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Abstract. This paper presents a strategy for adaptative verification of computations
driven in a sub-structured framework arising from the use of non-overlapping domain de-
composition methods. We currently restrict ourselves to global estimates of discretization
error in the context of linear mechanical problems. The key point of our method which is
based on the use of constitutive relation error is a parallel recovery of admissible interface
fields. This allows to obtain relevant estimates far before the domain decomposition solver
reaches convergence.

1 INTRODUCTION

For the last decades, three trends have grown and reinforced each other in computa-
tional mechanics: the fast growth of hardware computational capacities, the requirement
of finer and larger finite element models for industrial simulations and the development of
efficient multiscale computational strategies amongst which non-overlapping domain de-
composition (DD) methods (like FETI [4] and BDD [11, 12]) are very popular since they
have proved to be scalable in many applications. Unfortunately, the quality of the dis-
cretized models is not always checked in spite of the development of verification techniques
and error estimators [8, 2, 14, 17].

Our objective is to warranty the quality of computations of large finite element models
by providing a strategy to control discretization error in large FE problems solved by
non-overlapping domain decomposition methods.

We first focus on global a posteriori error estimates and associated element-wise con-
tributions obtained through the error in constitutive relation [8] for linear mechanical
problems. Our method [15] has been developed within a generic framework for domain
decomposition [6]. It computes error estimate in a fully parallel way for both primal
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(BDD) and dual (FETI) approaches whatever the state (converged or not) of the associ-
ated iterative solver. To do so, our strategy consists in building, in parallel and during
the iterations, displacement and stress fields which are kinematically admissible (KA) and
statically admissible (SA) on the whole structure. The numerical costs remain low thanks
to the exploitation of classical domain decomposition preconditioners to build in parallel
continuous displacement and balanced traction fields independently on each subdomain.
It comes out that the study convergence of the discretization error estimator with respect
to the interface error of the domain decomposition method (displacement gap and lack of
balance of interface forces) enables to propose new stopping criteria for the DD solver.

Though our method has been developed for both dual and primal approach of domain
decomposition, this paper aims to present our strategy especially in the framework of the
FETI method. We thus invite the interested reader to refer to [15] for more details about
the specific setup related to the BDD method. Section 2 recalls the general framework
related to substructuring and the formulation of FETI method. After introducing the
concept of error in constitutive relation, section 3 presents its formulation within domain
decomposition. Then, section 4 details the specific implementation in the context of the
FETI method. Finally, section 5 presents numerical assessments, especially to show that
a good estimation can be obtained far earlier than the solver converged (in the sense of
domain decomposition iterative solver).

2 FRAMEWORK AND BASICS

2.1 Reference mechanical problem

Let us consider the static equilibrium of a structure which occupies the open domain
Ω ⊂ Rd and which is submitted to given body forces f , to given traction forces g on ∂fΩ and
to given displacements ud on the complementary part ∂uΩ ≠ ∅. We assume the structure
undergoes small perturbations and that the material is linear elastic, characterized by the
Hooke’s tensor H.

For an open subset ω ⊂ Ω, and denoting by u the unknown displacement field, ε(u) the
symmetric part of the gradient, σ the Cauchy stress tensor, we introduce the following
subspaces Ka(Ω) of kinematically admissible and Sa(Ω) statically admissible fields:

Ka(ω) = {v ∈ [H1(ω)]d such that tr(v)∣∂uω = ud} (1a)

Sa(ω) = {τ ∈ [L2(ω)]d2
sym

such that ∫
ω
τ ∶ ε(v)dω = ∫

ω
f.v dω +∫

∂fω
g.v dΥ,∀ v ∈ Ka0(ω)}

(1b)

where tr is the trace operator and KA0(ω) is the vector space associated to Ka(ω).
The mechanical problem set on Ω can then be formulated as:

Find (u, σ) ∈ Ca(Ω) × Sa(Ω) verifying: σ = H ∶ (u) (2)
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2.2 Substructured formulation

Let us consider a decomposition of domain Ω in open subsets (Ω(s))1⩽s⩽Nsd
(Nsd is the

number of subdomains) so that Ω(s) ∩ Ω(s′) = ∅ for s ≠ s′ and Ω̄ = ∪sΩ̄(s). For any Nsd-
turple (v(s))1⩽s⩽Nsd

of local fields denoted by v◻, we define the global assembling operatorA by:

v = A(v◻) ⇔ v∣Ω(s) = v(s) (3)

Under this framework, kinematic and static admissibility on the whole structure can
be restricted to each sub-structure Ω(s) provided the verification of interface conditions,
namely displacements continuity and tractions balance (action-reaction principle):

A(u◻) ∈ Ka(Ω) ⇔ { u(s) ∈ Ka(Ω(s)), ∀s
tr(u(s)) = tr(u(s′)) on Υ(ss

′), ∀(s, s′) (4a)

A(σ◻) ∈ Sa(Ω) ⇔ { σ(s) ∈ Sa(Ω(s)), ∀s
σ(s).n(s) + σ(s′).n(s′) = 0 on Υ(ss

′), ∀(s, s′) (4b)

The sub-structured problem may then be formulated as:

Find (A(u◻),A(σ◻)) ∈ Ca(Ω) × Sa(Ω) verifying: σ(s) = H ∶ (u(s)) (1 ≤ s ≤ Nsd) (5)

2.3 Finite element approximation

Let Ωh be a tessellation of Ω̄ associated to a finite dimensional subspace Kah(Ω) ofKa(Ω) and leading to a conforming substructuring so that (i) each element only belongs
to one subdomain and (ii) nodes are matching on the interfaces. Under those assumptions,
each degree of freedom is either located inside a subdomain (subscript i) or on its boundary
Υ(s) = ∪s′Υ(ss′) (subscript b) where it is shared with at least one neighboring subdomain.
Approximation uh ∈ Kah(Ω) of u may then be expressed with the d ×Ndof matrix ϕ of
shape functions (which form a basis of Kah(Ω)) and the vector of nodal unknowns u as
uh = ϕu.

Introducing λ
(s)
b , vector of unknown efforts imposed on the interface of a subdomain

Ω(s) by its neighbors, the finite element problem can be written on each subdomain
separating internal and boundary degrees of freedom (dof):

(K(s)ii K
(s)
ib

K
(s)
bi K

(s)
bb

)(u(s)i

u
(s)
b

) = (f (s)i

f
(s)
b

) + (0(s)i

λ
(s)
b

) (6)

where K(s) is the (symmetric positive definite) stiffness matrix of domain Ω
(s)
h and f (s) is

the vector of generalized forces. Eq. (6) then allow to express equilibrium on sub-domains
in a condensed form function of the dof located on Υ(s) (eq. 7a). In addition to that, the
discretization of interface conditions included in (4a) and (4b) can be expressed as dof-to-
dof relationships thanks to the conforming feature of the decomposition. As a result, finite
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element approximation of the substructured reference problem leads to the following inter-
face system:

S
(s)
u
(s)
b = b(s) +λ(s)b (7a)

∑
s

A
(s)
u
(s)
b = 0 (7b)

∑
s

A
(s)λ

(s)
b = 0 (7c)

with:

S
(s) =K(s)bb −K(s)bi K

(s)
ii

−1
K
(s)
ib

b
(s) = f (s)b −K(s)bi K

(s)
ii

−1
f
(s)
i

where A(s) and A
(s) are assembling operators 1 so that A(s) enables to formulate the

mechanical equilibrium of interfaces (4b) and A
(s) enables to formulate the continuity of

displacements (4a) (see [6] for more an extensive description of all operators). Let’s bring
back the fundamental orthogonality property verified by assembling operators:

∑
s

A
(s)
A
(s)T = 0 (8)

2.4 FETI approach

The starting point of the Finite Element Tearing and Interconnecting domain decom-
position [4], is to introduce a unique interface traction unknown λb so that interface

equilibrium is always insured when expressing λ
(s)
b :

λ
(s)
b =A(s)TλbÔ⇒∑

s

A
(s)λ

(s)
b = 0 (9)

Displacements can yet be deduced from λb (10a) if it satisfies Fredholm’s alternative (10b)
on each substructure:

u
(s)
b = S(s)+ (b(s) +A(s)Tλb) +R(s)b α(s) (10a)

0 =R(s)b

T (b(s) +A(s)Tλb) (10b)

where α(s) is the unknown magnitude of rigid body motions and superscript + denotes
the generalised inverse. The FETI solver then consists in iteratively finding an interface
effort λb (under the previous constraint) insuring the continuity of interface displacement

0 = ∑sA
(s)
u
(s)
b , which leads to the well-known interface problem:

( Sd G

G
T

0
)(λb

α
) = (bd

e
) (11)

where:

Sd =
Nsd∑
s=1

A
(s)
S
+(s)

A
(s)T

G = [A(1)R(1)b . . .A(Nsd)R
(Nsd)
b ] α = [α(1)T . . .α(Nsd)

T ]T

bd = −
Nsd∑
s=1

A
(s)
S
(s)+

b
(s)
p e = [−b(1)p

T
R
(1)
b ⋅ ⋅ ⋅ − b(Nsd)

p

T
R
(Nsd)
b ]T

1In the case of two subdomains, one has ∑sA
(s)λb = λ(1)b

+λ(2)
b
= 0 and ∑sA

(s)
u
(s)
b
= u(1)

b
−u(2)

b
= 0.
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In order to iteratively solve problem (11) in an efficient way, the best preconditioner

S̃
−1

d for operator Sd is built as an assembling of inverses of local operators S(s)
+

previously
involved:

S̃
−1

d =
Nsd∑
s=1

Ã
(s)
S
(s)
Ã
(s)T (12)

where (Ã(s))s are scaled assembling operators verifying the fundamental property (13),
whose typical example is the multiplicity scaling (14)2:

∑
s

A
(s)

Ã
(s) T = I (13) Ã

(s) T = A
(s) T (∑

j

A
(j)

A
(j) T)

−1

(14)

Let us note that more elaborate operators taking the heterogeneity into account may be
used in the case of heterogeneous structures [16].

3 A POSTERIORI ERROR ESTIMATION

3.1 Error in constitutive relation

Let us come back to the continuous level and introduce the functional error in constutive

relation measuring the non-verification of constitutive relation between a given pair of
displacement and stress (v, τ):

erdc,ω(v, τ) = ∣∣∣τ −H ∶ ε(v)∣∣∣H−1,ω with ∣∣∣ ● ∣∣∣H−1,ω = [∫
ω
● ∶ H−1 ∶ ●dω]1/2 (15)

Recall that given the tessellation Ωh and its associated subspace of admissible displace-
ments Kah(Ω) ⊂ Ka(Ω), the usual finite element approximation of reference problem (2)
writes:

Find uh ∈ Cah(Ω) such that σh = H ∶ ε(uh) satisfy:

∫
Ω
σ(uh) ∶ ε(vh)dΩ = ∫

Ω
f.vh dΩ +∫

∂fΩ
g.vh dΥ, ∀ vh ∈ Ca0

h(Ω) (16)

Then, on the basis of the solution (uh, σh) of (16) satisfying the classical properties uh ∈Ka(Ω) and ecr,Ω(uh, σh) = 0 but σh ∉ Sa(Ω), the basic principle of the error in constitutive
relation consists in deducing an admissible displacement-stress pair (ûh, σ̂h) ∈ Ka(Ω) ×Sa(Ω) in order to measure the residual on the constitutive equation (15). Hence, the
evaluation of ecr,Ω(ûh, σ̂h) ≥ 0 for any admissible pair (ûh, σ̂h) provides a guaranteed
upper bound of the global error thanks to the Prager-Synge theorem:

∣∣∣e∣∣∣H,Ω = ∣∣∣u − uh∣∣∣H,Ω ≤ [erdc,Ω(ûh, σ̂h)]1/2 with ∣∣∣ ● ∣∣∣H,ω = [∫
ω
ε(●) ∶ H ∶ ε(●)dω]1/2 (17)

2In the case of two subdomains, one has ∑s Ã
(s)

λ
(s)
b
= 1

2
(λ(1)

b
−λ(2)

b
) .
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Kah(Ω) being a subspace of Ka(Ω), the construction of an admissible displacement field
ûh is straightforward since it can be taken equal to uh. On the other hand, as σh is not
statically admissible, the construction of an admissible stress field σ̂h ∈ Sa(Ω) is a crucial
point which has already been widely studied in the literature. In addition to the use of dual
formulation [7], classical methods consist in post-processing a statically admissible field
from Field σh (obtained by a displacement formulation) through the element equilibration
techniques [8, 9], which have been improved by the use of the concept of partition of unity
[10] or flux-free-based methods [14, 5, 13]. In most cases they involve the computation
of efforts on “star-patches” which are the set of elements sharing one node, for each node
of the mesh. Though rather simple, these computations are in great number and thus
expensive.

In the following, we note by Fh the algorithm which has been chosen to build an
admissible stress field σ̂h. Whatever the choice, the algorithm takes as input not only the
finite element stress field σh but also the continuous representation of the imposed forces(f, g).

σ̂h = Fh(σh, f, g) ∈ SaΩ
The algorithm we have used for our applications is the one proposed in [8] using a three
degrees higher polynomial basis when solving the local problems on elements [3].

3.2 Formulation within a generic domain decomposition

Following the previously presented idea of error in constitutive relation in a sequential
framework, the key point for an efficient evaluation in a substructured context (with-

out overlapping) is to define admissible pairs (û
(s)
h ,σ̂

(s)
h ) ∈ Ka(Ω(s)) × Sa(Ω(s)) on each

subdomain so that the associated assembled pair is admissible for the reference problem(A(û◻h),A(σ̂◻h)) ∈ Ka(Ω) × Sa(Ω). Due to the absence of overlap, the additive structure
of the associated error in constitutive relation leads to a fully parallel evaluation of the a
posteriori error estimator:

ecr,Ω(A(û◻h),A(σ̂◻h))2 =
Nsd∑
s=1

(ecr,Ω(s)(û(s)h , σ̂
(s)
h ))2

However, the application of a classical recovery strategy to compute admissible fields
raises two difficulties in a substructured context. First, the star-patches can not be em-
ployed on the boundary nodes without assuming communication between subdomains.
Though these exchanges would remain limited, we propose an alternate strategy to achieve
full parallelism without impairing the properties of the error in constitutive relation. Sec-
ond, recall that the FETI method used on the discrete substructured problem (7) consists
in iteratively solving eq. (11) so that displacement continuity (4a) is only verified (up
to a certain precision) once the solver converged. Thus recovering strategies need to be

adapted so that the local fields (û(s)h , σ̂
(s)
h ) satisfy the interface conditions.

6
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4 PARALLEL RECOVERY OF ADMISSIBLE FIELDS

4.1 Kinematically admissible fields

In order to ensure interface Condition (4a) when building û
(s)
h ∈ Ka(Ω(s)) so thatA(û◻h) ∈ Ka(Ω), we start off by introducing on each sub-structure continuous interface

displacement fields û
(s)
bh verifying û

(s)
bh = û(s′)bh on Υ(ss

′). Denoting by û
(s)
b the nodal value

û
(s)
bh , the last condition can be directly transposed into a discrete counterpart thanks to

the matching discretizations on the interface:

û
(s)
b = û(s′)b , ∀(s, s′) ⇐⇒ ∑

s

A
(s)
û
(s)
b = 0 (18)

However, displacement continuity (7b) is only verified upon convergence in the FETI
method, but local displacements on each substructure may be computed at each iteration
through (10a) since condition (10b) is always satisfied. The associated gap of interface
displacement is given by:

TubU = ∑
s

A
(s)
u
(s)
b (19)

Then, we choose to use the scaled assembly operators introduced for the preconditionning
step (12), and define û

(s)
b as:

û
(s)
b = u(s)b − Ã

(s) T

TubU (20)

Thereafter, the property (13) satisfied by operators Ã
(s)

ensures the verification of the

discrete continuity condition (18) on û
(s)
b .

Finally, one finite element problem solved independently on each subdomain with im-
posed Dirichlet conditions on the interface given by û

(s)
b enables to deduce the kinemati-

cally admissible displacement field û = A(û◻h) ∈ Ka(Ω):
û
(s)
i =K(s)ii

−1 (f (s)i −K(s)ib A
(s)T

û
(s)
b ) (21)

û
(s)
h = ϕ(s)û(s) = (ϕ(s)i ϕ

(s)
b
)(û(s)i

û
(s)
b

)
Let us note a key feature of this approach which comes from the fact that all the involved

operations are already realized during the steps related to the Dirichlet’s preconditioner
(12), so that all finite element quantities (even the internal ones) are available at no cost:
the quantity TubU is directly available during the classical solution procedure (without
computing any α(j)) which is based on an initialization/projection algorithm [4], and the
displacement field u(s) can be defined up to an element of the kernel (a rigid body motion)
since only its symmetric gradient is used during the computation of the error.

7



A. Parret-Freaud, P. Gosselet and C. Rey

4.2 Statically admissible fields

In order to ensure interface Condition (4b) when building σ̂
(s)
h ∈ Sa(Ω(s)) so thatA(σ̂◻h) ∈ Sa(Ω), a generic way consists in introducing on each subdomain a continuous

balanced interface traction field F̂
(s)
bh defined on Υ(s) which satisfy:

F̂
(s)
bh + F̂ (s′)bh = 0 sur Γ

(ss′) (22a)

∫
Ω(s)

f (s).ρdΩ +∫
∂fΩ

(s)
g(s).ρdS +∫

Γ(s)
F̂
(s)
bh .ρdS = 0 ∀ρ ∈ KaR(Ω(s)) (22b)

where KaR(Ω(s)) is the set of rigid body motions which are compatible with Dirichlet con-
ditions imposed on ∂uΩ(s), and (22b) stands for the translation of Fredholm’s alternative.

We then associate F̂
(s)
bh to a finite element nodal reaction field λ̂

(s)

b through an algorithm

F̂
(s)
bh = Gh (λ̂(s)b ) requiring that the discrete field λ̂

(s)

b and the continuous field F̂
(s)
bh develop

the same virtual work in any finite element displacement field:

∫
Υ(ss

′)
F̂
(s)
bh ⋅ ϕ(s)j ∣Υ(ss′)

dS = λ̂(s)b,j (23)

where j denotes a node of the interface, ϕ
(s)
j its associated shape function and λ̂

(s)

b,j the

corresponding nodal component of λ̂
(s)

b . We get the following discrete counterparts for

λ̂
(s)

b :

∑
s

A
(s)λ̂

(s)

b = 0 R
(s)
b

T (λ̂(s)b + b(s)) = 0 (24)

In the FETI solver, the nodal interface fields are by construction (9) always balanced at the
interface and associated to well-posed discrete Neumann problems on each substructure

thanks to (10b), allowing us to directly set λ̂
(s)

b = λ(s)b . Setting up the algorithm Gh in

order to get F̂
(s)
bh from λ̂

(s)

b is strongly linked to a choice of interpolation basis. A simple

choice is then to use the basis of finite element shape functions on Υ(s): F̂bh = ϕ(s)∣Υ(s)F̂(s)b ,

which, though leading to a coarse interpolation, doesn’t alter the global performance of
the method 3.

Once the traction field F̂
(s)
bh has been recovered, we get the statically admissible field

σ̂h = A(σ̂◻h) ∈ Sa(Ω) through a two-step process. First one is to solve a finite element
problem (25a) on each subdomain with imposed Neumann conditions on the interface

given by F̂
(s)
bh . The next one is to apply a sequential recovery algorithm Fh on each finite

3Let us note that more consistent choices needs to allow discontinuities at nodes, a counterpart of

which is to use an additional minimization problem. Some alternative choices are currently studied and

will be discussed.
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element stress field H ∶ ε(ϕ(s)ũ(s)) previously obtained (25a) taking into account F̂
(s)
bh as

an imposed force on Υ(s):

ũ
(s) =K(s)+ (f (s) + t(s)T λ̂(s)b ) (25a)

σ̂
(s)
h = Feq (H ∶ ε(ϕ(s)ũ(s)), f (s),{g(s),Gh(λ̂(s)b ))}) (25b)

(25c)

It has to be observed that the fully parallel procedure Gh proposed above leads to a
different admissible traction field than the one which would have been obtained using
standard patch-technique [9] (referred in the sequel as the sequential approach) so that
the parallel error estimation is different from the standard sequential one. Finally, let us
note that the only extra operations are due to the use of algorithms Gh (to compute F̂bh)
and Fh (to compute σ̂h).

5 NUMERICAL ASSESSMENT

The performances of our parallel error estimator has been assessed on a 2D toy problem
of a Γ-shape structure clamped on its basis and submitted to traction and shear on its
upper-right side, with an isotropic linear elastic material behavior. A set of computations
with increasing number of subdomains has been driven on a sequence of regular meshes
generated with a increasing refinement. In addition to the new parallel error estimator
eddm
cr , the standard sequential one e

seq
cr and the true error eh (using a reference field uex

on a very fine mesh) has been computed:

eseq
cr = ecr,Ω(ûh, σ̂h) eddm

cr = ecr,Ω(A(û◻h),A(σ̂◻h)) eh = ∣∣∣uex − ûh∣∣∣H,Ω =√∣∣∣uex∣∣∣2H,Ω − ∣∣∣ûh∣∣∣2H,Ω

(26)

At last, let us note that all our computations are driven in the ZeBuLoN finite element
code [1], using elements of polynomial degree p = 1. The results when convergence of
the domain decomposition solver is reached, which can be found in the paper [15], show
that eddm

cr barely depends on the substructuring so that the estimates are quite similar
whether they are conducted on a single domain or on Nsd subdomains. As a conclusion,
the parallel error estimator eddm

cr enables to recover the same efficiency factor as the
standard sequential one, while the CPU-time is divided by Nsd.

Another interesting feature associated to the use of an iterative solver for the domain
decomposition (DD) problem is that the discretization error estimation can be conducted
before DD convergence is reached, that is in presence of displacement discontinuity at the
interface when using FETI. We illustrate this point on a small crack opening problem (fig.
1) already used in other papers [14, 10]. The behavior is supposed to be isotropic linear
elastic (E = 2000 Pa and µ = 0.3) and plane stress hypothesis is assumed. Beside, the
FETI algorithm used on the 14-sub-domain decomposition is equipped with the Dirichlet

9
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(a) Finite-element problem (b) Substructuring (Nsd = 14) (c) Elementary contributions
e
ddm

cr,E at convergence

Figure 1: Crack opening problem

preconditioner (12) while its convergence criterion (which stands here for the interface
displacement gap) is set to 10−6. Figure 2 shows the convergence curve of eddm

cr during the
FETI iterations, plotted as a function of the corresponding residual that is the normalized
displacement gap at the interface.

 1.6
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 2.2

 2.4
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 2.8
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 3.2

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

a
b
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 e
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FETI normalized tractions jump

parallel estimator
sequential estimator

Convergence of eddmcr e
ddm

cr,E : iter. 1 e
ddm

cr,E : iter. 2 e
ddm

cr,E : iter. 3

Figure 2: Convergence of eddm
cr

vs. interface residual and elementary contributions to e
ddm

cr

The curve show a rapid convergence of the parallel error estimator along iterations
of the solver, so that eddm

cr can be considered as converged when the residual reaches
an order of magnitude of 5.10−2 which corresponds to at most 4 iterations whereas the
solver convergence is achieved in about 15 iterations. The “L”-shaped curves show that
the impact of residual of the DD solver is preponderant only at the first iterations (when
interface fields are very poorly estimated), afterwards eddm

cr stagnates at a value close
to e

seq
cr which is only associated to the discretization error. The maps of the elementary

contributions eddm
cr,E to the parallel error estimator eddm

cr at iterations 1, 2 and 3 corroborate
the previous observation. An interesting fallout of the foregoing is that when willing to
carry out remeshing procedures, the maps obtained after few iterations of the solver are
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sufficient to define correct refinement instructions.

6 CONCLUSIONS

In this paper, we presented a new method to handle error estimation within domain de-
composition approaches. Our approach relies on the construction of admissible interface
fields followed by a fully parallel construction of a displacement-stress pair that is kine-
matically and statically admissible on the whole structure. We then obtain a simple and
efficient extension to error in constitutive relation in a substructured context. Moreover,
this construction can be realized at every iteration of the domain decomposition solver,
at a reduced numerical cost when taking advantage of the associated preconditionners.
As a result, not only our method enables to divide the huge CPU cost associated to error
estimation, but a satisfactory estimate can also be accessed far before the solver reaches
convergence. Indeed, results show that even roughly estimated interface fields enable to
obtain a good estimation of the discretization error and correct maps of elementary con-
tributions. This last feature let us envisage, on the one hand, the development of a new
convergence criterion for the iterative solver, and, on the other hand, the set up of efficient
mesh adaptation procedures relying on estimates obtained after only few iterations. Such
procedures are currently studied and leads to different approaches whether the remeshing
step may preserve or not the topology of the sub-structuring. Other current studies deals
with heterogeneous problems, whose results will be presented during the conference.
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