic setting, the value of the constant C α,β may sometimes be improved. In particular, the majorization v ≤ S is rather rough. In many cases, we will only deal with the constant C * α,β , and we refer to Corollary 3.1.

Determining the separation radius under smoothness

We have seen in the previous section that we need to have that f R 2 ≥ C α,β Sv in order to control the second kind error. Nevertheless, the alternative in (1.2) is expressed in term of a lower bound on f 2 . In this section, we take advantage on the smoothness of f in order to propose a upper bound on the separation radius.

Using a triangle inequality, we obtain

f R ≥ f -f -f R . Hence, f R 2 ≥ r 2 (Φ α , β) as soon as f -f -f R ≥ r(Φ α , β), ⇔ f 2 ≥ (r(Φ α , β) + f -f R ) 2 , ⇐ f 2 ≥ 2r 2 (Φ α , β) + 2 f -f R 2 ,
In other words, we get from Proposition 2.2 that

(3.1) sup f, f 2 ≥2r 2 (Φα,β)+2 f -fR 2 P f (Φ α,R = 0) ≤ β.
Hence we need to make the lower bound on f as small as possible. We aim at finding sharp upper bounds for

(3.2) inf R∈R r 2 (Φ α , β) + f -f R 2 ,
where the reconstructions R belong to certain families R. We shall establish order optimal bounds in two cases, the case of linear regularization and by using projection schemes.

As already mentioned, we shall measure the smoothness relative to the operator T , and this is done as follows. Since the operator T is compact so is the self-adjoint companion T * T . The range of T * T is a (dense) subset in H, and one may consider an element f smooth, if it is in the range of T * T . To be more flexible, we shall do this for more general (operator) functions ϕ(T * T ). The corresponding operator ϕ(T * T ) is compact, whenever, ϕ(t) → 0 as t → 0. Therefore, we shall restrict to functions with this property. Precisely, we let

(3.3) E ϕ = {h ∈ H, h = ϕ(T * T )ω, for some ω ≤ 1} ,
for a continuous non-decreasing function ϕ which obeys ϕ(0) = 0 (index function), be a general source set. It was established in [START_REF] Mathé | How general are general source conditions?[END_REF] that each element in H has some smoothness of this kind, and hence the present approach is most general. Examples, which relate Sobolev type balls to the present setup are given in Examples 3 & 4.

3.1. Linear regularization. We recall the notion of linear regularization, see e.g. [START_REF] Hofmann | Analysis of profile functions for general linear regularization methods[END_REF]Definition 2.2]. Such approaches are rather popular for estimation purpose.

In this section, we describe how these can be tuned in order to obtain suitable tests.

Definition 1 (linear regularization). A family of functions

g τ : (0, T * T ] → R, 0 < τ ≤ T * T ,
is called regularization if they are piece-wise continuous in τ and the following properties hold:

(1) For each 0 < t ≤ T * T we have that |r τ (t)| → 0 as τ → 0;

(2) There is a constant

γ 1 such that sup 0≤t≤ T * T |r τ (t)| ≤ γ 1 for all 0 < τ ≤ T * T ; (3) There is a constant γ * ≥ 1 such that sup 0≤t≤ T * T τ |g τ (t)| ≤ γ * for all 0 < τ < ∞, where r τ (t) := 1 -tg τ (t), 0 ≤ t ≤ T * T , denotes the residual function.
Notice, that in contrast to the usual convention we used the symbol τ instead of α, as the latter is used as control parameter for the error of the first kind.

Having chosen a specific regularization scheme g τ we assign as reconstruction the linear mapping

R τ := g τ (T * T )T * : K → H. Notice that now, the element f R is obtained as f R = f τ = g τ (T * T )T * T f .
Example 1 (truncated svd, spectral cut-off). Let (s j , u j , v j ) j∈N be the singular value decomposition of the operator T , i.e., we have that

T f = ∞ j=1 s j f, u j v j , f ∈ H,
and the singular numbers s 1 ≥ s 2 • • • ≥ 0 are arranged in decreasing order. With this notation we can use the function g τ (t) := 1/t, t ≥ τ and zero else. This means that we approximate the inverse mapping of T by the finite expansion R τ Y :=

s 2 j ≥τ 1 sj Y, v j u j , Y ∈ K, The condition s 2 j ≥ τ translates to an upper bound 1 ≤ j ≤ D = D(τ ). The element f τ is then given as f τ = D j=1 f, u j u j .
Example 2 (Tikhonov regularization). Another common linear regularization scheme is given with g τ (t) = 1/(t + τ ), t, τ > 0. In this case we have that R τ Y = (τ I + T * T )

-1 T * Y , i.e., this is the minimizer of the penalized least squares func-

tional J τ (f ) := Y -T f 2 + τ f 2 , f ∈ H.
Having chosen any linear regularization, we would like to bound the quantities

S 2 τ = S 2 R , v 2 τ = v 2 R from (2.
3), (2.4) (with a slight abuse of notation). To this end, we will impose the following assumption.

Assumption A2. The operator T is a Hilbert-Schmidt operator, i.e., tr [T * T ] < +∞.

Under the above assumption, the reconstructions R τ are also Hilbert-Schmidt operators, since these are compositions involving T * .

In the following, we shall use the effective dimension which allows to construct a bound on the variance S 2 τ . Definition 2 (effective dimension, see [START_REF] Caponnetto | Optimal rates for regularization operators in learning theory[END_REF][START_REF] Zhang | Learning bounds for kernel regression using effective data dimensionality[END_REF]). The function λ → N (λ) defined as

(3.4) N (λ) := tr (T * T + λI) -1 T * T
is called effective dimension of the operator T * T under white noise. É By Assumption A2 the operator T * T has a finite trace, and the operator (T * T + λI) -1 is bounded, thus the function N is finite. The following bound is a consequence of [START_REF] Blanchard | Discrepancy principle for statistical inverse problems with application to conjugate gradient regularization[END_REF]Lem. 3.1].

(3.5) tr g 2 τ (T * T )T * T ≤ 2γ 2 * N (τ ) τ ,
for some constant γ * > 0. This, and using the definition of regularization schemes, results in the following bounds.

Lemma 3.1. Let R τ := g τ (T * T )T * : K → H.
Assume that Assumption A2 holds, then we have that

(i) S 2 τ ≤ 2γ 2 * σ 2 N (τ ) τ , τ > 0, and 
(ii) v 2 τ ≤ γ 2 * σ 2 1 τ , τ > 0.
Proof. The proof is a direct consequence of the definition of S 2 τ , v 2 τ and of (3.5). The previous lemma only provides upper bounds for the terms S τ and v τ . For many linear regularization schemes we can actually show that v τ /S τ → 0 as τ → 0, and we mention the following result. Lemma 3.2. Suppose that the regularization g τ has the following properties.

(1) There are constants ĉ, γ > 0 such that |g τ (ĉτ )| ≥ γ/τ for α > 0, and

for each 0 < t ≤ T * T the function τ → |g τ (t)| is decreasing. If the singular numbers of the operator T decay moderately, such that # j, ĉτ ≤ s 2 j ≤ ĉ/cτ → ∞ as τ → 0, then tr τ g 2 τ (T * T )T * T → ∞ as τ → 0. Consequently, in this case we have that v τ /S τ → 0 as τ → 0. (2) 
Proof. For the first assertion we bound, given an α > 0, and using the singular numbers s j of the operator T , the trace as follows. We abbreviate, for s j ≥ ĉα the value β j := s j /ĉ. Then for any 0 < c < 1 we find that

tr τ g 2 τ (T * T )T * T = ∞ j=1 τ g 2 τ (s 2 j )s 2 j ≥ cs 2 j ≤ĉτ ≤s 2 j τ g 2 τ (s 2 j )s 2 j ≥ cβj ≤τ ≤βj τ g 2 βj (ĉβ j )ĉβ j ≥ (γ) 2 ĉ cs 2 j ≤ĉτ ≤s 2 j c → ∞, as τ → 0.
Finally, by Lemma 3.1 we find that

v 2 τ S 2 τ ≤ γ 2 * 1 τ tr [g 2 τ (T * T )T * T ] ,
and the second assertion is a consequence of the first one.

Remark 3.1. The assumptions which are imposed above on g τ are known to hold for many regularization schemes, in particular for spectral cut-off and (iterated) Tikhonov regularization. The assumption on the singular numbers hold for (at most) polynomial decay.

Lemma 3.2 implies that in some specified cases the separation radius defined in (2.12) is of size C ⋆ α,β S τ v τ as τ → 0. This is summarized in the following corollary. Corollary 3.1. Let C * α,β and r 2 (Φ α,R , β) be as in (2.11) and (2.12), respectively. Under the assumptions of Lemma 3.2 we have that

r 2 (Φ α,R , β) C * α,β S τ v τ → 1 as τ → 0.
We turn to bounding the bias ff τ . This can be done under the assumption that the chosen regularization has enough qualification, see e.g. [START_REF] Hofmann | Analysis of profile functions for general linear regularization methods[END_REF].

Definition 3 (qualification). Suppose that ϕ is an index function. The regularization g τ is said to have qualification ϕ if there is a constant γ < ∞ such that

sup 0≤t≤ T * T |r τ (t)| ϕ(t) ≤ γϕ(τ ), τ > 0.
Remark 3.2. It is well known that Tikhonov regularization has qualification ϕ(t) = t with constant γ = 1, and this is the maximal power. On the other hand, truncated svd has arbitrary qualification with constant γ = 1.

In this case we can bound the bias at f R = f τ . Proposition 3.1. Let g τ be any regularization having qualification ϕ with constant γ.

If f ∈ E ϕ then f -f τ ≤ γϕ(τ ). Proof. Let ω with ω ≤ 1 such that f = ϕ(T * T )ω. Then f τ -f = g τ (T * T )T * T f -f = r τ (T * T )f = r τ (T * T )ϕ(T * T )ω ≤ γϕ(τ ).
Now we have established bounds for all quantities occurring in (3.2), and this yields the main result for linear regularization. Theorem 3.1. Assume that Assumption A2 holds, and suppose that g τ is a regularization which has qualification ϕ, and that f ∈ E ϕ . Let τ * be chosen from the equation

(3.6) ϕ 2 (τ ) = σ 2 N (τ ) τ .
Then, for all f ∈ E ϕ ,

inf τ >0 r 2 (Φ α , β) + f -f τ 2 ≤ C * α,β √ 2γ 2 * + (4x α + 8x β )γ 2 * N (τ * ) + γ 2 ϕ 2 (τ * ),
where the constant C * α,β has been introduced in (2.11). In particular, we get that

ρ 2 (Φ α,τ * , β, E ϕ ) ≤ 2 C * α,β √ 2γ 2 * + (4x α + 8x β )γ 2 * N (τ * ) + γ 2 ϕ 2 (τ * ).
Proof. By Proposition 3.1 and Proposition 2.2, we have that

r 2 (Φ α , β) + f -f τ 2 = C * α,β Sv + (4x α + 8x β )v 2 + f -f τ 2 , ≤ C * α,β √ 2γ 2 * σ 2 N (τ ) τ + (4x α + 8x β )γ 2 * σ 2 1 τ + γ 2 ϕ 2 (τ ), ≤ C * α,β √ 2γ 2 * + (4x α + 8x β )γ 2 * N (τ * ) + γ 2 ϕ 2 (τ * ),
since the parameter τ * equates both terms ϕ 2 (τ ) and σ 2 τ -1 N (τ ). This gives the upper bound.

Remark 3.3. Up to now, all the presented results are non-asymptotic in the sense that we do not require that σ 2 → 0. In an asymptotic setting, we can remark that τ * as defined in (3.6) satisfies τ * → as σ → 0. Since the effective dimension tends to infinity as τ → 0, we get that

ρ 2 (Φ α,τ * , β, E ϕ ) ≤ 2 C * α,β √ 2γ 2 * (1 + o(1)) + γ 2 ϕ 2 (τ * ), as σ → 0.
We shall highlight the above results with two examples. We shall dwell into these in order to show that the above results are consistent with other results for inverse testing (see for instance [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF]).

Example 3 (moderately ill-posed problem). Let us assume that the singular numbers of the operator T decay as s k ≍ k -t , k ∈ N, with t > 1/2 (in order to ensure that Assumption A2 is satisfied). In this case the effective dimension asymptotically behaves like N (τ ) ≍ τ -1/(2t) , as τ → 0, see for instance [START_REF] Blanchard | Discrepancy principle for statistical inverse problems with application to conjugate gradient regularization[END_REF]Ex. 3]. The Sobolev ball

(3.7) E X a,2 :=    f, ∞ j=1 a 2 j f, φ 2 j ≤ R 2    , with a j = j s , ∀j > 1,
as considered in [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF] coincides (up to constants) with E ϕ for the function ϕ(u) = u s/(2t) , u > 0. In this case the value τ * from (3.6) is computed as τ * ≍ σ 8t/(4s+4t+1) , which results in an asymptotic separation rate of

ρ(Φ α,τ * , β, E ϕ ) ≍ ϕ(τ * ) ≍ σ 2s/(2s+2t+1/2) , σ → 0,
which corresponds to the 'mildly ill-posed case' in [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF] or [START_REF] Ingster | Minimax signal detection in ill-posed inverse problems[END_REF], and it is known to be minimax. . Then the value τ * calculates as τ * ≍ σ 2 log(1/σ 2 ) 2s+1/2 , which results in a separation rate

ρ(Φ α,τ * , β, E ϕ ) ≍ ϕ(τ * ) ≍ log -s (1/σ 2 ), σ → 0,
again recovering the corresponding result from [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF].

Projection schemes.

Here we follow the ideas from the previous section. Details on the solution of ill-posed equations by using projection schemes can be found in [START_REF] Mathé | Regularization by projection in variable Hilbert scales[END_REF][START_REF] Natterer | Regularisierung schlecht gestellter Probleme durch Projektionsverfahren[END_REF][START_REF] Gennadi | Projection methods and self-regularization in ill-posed problems[END_REF], and our outline follows the recent [START_REF] Mathé | Regularization by projection in variable Hilbert scales[END_REF]. In particular we use the intrinsic requirements such as quasi-optimality and robustness of projection schemes in order to obtain a control similar to the previous section. We fix a finite dimensional subspace H m ⊂ H, called the design space and/or a finite dimensional subspace K n ⊂ K, called the data space. Throughout we shall denote the corresponding orthogonal projections onto H m by P m , and/or the orthogonal projection onto K n by Q n . The subscripts m and n denote the dimensions of the spaces. Given such couple (H m , K n ) of spaces we turn from the equation (1.1) to its discretization

(3.8) Q n Y = Q n T P m x + σQ n ξ.
Without further assumptions, the finite dimensional equation (3.8) may have no or many solutions, and hence we shall turn to the least-squares solution as given by the Moore-Penrose inverse, i.e., we assign

(3.9) f m,n := (Q n T P m ) † Q n Y.
Definition 4 (projection scheme, see [START_REF] Mathé | Regularization by projection in variable Hilbert scales[END_REF]). If we are given (1) an increasing sequence

H 1 ⊂ H 2 • • • ⊂ H, and (2) 
an increasing sequence K 1 ⊂ K 2 • • • ⊂ K, together with (3) 
a mapping m → n(m), m = 1, 2, . . . , then the corresponding sequence of mappings

(3.10) Y → f m,n(m) := (Q n T P m ) † Y
is called projection scheme.

Example 5 (truncated svd, spectral cut-off). The truncated svd, as introduced in Example 1 is also an example for a projection scheme, if we use the increasing sequences H m := span {u 1 , . . . , u m } ⊂ H, and K m := span {v 1 , . . . , v m } ⊂ K, respectively. In this case we see that

(Q n T P m ) † Y = m j=1 1 sj Y, v j .
Henceforth we shall always assume that the mapping (Q

n T P m ) † : K n → H m
is invertible, i.e., the related linear system of equations has a unique solution. This gives an (implicit) relation n = n(m), typically n = n will do. However, our subsequent analysis will be done using the dimension m of the space H m for quantification. In accordance with this we will denote f R by f m , highlighting the dependence on the dimension. Thus the linear reconstruction R is given as

R := (Q n T P m )
† , and we need to control tr[R * R] as well as R . The latter is related to the robustness (stability) of the scheme.

Definition 5 (Robustness). A projection scheme

(Q n T P m ) † , m ∈ N is said to be robust if there is a constant D R < ∞ for which (3.11) (Q n T P m ) † ≤ D R j(T, H m ) , m = 1, 2, . . .
Here, the quantity j(T, H m ) denotes the modulus of injectivity of T with respect to the subspace H m , given as (3.12) j(T, H m ) := inf

0 =x∈Hm T x x .
The modulus of injectivity is always smaller than the m-th singular number s m = s m (T ) of the mapping T , and hence we say that the subspaces H m satisfy a Bernstein-type inequality if there is a constant 0 < C B ≤ 1 such that

C B s m (T ) ≤ j(T, H m ).
We summarize our previous outline as follows.

Lemma 3.3. Suppose that the projection scheme (Q n T P m ) † , m ∈ N is robust and that the spaces H m obey a Bernstein-type inequality. Then

(Q n T P m ) † ≤ D R C B 1 s m .
In particular we have that

v 2 R := v 2 m ≤ σ 2 D 2 R C 2 B 1 s 2 m .
We turn to bounding S 2 R . Before doing so we mention that for spectral cut-off from Example 5, this bound can easily be established. Lemma 3.4. For spectral cut-off we have

S 2 R = σ 2 tr (Q n T P m ) † * (Q n T P m ) † = σ 2 m j=1 1 s 2 j .
In order to achieve a similar bound in more general situations we need to impose restrictions on the decay of the singular numbers s j , j = 1, 2, . . . The use of projection schemes for severely ill-posed problems requires particular care, and the following restriction, which will be imposed on the decay of the singular numbers of the operator T takes this into account. We shall assume that the decreasing sequence s j , j = 1, 2, . . . , is regularly varying for some index -r, for some r ≥ 0, and we refer to [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF] for a treatment. In particular this covers moderately ill-posed problems where s j ≍ j -r . We will not use the index r. However, if the sequence s j , j = 1, 2, . . . , is regularly varying with index -r then the sequence s -2 j , j = 1, 2, . . . , is regularly varying with index 2r, and we have that

1 m s 2 m m j=1 1 s 2 j -→ 1 2r + 1 , as m → ∞.
In particular there is a constant C r such that

(3.13) m s 2 m ≤ C 2 r m j=1 1 s 2 j ,
and the latter bound is actually all that is needed.

Lemma 3.5. Suppose that the sequence s j , j = 1, 2, . . . , is such that for the constant C r the estimate (3.13) holds. If the projection scheme is robust with constant D R , and if the spaces H n obey a Bernstein-type inequality with constant C B then

S 2 R := S 2 m = σ 2 tr (Q n T P m ) † * (Q n T P m ) † ≤ 2C 2 r D 2 R C 2 B σ 2 m j=1 1 s 2 j .
If, in addition the Assumption A2 is satisfied, then we have that

S 2 R := S 2 m ≤ C 2 r D 2 R C 2 B σ 2 N (s 2 m ) s 2 m .
Proof. We notice that the mapping (Q n T P m ) † * is zero on H ⊥ m , the orthogonal complement of H m . So, we take an orthonormal system u 1 , u 2 , . . . , u m , . . . , where the first m components span H m . With respect to this system we see that

tr (Q n T P m ) † * (Q n T P m ) † = tr (Q n T P m ) † (Q n T P m ) † * = ∞ j=1 (Q n T P m ) † * u j 2 = m j=1 (Q n T P m ) † * u j 2 ≤ m (Q n T P m ) † * 2 = m (Q n T P m ) † 2 . Using Lemma 3.3 we see that tr (Q n T P m ) † * (Q n T P m ) † ≤ m D 2 R C 2 B 1 s 2 m
. Now we use (3.13) to complete the proof of the first assertion. Under Assumption A2 we continue and use the inequality

u/v ≤ 2v/(u + v), 0 < u ≤ v, to see that m j=1 1 s 2 j ≤ 2 s 2 m m j=1 s 2 j s 2 j + s 2 m ≤ 2 N (s 2 m ) s 2 m ,
and the proof is complete. Remark 3.4. Notice that Lemma 3.5 provides us with (an order optimal) bound for the variance, even if the operator T is not a Hilbert-Schmidt one. But, if it is then the obtained bound corresponds to the one from Lemma 3.1 (with τ ← s 2 m ). Next, we need to bound ff R , as this was done in § 3.1 by assuming qualification, and we need a further property of the projection scheme, called quasioptimality. We start with the following well-known result, originally from spline interpolation [START_REF] De | Bounding the error in spline interpolation[END_REF], and used for projection schemes in [START_REF] Natterer | Regularisierung schlecht gestellter Probleme durch Projektionsverfahren[END_REF], which states that (3.14) f -

(Q n T P m ) † T f ≤ (Q n T P m ) † T f -P m f .
Therefore, we can bound the bias whenever the norms (Q n T P m ) † T are uniformly bounded.

Definition 6 (quasi-optimality).

A projection scheme Y → (Q n T P m ) † Y is quasi- optimal if there is a constant D Q such that (Q n T P m ) † T ≤ D Q .
We emphasize that under quasi-optimality the bound for the bias entirely depends on the quality of the projections P m with respect to the element f . Definition 7 (Degree of approximation). Suppose that {H m } , dim(H m ) ≤ m, is a nested set of design spaces. The spaces H m are said to have the degree of approximation ϕ it there is a constant C D < ∞ with

(3.15) (I -P m )ϕ(T * T ) ≤ C D ϕ(s m+1 ), m = 1, 2, . . .
For spectral cut-off this bound (with constant C = 1) is best possible. Also, using interpolation type inequalities one can verify this property for many known approximation spaces H m , m = 1, 2, . . . , we refer to [START_REF] Mathé | Regularization by projection in variable Hilbert scales[END_REF] for more details on degree of approximation and Bernstein-type bounds. We now can state the analogue of Proposition 3.1 for projection schemes. Proposition 3.2. Suppose that the projection scheme is quasi-optimal with constant D Q , and that it has the degree of approximation ϕ with constant

C D . If f ∈ E ϕ then we have that f -f m ≤ D Q C D ϕ(s 2 m+1
) We now return to the problem raised in (3.2). Here, the family of reconstructions R runs over all projection schemes, and we can control the bound by a proper choice of the discretization level m.

For the sake of convenience, we will assume in the following that Assumption A2 is satisfied, i.e. that T is a Hilbert-Schmidt operator. If it is not the case, Theorem 3.2 below remains valid when replacing N (s 2 m )/s 2 m by m j=1 s -2 j /s m .

Theorem 3.2. Suppose that the approximate solutions are obtained by a projection scheme which is quasi-optimal and robust and that Assumption A2 holds. Furthermore assume that the design spaces H m have degree of approximation ϕ and obey a Bernstein-type inequality. Let m * be chosen from

(3.16) m * = max m, ϕ 2 (s 2 m ) ≥ σ 2 N (s 2 m ) s 2 m . If f ∈ E ϕ then we have that inf m r 2 (Φ α , β) + f -f m 2 ≤ C * α,β D 2 R C 2 B C r + (4x α + 8x β ) D 2 R C 2 B 1 N (s 2 m * ) + D 2 Q C 2 D ϕ 2 (s 2 m * ),
where the constant C * α,β has been introduced in (2.11). Proof. By using Lemma 3.5 and Proposition 3.2 we see that for any choice of discretization level m we have

r 2 (Φ α , β) + f -f m 2 ≤ C * α,β D 2 R C 2 B C r σ 2 N (s 2 m ) s 2 m + (4x α + 8x β )σ 2 D 2 R C 2 B 1 s 2 m + D 2 Q C 2 D ϕ 2 (s 2 m+1 ) ≤ C * α,β D 2 R C 2 B C r + (4x α + 8x β ) D 2 R C 2 B 1 N (s 2 m * ) + D 2 Q C 2 D × × max σ 2 N (s 2 m ) s 2 m , ϕ 2 (s 2 m+1 ) .
At the discretization level m * + 1 we see by monotonicity that

ϕ 2 (s 2 m * +1 ) ≤ ϕ 2 (s 2 m *
). Also, by the choice of m * we see that

σ 2 N (s 2 m * ) s 2 m * ≤ ϕ 2 (s 2 m * ),
hence both terms in the max are dominated by ϕ 2 (s 2 m * ), which allows us to complete the proof.

Once again, the previous result is non-asymptotic. In the asymptotic regime, we get the following improvement. Corollary 3.2. Under the assumptions of Theorem 3.2 we get that

inf m r 2 (Φ α , β) + f -f m 2 ≤ C * α,β D 2 R C 2 B C r (1 + o(1)) + D 2 Q C 2 D ϕ 2 (s 2 m * ), as σ → 0.
This is an easy consequence of the fact that along with σ → 0 we have s 2 m * → 0, and hence the effective dimension at s 2 m * tends to infinity.

3.3.

Discussion. We first highlight the important fact that in both cases (provided Assumption A2 is satisfied), linear regularization and for projection schemes the upper bound is obtained by solving the same 'equation', σ 2 = τ ϕ 2 (τ )/ N (τ ), such that relating τ * ∼ s 2 m * , see Theorems 3.1 and 3.2. However, this function is different from the one used for function estimation in inverse problems. In the same setting the 'optimal' parameter τ est is there obtained from solving

ϕ 2 (τ ) = σ 2 N (τ ) τ .
Thus, the effective dimension N , which is designed for estimation enters in the inverse testing problem in square root, such that loosely speaking testing is easier.

Another remark may be of interest. For the estimation problem, within the same context, the bias variance decomposition leads to a variance term S 2 R , and in order to achieve optimal order reconstruction, this will be calibrated with the function ϕ 2 . As we have seen above, for testing the same calibration is done between the functions Sv and ϕ 2 . Since, as already mentioned Sv ≤ S 2 this calibration always yields a smaller value, which again explains the different rates for separation radius and estimation error.

Previous analysis of the spectral cut-off regularization scheme for testing in inverse problems revealed the importance of the quantity (3.17)

ρ D :=   D j=1 1 s 4 j   1/4 , D = 1, 2, . . .
We mention the non-asymptotic lower and upper bounds, slightly adapted to the present setup, given for instance in [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF] as

ρ 2 (E ϕ , α, β) ≥ sup D min c 2 α,β ρ 2 D , ϕ 2 (s 2 D ) , ρ 2 (E ϕ , α, β) ≤ inf D C 2 α,β ρ 2 D + ϕ 2 (s 2 D )
Thus the bounds established in this study are sharp whenever

ρ 2 D ≍ S D v D , where S 2 D = D j=1 s -2 j , and v 2 D = s -2 D , respectively. More explicitly, if D j=1 1 s 4 j ≍ 1 s 2 D D j=1 1 s 2 j .
This concerns only the decay rate of the singular numbers s j of the operator T , and this holds for regularly varying singular numbers, but this also holds true for s j ≍ exp(-γj), j = 1, 2, . . . , thus covering severely ill-posed problems. Remark that instead of the terms involved in (3.17), the quantities S D and v D have nice interpretation as strong and weak variances of the spectral cut-off schemes.

Relating the direct and inverse testing problem

For injective linear operators T , the assertions "f = 0" and "T f = 0" are equivalent. Hence, testing H 0 : f = 0 or testing H 0 : T f = 0 is related to the same problem: we want to detect whether there is signal in the data. Nevertheless, these testing problems are different in the sense that the alternatives are not expressed in the same way. Indeed, the inverse testing problem (considered in the previous sections) corresponds to (4.1)

H I 0 : f = 0, against H I 1 : f ∈ E ϕ , f 2 ≥ (ρ I ) 2 , while the direct testing problem corresponds to test (4.2) H D 0 : T f = 0, against H D 1 : f ∈ E ϕ , T f 2 ≥ (ρ D ) 2 .
In this section, we investigate the similarities between these two view points. In particular, we remark that both testing problems are not equivalent in the sense that the alternatives do not deal with the same object. 4.1. Relating the separation rates. The authors in [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF] discussed whether both problems are related. The main result, Theorem 1, ibid. asserts that for a variety of cases each minimax test Φ α for the direct problem (H 0 : T f = 0) is also minimax for the related inverse problem (H 0 : f = 0). This fundamental results is based in Lemma 1, ibid. Here we show that this lemma has its origin in interpolation in variable Hilbert scales, and we refer to [START_REF] Mathé | Interpolation in variable Hilbert scales with application to inverse problems[END_REF]. Actually we do not need the machinery as developed there, but we may use the following special case, which may directly be proved using Jensen's inequality. 

√ uϕ(u), u > 0. If the function u → ϕ 2 Θ 2 -1 (u) is concave then (4.3) f ≤ ϕ Θ -1 ( T f ) , f ∈ E ϕ .
The main result relating the direct and inverse testing problems is the following.

Theorem 4.1. Let ϕ be an index function with related function Θ, such that the function u → ϕ 2 Θ 2 -1 (u) is concave. Let Φ α be a level-α test for the direct problem H D 0 : T f = 0 with uniform separation rate ρ D (Φ α , E Θ , β). Then Φ α constitutes a level-α test for the inverse problem

H I 0 : f = 0 with uniform separation rate ρ I (Φ α , E ϕ , β) ≤ ϕ Θ -1 ρ D (Φ α , E Θ , β
) . Consequently we have for the minimax separation rates that

(4.4) ρ I (E ϕ , α, β) ≤ ϕ Θ -1 ρ D (E Θ , α, β) .
Proof. Clearly, the test Φ α is a level-α test for both problems, and we need to control the second kind error.

But if f ≥ ϕ Θ -1 ρ D (Φ α , E Θ , β) then Lemma 4.1 yields that T f ≥ ρ D (Φ α , E Θ , β)
, and the assertion is a consequence of the properties of the test for the direct problem. If Φ α was minimax for the direct problem then the corresponding minimax rate for the inverse problem must be dominated by ϕ Θ -1 ρ D (E Θ , α, β) , which gives (4.4).

Remark 4.1. In many cases the bound (4.4) actually is an asymptotic equivalence

(4.5) ϕ -1 ρ I (E ϕ , α, β) ≍ Θ -1 ρ D (E Θ , α, β) , σ → 0.
It may be enlightening to see this on the base of Example 3. Recall that the function ϕ was given as ϕ(u) = u s/(2t) . The corresponding rate is known to be minimax, and we obtain that

ϕ -1 ρ I (E ϕ , α, β) ≍ σ 4t 2s+2t+1/2
. We turn to the direct problem, for which the corresponding smoothness class is E Θ for the function Θ(u) = u 2/(2t)+1/2 = u (s+t)/(st) . This corresponds to µ = s + t in [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF]Tbl. 2], yielding the separation rate ρ(E Θ , α, β) ≍ σ 2(s+t)/(2s+2t+1/2) , which in turn gives Θ -1 ρ D (E Θ , α, β) ≍ σ 4t 2s+2t+1/2 , and hence (4.5) for moderately ill-posed problems.

Similarly, this holds for severely ill-posed problems, and we omit details.

We emphasize that, by virtue of Theorem 4.1, any lower bound for the minimax separation rate in the inverse testing problem yields a lower bound for the corresponding direct problem. Remark 4.2. Thanks to Theorem 4.1, it is possible to prove that in all the cases considered in this paper, a test minimax for (4.2) will be also minimax for (4.1). Nevertheless, the reverse is not true. We will not dwell into details, instead we refer to [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF] for a detailed discussion on this subject. (2) ṽ2 τ ≤ σ 2 γ 2 0 . We also need to bound the bias T f -T f τ with f τ = g τ (T * T )T * T f Lemma 4.3. Assume that f ∈ E ϕ . If the regularization g τ has qualification Θ with constant γ then T f -T f τ ≤ γΘ(τ ).

Proof. Since f τ = R τ T f , we get that

T f -T f τ = T f -g τ (T * T )T T * T f = r τ (T * T )T f ,
which is bounded by γΘ(τ ) as soon as f ∈ E ϕ and g τ has qualification Θ.

We recall from § 3 the quantity r 2 (Φ α , β) := C α,β S τ v τ , where we now consider Rτ and ṽτ from Lemma 4.2 for bounding T f 2 ≥ C α,β Sτ ṽτ from below.

Corollary 4.1. Suppose that g τ is a regularization which has qualification Θ, f ∈ E ϕ and that Assumption A2 holds. Let τ DP * be chosen from the equation

(4.6) σ 2 = Θ 2 (τ ) N (τ ) . Then inf τ >0 r 2 (Φ α , β) + T f -T f τ 2 ≤ C α,β (γ 0 + γ * )γ 0 γ 0 + γ 2 Θ 2 (τ DP * ).
We stress that the equation (4.6) for determining τ DP * is the same equation as (3.6), since Θ 2 (τ ) = τ ϕ 2 (τ ), and this explains the identical asymptotics in (4.5) as being equal to τ DP * = τ IP * . This result sheds light to another interesting problem: If we want to use the regularization T R τ , and if we want to have this optimal performance properties then the underlying regularization g τ must have higher qualification Θ for the direct problem as compared for its use in inverse testing requiring qualification ϕ, only. This cannot be seen when confining to spectral cut-off, but this problem is relevant when considering other regularization schemes for testing. It is thus interesting to design estimators for g = T f which do not rely on estimation of f . However, since the data Y do not belong to the space K either discretization or some other kind of preconditioning is necessary in order to estimate g = T f from the data Y . Such direct estimation is simple by using projection schemes, and we exhibit the calculus for one-sided discretization. As in § 3.2 we choose finite (m) dimensional subspaces Y m ⊂ K, with corresponding projections Q m and consider the data

Q m Y = Q m g + σQ m ξ, m ∈ N.
This approach is called dual least squares scheme in regularization, see [START_REF] Natterer | Regularisierung schlecht gestellter Probleme durch Projektionsverfahren[END_REF]. Here it is easy to see that

S 2 m = tr [Q * m Q m ] = m, while v 2 m = Q m 2 = 1.
In order to continue we just need that the chosen projections have degree of approximation Θ, i.e, there is

C D for which (I -Q m )Θ(T T * ) ≤ C D Θ(s 2 m+1
), m = 1, 2 . . . . With this requirement at hand we can continue as if the projections Q m were the projections onto the first m singular elements in the svd of T . In particular we have the upper bound on the separation radius

ρ(E Θ , α, β) ≤ max C α,β , C 2 D inf m σ 2 √ m + Θ 2 (s 2 m+1 ) ,
similar to corresponding results obtained for spectral cut-off in [START_REF] Baraud | Non-asymptotic minimax rates of testing in signal detection[END_REF][START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF], and we omit further details.

Adaptation to the smoothness of the alternative

It seems clear from Section 4 that the optimality of the considered tests strongly depends on the regularity (smoothness) of the alternative. In this section, we propose data-driven tests that automatically adapt to the unknown smoothness parameter. The adaptation issue in test theory has widely been investigated. For more details on the subject, we refer for instance to [START_REF] Baraud | Adaptive tests of linear hyptoheses by model selection[END_REF], [START_REF] Spokoiny | Adaptive hypothesis testing using wavelets[END_REF] in the direct setting (i.e. T = Id) or [START_REF] Ingster | Minimax signal detection in ill-posed inverse problems[END_REF] in the inverse case for an adaptive scheme based on the singular value decomposition of the operator.

First, we propose a general adaptive scheme. Then, we apply this approach to linear regularization over ellipsoids. This methodology can also be extended to projection schemes. For the sake of brevity, this extension is not discussed here. 5.1. A general scheme for adaptation. Assume that we have at our disposal a finite collection (R) R∈R of regularization operators satisfying Assumption A2. Then, we can associate to each operator R a level-α test Φ α,R . Our aim in this section is to construct a test that mimics the behavior of the best possible test among the family R. Let |R| denotes the cardinality of the family R. We define our adaptive test Φ ⋆ α as (5.1)

Φ ⋆ α = max R∈R Φ α |R| ,R . The performance of Φ ⋆
α is summarized in the following proposition. Proposition 5.1. The test introduced in (5.1) is a level-α test. Moreover

P f (Φ ⋆ α = 0) ≤ β, as soon as f 2 ≥ 2 inf R∈R r 2 (Φ α |R| ,R , β) + f -f R 2 ,
where the term r 2 has been introduced in (2.12).

Proof. We first remark that

P H0 (Φ ⋆ α = 1) = P H0 max R∈R Φ α |R| ,R = 1 , = P H0 R∈R Φ α |R| ,R = 1 , ≤ R∈R P H0 Φ α |R| ,R = 1 = α, since P H0 (Φ α |R| ,R = 1) = α/|R| for all R ∈ R. Hence, Φ ⋆
α is a level-α test. Now, we can investigate the second kind error. Using simple algebra, we get that

P f (Φ ⋆ α = 0) = P H0 max R∈R Φ α |R| ,R = 0 , = P H0 R∈R Φ α |R| ,R = 0 , ≤ inf R∈R P H0 Φ α |R| ,R = 0 .
We can conclude using (3.1). Proposition 5.1 proves that the detection radius associated to the test defined in (5.1) is close to the smallest possible one among the family R. Thus, we must design the set R according to two requirements. First, the cardinality |R| should be small, in order not to enlarge the detection radius too much. Indeed, the following holds true. 

C * α/M,β ≤ C * α,β + 2 2 log(M ). If M ≥ 4 then C * α/M,β ≤ (C * α,β + 2 √ 2) log(M ).
Proof. We first observe that x α/M = x α + log(M ). Therefore we conclude that

C * α,β = 2 √ x β + 2 2x α/M , = C * α,β + 2 2x α + 2 log(M ) - √ 2x α . ≤ C * α,β + 2 2 log(M ). The second assertion is trivial, because log(M ) > 1 for M ≥ 4.
Therefore, the price to pay for using Φ ⋆ α is a term of order log(|R|), up to some condition on the behavior of the effective dimension (see Theorem 5.1 below). On the other hand, the set R should be rich enough to keep the detection radius on the size of the best possible bound, as such was established Theorems 3.1 and 3.2.

In the following, we propose practical situations where such an adaptive scheme can be used. In particular, we propose families of regularizations operators with controlled size and prove that the adaptive test Φ * α attains the minimax rate of testing (up to a log log term) for a proper choice of R.

Remark 5.1. In the test (5.1), each regularization operator R ∈ R is associated to a test Φ α |R| ,R having the same level α/|R|. It is nevertheless possible to use more refined approaches, leading to an improvement of the power of the test (in terms of the constants). We refer to [10, Eq. (2.2)], however in a slightly different setting. 5.2. Application to linear regularization. We will exhibit the use of the general methodology for tests based on linear regularization.

Let g τ be a given regularization. We associate to each function g τ the operator R τ and we deal with the family R = (R τ ) τ >0 . In order to apply Proposition 5.1 we need to specify a finite subset R ⊂ (0, ∞) on which the test Φ * α will be based on. To this end we will use an exponential grid. Given an initial value τ max , and a tuning parameter 0 < q < 1 we consider the exponential grid (5.2) ∆ q := τ = q j τ max , j = 0, . . . , M -1 , for some M > 1.

Then we use the adaptive test for some explicit constant C(α, β). We shall now show, how we can specify the numbers 0 < τ min < τ max such that this is of the order of the separation radius (up to a log log-factor).

The cardinality M obeys τ min := q M-1 τ max , and hence M := log 1 q (τ max /τ min ). Obviously we have that The reverse is also true (up to some constant), as proved in the following lemma. Proof. For any τ with τ min < τ ≤ τ max we find an index 1 ≤ j ≤ M for which τ j < τ ≤ τ j /q. The crucial observation is that the function τ → √ N (τ ) τ is decreasing, whereas the function τ → τ N (τ ) = τ 3/2 √ N (τ ) τ is increasing, which can be seen from spectral calculus. Therefore, by using the above monotonicity we see that log(M )σ 2 N (τ ) τ + log(M ) σ 2 τ + ϕ 2 (τ )

≥ log(M )σ 2 N (τ j /q) τ j /q + log(M ) σ 2 τ j /q + ϕ 2 (τ j )

= log(M )σ 2 τ j q -3/2 τ j q 3/2 N (τ j /q) τ j /q + q log(M ) σ 2 τ j + ϕ 2 (τ j )

≥ log(M )σ 2 τ j q -3/2 τ j 3/2 N (τ j ) τ j + q 3/2 log(M ) σ 2 τ j + ϕ 2 (τ j ) ≥ q 3/2 log(M )σ 2 N (τ j ) τ j + log(M ) σ 2 τ j + ϕ 2 (τ j ) , from which the proof can easily be completed.

We shall next discuss the choices of τ min and τ max . First, the natural domain of definition of the smoothness function ϕ is on (0, T * T ], such that the choice τ max = T * T is natural. In this case the size of log(M )σ 2 √ N (τ ) τ

+ log(M ) σ 2 τ + ϕ 2 (τ max ) is at least ϕ 2 ( T * T ) no matter how small the noise level σ was. The next result indicates that we can find τ min in such a way that we can remove the restriction to τ > τ min if there is some 'minimal' smoothness in the alternative. If the smoothness ϕ obeys ϕ(τ min ) ≤ 1 then for 0 < τ ≤ τ min we have that log(M )σ 

= log(M )σ 2 q 1-M √ 2 T * T ≥ 1 √ 2 T * T σ 2 q M .
Thus the condition (5.4) holds for M ≥ log 1/q √ 2 T * T + log 1/q (1/σ 2 ).

We summarize the above considerations. The following result summarizes the above considerations; it asserts that the test Φ ⋆ α appears to be minimax (up to a log log term) in many cases. Theorem 5.1. Let α, β be fixed and Φ ⋆ α the test defined in (5.3). Suppose that τ max = T * T , τ min is chosen such that M ≥ log 1/q √ 2 T * T + log 1/q (1/σ 2 ). Let τ * be given from In particular, as σ ց 0 we have that τ * ց 0, and hence that there is a constant D = D(α, β) such that ρ(Φ ⋆ α , β, E ϕ ) ≤ Dϕ(τ * ), as σ ց 0.

Example 4 (

 4 severely ill-posed problem). Here we assume a decay of the form s k ≍ exp(-γk), k ∈ N of the singular numbers. The effective dimension behaves like N (τ ) ≍ 1 γ log(1/τ ). The Sobolev ball from (3.7) is now given as E ϕ for a function ϕ(u) = 1 2γ log(1/u) -s

Lemma 4 . 1 (

 41 Interpolation inequality). Let ϕ be from (3.3), and let Θ(u) :=

4. 2 .

 2 Designing tests for the direct problem. The coincidence in (4.5) is not by chance and we indicate a further result in this direction. Recall from 3.1 that the value of τ * = τ IP * was obtained from (3.6), and hence that we actually have ρ(E ϕ , α, β) ≍ ϕ(τ IP * ), such that the left hand side in (4.5) equals τ IP * . We shall see next that the corresponding value τ * = τ DP * is obtained from the same equation (3.6) when basing the direct test on the family T R τ = T R τ with family R τ = g τ (T * T )T * as in § 3.1. Then T R τ = g τ (T T * )T T * , and we bound its variance and weak variance, next. Lemma 4.2. Let Rτ = T R τ = g τ (T T * )T T * and denote by resp. S2 τ and ṽ2 τ the corresponding strong and weak variance. If Assumption A2 holds then (1) S2 τ ≤ (γ 0 + γ * )γ 0 σ 2 N (τ ), τ > 0, and

Lemma 5 . 1 .

 51 Let C * α,β the term introduced in (2.11). If the family R of regularization schemes has cardinality M := |R| ≥ 1, then

  The result from Proposition 5.1 can be rephrased as follows. By virtue of Lemma 5.1, and using the bounds from Lemma 3.1 & Proposition 3.1, respectively, we find that the test Φ * α bounds the error of the second kind by β as soon asf 2 ≥ C(α, β) inf τ ∈∆q log(M )σ 2 N (τ ) τ + log(M ) σ 2 τ + ϕ 2 (τ ) ,

Lemma 5 . 2

 52 (cf.[START_REF] Jin | Oracle inequality for a statistical Raus-Gfrerer type rule[END_REF] Proof of Thm. 3.1]). We have thatinf τmin≤τ ≤τmax log(M )σ 2 N (τ ) τ + log(M ) σ 2 τ + ϕ 2 (τ ) ≥ q 3/2 inf τ ∈∆q log(M )σ 2 N (τ ) τ + log(M ) σ 2 τ + ϕ 2 (τ ) .

Lemma 5 . 3 .

 53 Let τ min = τ min (M ) satisfy (5.4) log(M )σ 2 N (τ min ) τ min ≥ 1.

Proposition 5 . 2 .

 52 Suppose that M and τ min are chosen such that (5.4) holds. If the smoothness function ϕ obeys ϕ(τ min ) ≤ 1 theninf τ ∈∆q log(M )σ 2 N (τ ) τ + log(M ) σ 2 τ + ϕ 2 (τ ) ≤ q -3/2 2 inf 0<τ ≤τmax log(M )σ 2 N (τ ) τ + log(M ) σ 2 τ + ϕ 2 (τ ) .

(5. 5 ) ϕ 2

 52 (τ * ) = σ 2 log log 1/q ( 1 σ 2 ) N (τ * ) τ * ,If the underlying smoothness obeys ϕ(τ min ) ≤ 1 and if(5.6) log log( 1 σ 2 ) N (τ * ) = o(1) as σ → 0,then there is a constant C > 0 such thatρ 2 (Φ ⋆ α , β, E ϕ ) ≤ C inf 0<τ ≤τmax σ 2 log log 1/q ( 1 σ 2 ) N (τ ) τ + ϕ 2 (τ ) .

  Remark 5.2. For given σ > 0 the condition from (5.4) can always be satisfied. Below we shall further specify this as follows. If τ max is chosen as T * T then N (τ max ) ≥ 1/2, such that log(M )σ 2 N (τ min )

	2 N (τ ) τ	+ log(M )	σ 2 τ	+ ϕ 2 (τ )
		≥	1 2	log(M )σ 2 N (τ min ) τ min	+ log(M )	σ 2 τ min	+ ϕ 2 (τ min ) .
	Proof. For τ < τ min this easily follows from
	log(M )σ 2 N (τ ) τ	+ ϕ 2 (τ ) ≥ log(M )σ 2 N (τ min ) τ min	≥ 1
						≥	1 2	log(M )σ 2 N (τ min ) τ min	+ ϕ 2 (τ min ) ,
	which proves the assertion.		
	τ min		≥	log(M )σ 2 √ 2τ min

We shall indicate that the assumption (5.6) is valid in many cases. Lemma 5.4. If there is a constant c > 0 such that the effective dimension obeys (5.7) N (τ ) ≥ c log(1/τ ), and if the smoothness increases at least as

as τ → 0, then (5.6) is valid.

Proof. The parameter τ * is determined from (5.5), and under (5.8) we find that

provided that τ * is small enough. Monotonicity yields that σ 2 ≤ τ * . But then log log(1/σ 2 ) ≤ log log(1/τ * ), and we conclude that

as σ, and hence τ * , tend to zero.

Remark 5.3. This result covers many of the interesting cases, in particular the ones from Examples 3 & 4. In these cases Theorem 5.1 exhibits that the separation radii obey

, and

, respectively. In particular we see that adaptation does not pay an additional price for severely ill-posed testing problems.

Remark 5.4. A similar approach can be used when basing the adaptive test on a family of projection schemes. In this case we use a finite family of dimensions ∆ 2,j0 := m = 2 j+j0 , j = 0, . . . , M -1 , and consider projection schemes with spaces X m , Y n(m) for m ∈ ∆ 2,j0 . The above reasoning applies, taking into account the correspondence between regularization parameter τ in linear regularization schemes, and dimensions m ∼ 1/τ . For the sake of brevity, this will not be discussed in this paper.

Appendix A. Inequalities for Gaussian elements in Hilbert space

Lemma A.1. Let X a Gaussian random variable having values in H. Then, for all x > 0,

where

Proof. Using, the Cauchy-Schwarz inequality, we first observe that

Hence, we get

where for the last inequality we have used [START_REF] Ledoux | Probability in Banach spaces[END_REF]Lemma 3.1].

Lemma A.2. Let RY be as in (2.1). Then

where Σ is from (2.10).

Proof. The proof is a direct extension of the one proposed in [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF] for a spectral cut-off approach.