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We report here on the interaction dynamics between flurbiprofen (FBP) and tryptophan (Trp) covalently 

linked in model dyads and in a complex of FBP with human serum albumin (HSA) probed by time-

resolved fluorescence spectroscopy from the femto- to the nano-second timescales.In the dyads, a rapid 10 

(k> 1010 s-1) dynamic quenching of the1FBP* fluorescence is followed by a slower (k > 109 s-1) quenching 

of the remaining1Trp* fluorescence. Both processes display a clear stereoselectivity; the rates are 2-3 

times higher for the (R,S)-dyad. In addition, a red-shifted exciplex emission is observed, rising in 100-200 

ps. A similar two-step dynamic fluorescence quenching is also observed in the FBP/HSA complex, 

although the kinetics of the involved processes are slower. The characteristic reorientational times 15 

determined for the two enantiomeric forms of FBP in the protein show that the interaction is stronger for 

the (R)- form. This is, to our knowledge, the first observation of stereo-selective flurbiprofen-tryptophan 

interaction dynamics with femtosecond time resolution.

1. Introduction 

 The binding of drugs to biomolecules is determinant not only 20 

for drug action (both therapeutic and toxic) but also for drug 

transport and disposition, which are regulated by various 

transport proteins such as human serum albumin (HSA). The 

detailed understanding of drug-protein binding, both from a 

structural and dynamic point of view, constitutes a particularly 25 

active research field today. 

 Actually, HSA is one of the most abundant proteins in blood 

and plasma and is responsible for the transport of different agents 

in the bloodstream, such as fatty acids, drugs, or metabolites.1,2 

Therefore, the binding of ligands to HSA constitutes a key 30 

process, relevant for the modulation of a number of properties 

(drug solubility in plasma, toxicity, susceptibility to oxidation, in 

vivo half-life, etc.).3,4 

 Flurbiprofen (FBP, Chart 1) [2-(2-fluorobiphenyl-4-

yl)propanoic acid] is a nonsteroidal anti-inflammatory drug 35 

(NSAID) employed for the treatment of a broad spectrum of 

pathophysiological conditions, including fever, headache, etc.5-

8Moreover, FBPpresents a chiral centre, and it has been reported 

that mainly the (S)-form possesses pharmacological 

activity(cyclooxygenase inhibition).9,10 It is known that FBP 40 

binds to HSA preferentially in the so-called site II following 

Sudlow’s classification.11 

 Optical spectroscopy has proven to be particularly useful in the 

study of drug-protein binding.12,13 The observed excited state 

dynamics may be interpreted in terms of fundamental processes 45 

such as energy and charge transfer, depending on the specific 

drug-protein binding. Characterisation of the excited 

statesprovides a better understanding of the molecular recognition 

governing the drug transport. In particular, different enantiomers 

may have different binding behaviour resulting in distinct 50 

spectroscopic properties. 

 From the photophysical point of view,FBP contains a biphenyl 

chromophore with well-known properties.14It exhibits a non-

negligible intersystem crossing yield, so both the singlet and 

triplet states can in principle serve to monitor its binding to a 55 

protein. Indeed, previous laser flash photolysis studies on 

FBP/HSA complexes showed that FBP binds to both sites I and 

II, but with higher affinity to site II.15The triplet lifetime of FBP 

within the protein is similar for the two enantiomers; however, 

this parameter monitors triplet state protection from oxygen 60 

quenching,rather than direct interaction with the protein. In fact, 

the fundamental processes involved in the binding dynamics 

occur on a much shorter time scale, a few nanoseconds or less. 

 Fluorescence spectroscopy provides therefore a more direct 

means to study the early events of molecular recognition since it 65 

involves the singlet excited state of the drug and its dynamics, 

which in most cases evolves on the nanosecond timescale. 

Various fluorescence techniques have been used in the past to 

investigate the interactions between different drugs and proteins, 

with special attention to HSA.In addition to steady-state 70 

fluorescence quenching,16-24 time-resolved measurements25-

27allow the characterisation of the involved dynamic processes. In 

particular, femtosecond emission28-32constitutes apowerful tool 

for determining the very fast photo-initiated processes. 

 Steady-state fluorescence titration and anisotropy 75 
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measurements have been used to probe the FBP/HSA 

complex.11,14, 33,34Time-resolved techniques have been applied to 

characterise the singlet excited states of both FBP14 and HSA,36 

but not on the FBP/HSA complex, probably because the 

absorption spectra of the two compounds overlap strongly, and 5 

their selective excitation is not possible. 

 It is well established that the UVB-induced fluorescence of 

HSA is mainly due to Trp-214,36which canin principlefacilitate 

the discrimination between FBP and HSA fluorescence, needed 

in order to evaluate the individual quenching rates. It is 10 

worthwhile to notethe high sensitivity of Trp emissionto its local 

microenvironment. Thus, spectral changes can be observed in 

response to protein conformational transitions, ligand binding or 

subunit association. Moreover, Trp is sensitive to collisional 

quenching, probably due to the capability of the excited-state of 15 

indole to act as an electron donor.36 

 In view of the complexity of the FBP/HSA system and the 

potential difficulties to interpret the fluorescence 

properties,complementary information is necessary in order to 

investigate the specific interactions between FBP and Trp.To this 20 

purpose, covalently linked dyads formed by FBP and (S)-TrpMe 

((S)-tryptophan methyl ester) have been employed as simple 

models for investigation of the key phenomena occurring indrug-

protein interactions.37 

 Related drug-amino acid dyads have already been designed 25 

and studied with success in the past.21,37-40They have provided 

new mechanistic insight into the key processes that occur 

between the two chromophores (such as energy transfer, electron 

transfer, exciplex formation, etc.). Interestingly, the picture 

obtained regarding the covalently linked dyads can be usually 30 

extended to the more complex drug-protein systems. 

 Spectroscopic studies on FBP-TrpMe dyads revealed the 

absence of any significant ground-state intramolecular 

interactions between the two chromophores.37Fluorescence 

spectra recorded atexc = 266 nm (where ca. 60% of the light is 35 

absorbed by the biphenyl and 40% by the 

indolechromophore)displayed a dramatic FBP fluorescence 

quenching and a residual emission (max = 340 nm) assigned to 

the TrpMe unit. This highly efficient FBP fluorescence 

quenching was explained by energy transfer from1FBP* to 40 

TrpMe,37which is in accordance with the excited state energy of 

FBP (99 kcal mol-1), higher than that of Trp (96 kcal mol-

1).14,41Moreover, the non-negligible spectral overlap between FBP 

emission and TrpMe absorption spectra would be in favour of 

Förster energy transfer. Concerning the nanosecond time-45 

resolved measurements, the fluorescence lifetimes at em = 340 

nm were much shorter in the dyads (F< 1 ns) than in (S)-TrpMe, 

indicating a dynamic quenching. However, these F values were 

judged inaccurate, due to the limitations of the equipment. This 

quenching was assigned to either electron transfer or exciplex 50 

formation. Both processes are thermodynamically allowed, 

according to the Rehm-Weller equations.42Exciplex emission was 

indeed detected as a broad band between 380 nm and 500 nm, 

especially in (R,S)-FBP-TrpMe. 

 With this background, it appeared interesting to reinvestigate 55 

the singlet excited state interactions occurring in both FBP/HSA 

complexes and FBP-TrpMe model dyads (Scheme 1),using 

fluorescence techniques with a much higher time-resolution. 

 In order to overcome the abovementioned spectral overlap 

issue, the fluorescence decays were monitored at chosen 60 

wavelengths where the emission is dominated by FBP (310nm) or 

Trp (340-380 nm). 

 

 

 65 

 

 

 

 

Scheme 1 70 

2. Experimental 

 The (S)- and (R)-enantiomers of flurbiprofen ((S)- and (R)-

FBP),(S)-tryptophan methyl ester ((S)-TrpMe) and human serum 

albumin (HSA) were purchased from Sigma-Aldrich. Acetonitrile 

was of HPLC quality from Merck. The PBS buffer was prepared 75 

by dissolving phosphate-buffered saline tablets (Sigma) in 

ultrapure water from a Millipore (Milli-Q Synthesis) system. The 

synthesis of the FBP-TrpMe model dyads is already reported.37 

 Steady-state absorption spectra were recorded with a Perkin-

Elmer Lambda 900 spectrophotometer. Steady-state fluorescence 80 

spectra were obtained using a SPEX Fluorolog-3 

spectrofluorometer, with an excitation wavelength of 267 nm at 

22 ºC. Solutions were placed into 10 mm × 10 mm quartz cells. 

The absorbance of the samples at the excitation wavelength was 

kept below 0.2. Fluorescence quantum yields were determined 85 

using FBP in MeCN/air as a secondary reference, with F = 0.17 

(air) or 0.21 (N2).
9 

 Time-resolved fluorescence measurements were performed 

using the fluorescence upconversion (FU) and time-correlated 

single photon counting (TCSPC) techniques. The excitation 90 

source was the third harmonic (267 nm) of a mode-locked Ti-

Sapphire laser, delivering ~120 fs pulses whose repetition rate 

was 76 and 4.75 MHz for FU and TCSPC,respectively (in the 

latter case set by a pulse-picker).  

 For the FU measurements, a home-built setup was used. This 95 

has been described in detail earlier.43,44Briefly, a 1mm type I 

BBO sum-frequency crystal was used, providing an instrumental 

response function of about 350 fs (fwhm). We judge that the time 

resolution of the setup is better than 100 fs after deconvolution, 

depending on the signal-to-noise ratio. Typical scans were 100 

performed in a 200 picosecond time interval with a 1 ps step.The 

average excitation power used was 40 mW. The power density 

cannot be measured precisely within the excitation volume but 

we estimate it to 0.2  0.1 GW/cm2 for a 40 mW output from the 

tripler unit (assuming a 40 micron diameter of the focused beam). 105 

Solutions (about 25 ml) were kept flowing through a 0.4 mm 

quartz cell, which was kept in continuous motion perpendicular to 

the excitation beam in order to minimise thermal effects. 

 For the TCSPC experiments, a Becker &Hickl GmbH PC card 

was used.45 A Schott WG 295 filter was placed in front of a 110 

SPEX monochromator. The detector was a microchannel plate 

(R1564 U Hamamatsu) providing an instrumental response 

function of 60 ps (fwhm). The average laser power (0.1 mW) was 

measured with a MellesGriot broadband powermeter. The 

irradiated area on the surface of the cell was ca. 0.2 115 
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cm2corresponding to a pulse intensity of 2.4 kW/cm2. Solutions 

were contained in a 10 mm × 10 mm quartz cell and continuously 

stirred. Successive recordings with the same sample gave 

identical decays, which were eventually merged to improve the 

signal-to-noise ratio. Such a procedure allowed us to ensure that 5 

the measured signals were not altered during the measurements 

due to a possible accumulation of photoproducts. 

 The time-resolved experiments were performed either at magic 

angle or under successive parallel (Ipar(t)) and perpendicular 

(Iperp(t)) excitation/detection conditions. These were achieved by 10 

controlling the polarisation of the exciting beam with a zero-order 

half-wave plate. From these measurements, the fluorescence 

anisotropy was calculated from the formula 

  

𝑟 𝑡 =
𝐼𝑝𝑎𝑟  𝑡 − 𝑅𝐼𝑝𝑒𝑟𝑝  𝑡 

𝐼𝑝𝑎𝑟  𝑡 + 2𝑅𝐼𝑝𝑒𝑟𝑝  𝑡 
                                (1) 15 

 The transmission under parallel and perpendicular conditions 

was found to be identical so the correction factor R was put to 

unity.  

3. Results and discussion 

3.1 Studies on FBP-TrpMe model dyads 20 

 Due to the poor solubility of the FBP-TrpMe dyads in aqueous 

media, experiments were performed in acetonitrile, under aerated 

conditions. Steady-state absorption and fluorescence spectra of 

(S)-FBP, (S)-TrpMe, (S,S)-FBP-TrpMe and (R,S)-FBP-TrpMein 

acetonitrile/air are given in Figures SI-1 and SI-2. As previously 25 

described, a dramatic fluorescence quenching (>90%) was 

observed for the dyads. The fluorescence quantum yields of (S,S)- 

and (R,S)-FBP-TrpMewere found to be0.028 and 

0.015,respectively(Figure SI-2A), which are much lower than 

those of the individual chromophores.38From the shape and the 30 

position of the fluorescence bands, it was confirmed that emission 

is dominated by1TrpMe*.For both dyads, a longer wavelength 

band (centred at 450 nm), assigned to exciplex emission, was also 

observed; it wasmore intense for the (R,S)- diastereomer(Figure 

SI-2B). 35 

 Figure 1 shows the fluorescence decays recorded by FU at 

both 310 and 340 nm (emission maxima of FBP andTrpMe, 

respectively). The decay kinetics of the dyads weremuch faster 

than those of FBP or TrpMe. This is in line with the relative 

quantum yields and clearly shows the dynamic nature of the 40 

fluorescence quenching. 
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Figure 1.Normalised FU decays at A) (em = 310 nm ) and B) (em = 340 

nm ) of (S)-FBP (black), (S)-TrpMe (green), (S,S)-FBP-TrpMe (red) and 

(R,S)-FBP-TrpMe (blue). 55 

 At 310 nm, where FBP emission is dominating, the most 

striking feature was the very rapid decay of the dyads, on the 

picosecond time scale (Figure 1A). In addition, a significant 

stereo-differentiation was noticed; the (R,S)- dyad emission 

decayed faster than that of the (S,S)-diastereomer. The 60 

fluorescence decays were highly non-exponential, but the 

“average” characteristic times estimated at the 1/e level were62 

and 28 ps for (S,S)- and (R,S)-FBP-TrpMe, respectively (Table 

1).These times should be compared to the much longer and 

wavelength independent fluorescence lifetimeof FBP (1.67 ns). 65 

The FBP signal at 310 nm shows a rapid rise, on the order of a 

few ps,46which can in principlebe assigned to a vibrational 

redistribution in the excited state. 

 Based on the average lifetimesvalues given above, the 

corresponding rate constants (kQ1) were estimated (Table 1).They 70 

were higher than 1010 s-1 and revealed a remarkable 

stereoselectivity. 

 

Table 1.Kinetic parameters derived from the FU and TCSPC 

fluorescence decays of (S)-FBP, (S)-TrpMe, (S,S)-FBP-TrpMe and (R,S)-75 

FBP-TrpMein acetonitrile under air at 310 and 340 nm. Uncertainties are 

± 5 % if not otherwise stated. 

Compound F (ps)a kQ11010 (s-1) F (ns)b,c kQ2 109 (s-1) 

(S)-FBP 1670 c - -  

(S)-TrpMe 2100 c - 1.35  
(S,S)-FBP-TrpMe 62d 1.6 0.46 1.4 

(R,S)-FBP-TrpMe 28d 3.5 0.23 3.6 
aem = 310 nm; bem = 340 nm; cTCSPC; dFU 

 The FU decays at 340 nm (Figure 1B) wereslower than those 

observed at 310 nm.Also here, the decays were highly non-80 

exponential with average characteristic times of300 and 80ps for 

(S,S)- and (R,S)-FBP-TrpMe, respectively. No rise in the signal, 

supporting the previous proposed energy transfer from 1FBP* to 

TrpMe, was observed.However, such a rise could be 

experimentally difficult to detect, taking into account the strong 85 

direct excitation of TrpMe at 267 nm and the spectral overlap of 

FBP and TrpMe emission at this wavelength. 

 The fluorescence anisotropy decays of the dyads were 

compared to that of FBP at 310 nm (Figure SI-3A). For the latter, 

the anisotropy decayed with a characteristic time of about 26 ± 90 

1ps, while for (S,S)- and (R,S)-FBP-TrpMe characteristic times of 

42 ± 2 and 44 ± 4 ps were obtained. The FBP molecular volume 

of FBP is ca. 300 Å3, which in the frame of the Stokes-Einstein-

Debye theory46 corresponds to a rotational time of about 27 ps, in 

correspondence with that observed. The total volume of the FBP-95 

TrpMe dyads is about 492 Å3, giving a rotational time of about 

44 ps, once again in agreement with those experimentally 

observed. The mono-exponential behaviour of the anisotropy 

decays, and in particular the lack of any fast decays at early 

times, shows that there is no internal rotation between the two 100 

chromophores at early times. The slight difference between the 

(S,S)- and (R,S)- dyads is within the experimental uncertainties. 

 The fluorescence anisotropy decays of the dyads were also 

compared to that ofTrpMe at 340 nm (Figure SI-3B). The 

characteristic times were 24 ± 1 and 32 ± 2 ps for (S,S)- and 105 

(R,S)-FBP-TrpMe respectively,faster than to those recorded at 

310 nm. This is not necessarily indicative of any internal 

dynamics, but may only be the result of the disappearance of FBP 

(higher anisotropy, r0= 0.31 ± 0.01) leaving only TrpMe (lower 
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anisotropy, r0= 0.17 ± 0.01)at this wavelength. The zero time 

fluorescence anisotropies for (S,S)- and (R,S)-FBP-TrpMe at 340 

nm are 0.25 ± 0.01 and 0.22 ± 0.01, respectively,representing 

average values of FBP and TrpMe. As in the case of the 

fluorescence intensity decays, theseobservations can be 5 

explainedin terms of thedirect excitation of TrpMe and the 

spectral overlap of the two chromophores at 340 nm. 

Figure 2.Normalised TCSPC decay traces at A) (em = 340 nm ), B) (em 

= 450 nm ) of (S)-TrpMe (green), (S,S)-FBP-TrpMe (red) and (R,S)-FBP-

TrpMe (blue). Fitted curves are shown in black. 10 

 

 In order to follow the dynamics at 340 nm, it is necessary to 

go to longer timescales than with FU.This was achieved by 

means of TCSPC recorded at 340 nm(Figure 2A). The dyad 

signals decayed much faster than that of TrpMe, pointing to a 15 

dynamic quenchingoccurring on a much slower timescale than 

that observedby means of FU. 

 What is striking is the clear difference observed in the decay 

traces of the (S,S)- and (R,S)- dyads. This stereo-differentiation 

was not detected in the previous study,37because of insufficient 20 

time-resolution, and constitutes an important new element. As for 

FU data, (R,S)-FBP-TrpMedecayed more rapidly than (S,S)-FBP-

TrpMe. Bothsignals were close to mono-exponential, with 

characteristic times of 460 and 230 ps for the (S,S)- and (R,S)- 

diastereomers, respectively (see Table 1). These times should be 25 

compared to the 1.35 ns of TrpMe at this wavelength.The 

kQ2values of the dyads, calculated from the corresponding F 

values, underline the strong stereoselectivity. 

 The TCSPC decays of the dyads weremuch faster at 310 nm 

than at 340 nm (Figure SI-4). This shouldnot be surprising in 30 

view of the efficientFBP fluorescence quenching. In fact, 

emissionfrom FBP was not expected beyond a few tens of 

picoseconds, so the residual fluorescence should be ascribed to 

the TrpMeunit at both wavelengths. Still, the fluorescence 

lifetimes measured at 310 and 340 nm werevery different. 35 

Actually, the Trp fluorescence is known to be very complex, with 

strongly wavelength dependent decay times.36This has been 

assigned to the co-existence of several rotamers with different 

excited state dynamics,47 which may also occur in the dyads.  

 The TCSPC profiles at 450 nm (Figure 2B)were much slower 40 

than those at either 310 or 340 nm. Interestingly, these profiles 

are characterised by a rapid rise, 115 ± 7 and 189 ± 6ps for (S,S)- 

and (R,S)-, respectively, which can be assigned to the formation 

of an exciplex.38 Its rate is intermediate between the two 

quenching processes described above, so it is not possible to 45 

correlate it with any of them. As already proposed in the 

literature, such exciplexes could serve as intermediates for full 

electron transfer processes,48 consistent with the electron donor 

character of Trp.36 The exciplex lifetimes were 5.34 ± 0.02 and 

3.63 ± 0.01 ns for the (S,S)- and (R,S)-diastereomers, 50 

respectively. 

3.2 Studies on FBP/HSA complexes 

 Steady-state UV absorption and fluorescence measurements 

were performed on mixtures of(S)-FBP or (R)-FBP (2.5  10-5 M) 

and HSA (3.6 10-5 M) in PBS. As the binding constants of FBP 55 

to the binding affinity site of HSA are in the order or 106 M-1, all 

the drug is essentially bound to the proteinunder these 

conditions.11, 15 

 The results for (S)-FBPare shown in Figure 3. With the (R)-

enantiomer, the results were basicallyidentical (data not 60 

shown).A significant fluorescence quenching was observed for 

the complexes, even though less important and less 

stereoselective than for the dyads. This can be interpreted by 

weaker interaction in the non-covalent supramolecularcomplexes 

compared to the dyads. Comparison of the fluorescence spectra of 65 

the drug/protein mixtures with those of isolated FBP and HSA 

revealed that both components contribute to the emission spectra. 

This is in principle not unexpected, since both chromophores 

absorb strongly at the excitation wavelength. 

 Figure 3. A) UV absorption spectra of (S)-FBP (black), HSA (green), 70 

and the (S)-FBP/HSA mixture (red) in PBS. The concentration of the 

solutions was 2.5 × 10-5 M for FBP and 3.6 × 10-5 M for HSA; B) 

fluorescence spectra of (S)-FBP (black), HSA (green), and (S)-FBP/HSA 

(red) in PBS, under air, using isoabsorptive solutions at the excitation 

wavelength (267 nm). Simulated emissions, taking into account the 75 

percentage of light absorbed by each subunit (dark red), and the possible 

quenching processes as explained in the text (violet) are also shown. 

  

 Taking into account the relative absorbances of FBP and HSA 

at 267 nm,and assuming independent emission, the fluorescence 80 

spectrum of the mixture could in principle be calculated using the 

simple relation 

 

AF(tot) = 0.18  AF(FBP) + 0.82  AF(HSA)              (2) 

 85 

where AF (FBP) and AF (HSA) are the areas under the emission 

curves of the two subunits. However, thissimulatedspectrumdid 

not match the experimental one.Instead, an excellent reproduction 

of the real emission of the drug/protein system (Figure 3B) was 

achieved by using the relation 90 

 

AF(tot) = 0.074 AF(FBP) + 0.746 AF(HSA)        (3) 
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where an important fluorescence quenching of FBP fluorescence 

and, to a lower extent, of HSA became evident. 

 In order to gain further insight into the excited state dynamics 

of these systems, FBP, HSA and the two complexes were 

investigated by FU and TCSPC at various wavelengths.While the 5 

FBP decay in PBS solution wasmonoexponential, those of HSA 

and FBP/HSA were strongly non-exponential and wavelength 

dependent. In general, three-exponential model functions were 

required for a good fitting of the kinetic traces in the protein-

containing samples (Table 2). In view of the complexity of the 10 

fluorescence decay analysis, we also report the average lifetime 

(<>), which allows an easier comparison of the excited state 

dynamics of FBP in the presence and absence of protein.  

 The FU measurements of FBP and the FBP/HSA systems 

recorded at 310 nm are shown in Figure 4. At early times, the 15 

behaviour of the two complexeswas identical, showing an 

instantaneous rise limited by the apparatus function, followed by 

a constant value (Figure 4A).Interestingly, the signal of FBP in 

PBS did not rise as rapidly (“instantaneously”) as those of the 

complexes. This was also observed for FBP in acetonitrile (see 20 

preceding section), and may be attributed to an intramolecular 

vibrational relaxation.The situation would be different in the two 

complexes, where FBP is tightly bound to the protein, resulting in 

a reduced coupling of its vibrational modes. Moreover, such a 

tight binding would imply a fast intermolecular vibrational 25 

relaxation which could accelerate the FBP intramolecularprocess. 

As a consequence, it would be too fast to be detected with the 

available time-resolution. 

 

 30 

 

 

 

 

 35 

 

 

 

Figure 4.Normalised FU decays of (S)-FBP (black), (S)-FBP/HSA (red) 

and (R)-FBP/HSA (blue) in PBS/air at 310 nm. Note the different 40 

timescales used in A) and B). 

  

 Beyond a few picoseconds, the decays of the two FBP/HSA 

complexesbecame slightly more rapid than that of free FBP 

(Figure 4B). This behaviour can be explained in terms of a FBP 45 

dynamic quenchingwhen bound to the protein, which is clearly 

configuration-dependent. The approximate characteristic decay 

times in the 0-120 ps time window were 180 and 250ps for (S)-

FBP/HSAand (R)-FBP/HSA, respectively. 

 The dynamic quenching at 310 nm persisted and became even 50 

more marked at longer times, as illustrated by the TCSPC traces 

shown in Figure 5A. While the fluorescence decay of FBP was 

monoexponential with a lifetime of 0.78 ns, that of HSA was 

more complex and can be described by an average lifetime <> = 

1.22 ns. On the nanosecond timescale, the fluorescence decays of 55 

the two FBP/HSA complexes decayed much faster than free FBP. 

This wasmore pronounced for the (S)- than for the (R)-

enantiomer (<> = 0.54 ns vs. 0.70 ns, Table 2). 

Figure 5.Normalised TCSPC decays of (S)-FBP (black), HSA (green), 

(S)-FBP/HSA (red) and (R)-FBP/HSA (blue) in PBS at A) em = 310 nm, 60 

and B) em = 380 nm. 

 At 380 nm (Figure 5B), where only HSA emits, the 

fluorescence lifetimes were shorterthan that of HSA alone (Table 

2). Again, there was a clearstereoselectivityin this process.  

 The HSA fluorescence is known to be highly non-65 

exponential,36 but the actual characteristic decay times depend on 

both the excitation and the emission wavelengths, ranging from 

less than one to several nanoseconds.49-51This observation has 

been explained by the heterogeneity of the Trp 

microenvironment.49 Previous femtosecond studies on UV 70 

excited HSA showed that the dynamics of Trp within the protein 

are slowerthan in solution,52-54in line with our observations. 

 Regarding the anisotropies recorded by FU, several interesting 

aspects can be noted (Figure 6A). For HSA, an initial value of 

about 0.18 was observed, the same as for isolated Trp. Thus, the 75 

HSA fluorescence is dominated by Trp, and other residues 

contribute only marginally. The fluorescence anisotropy 

remained constant over the observed time window, in line with a 

slow rotational diffusion of the voluminous protein. In contrast, 

for FBP, the initial fluorescence anisotropy at time zero (r0) was 80 

0.36 ± 0.02 and decayed with a characteristic time of 65 ± 6ps (in 

accordance with the rotational diffusion of FBP in water). 

However, in the presence of the protein, the r0 value dropped to 

0.29 ± 0.02 but remained practically constant during the first 

hundreds of picoseconds. In principle, this can be explained by 85 

encapsulation of the drug within the more constrained protein 

microenvironment. Since overlapping fluorescence from both 

FBP and HSA was observed, the resulting anisotropy value (0.29) 

was between those of FBP (0.36) and HSA (0.18). 

Table 2.Kinetic parameters obtained from the fitting of the TCSPC 90 

decays upon excitation at 267 nm in PBS under air. Uncertainties are ± 5 

% unless otherwise stated. 

em (nm) Parametersa HSA (S)-FBP/HSA (R)-FBP/HSA 

310 

1(ns)/p1 (%) 0.16/5 0.18/17 0.25/9 

2 (ns)/p2 (%) 1.00/36 0.69/51 0.72/60 

3 (ns)/p3 (%) 4.36/59 3.48/32 3.51/31 

<> (ns) 1.22 0.54 0.70 

380 

1 (ns)/p1 (%) 2.94/18 0.36/3 0.53/3 

2 (ns)/p2 (%) 6.93/71 2.59/25 3.08/30 

3 (ns)/p3 (%) 12.8/11 7.68/72 7.95/67 

<> (ns) 5.78 3.69 4.14 

aObtained by a non-linear fitting/deconvolution procedure, using a three 

exponential function F(t) = Σaiexp(-t/i); pi = 100aii/(a11 + a22 + 

a33);<>is the average lifetime, determined as a11 + a22 + a33.At 310 95 

nm, F (FBP) was 0.78 ns. 
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 The fluorescence anisotropy decays recorded by TCSPC at em 

= 310 nm (ns timescale) are shown in Figure 6B. In contrast with 

the pskinetics recorded by FU, a chiral discrimination was 

observed.For both drug/protein systems, the r0 value was ca. 0.28 

± 0.02 and decreased rapidly to a constant value within the first 5 

few nanoseconds. Monoexponentialfitting gave a characteristic 

time of0.44 ± 0.03 ns for (S)-FBP/HSA and0.62 ± 0.07 ns for (R)-

FBP/HSA. The difference in lifetimes can be related to the 

orientation of the drug within the protein, which may restrict the 

degrees of freedom for conformational relaxation more 10 

effectively in the case of the (R)-enantiomer. 

 

Figure 6. Fluorescence anisotropy decays of (S)-FBP (black), HSA 

(green), (S)-FBP/HSA (red) and (R)-FBP/HSA (blue) in PBS at em = 310 

nm. A) FU and B) TCSPC (the best fit it is shown in black solid line). 15 

 Actually, it is well know that for a chromophoreattached to a 

proteinits motional freedom is restricted. Such restricted 

rotational diffusion is commonly described by the “wobbling-in-

a-cone” model55 

 20 

𝑟 𝑡 = 𝑟0   1 − 𝐴∞ 𝑒−𝑡
𝜏𝑅 + 𝐴∞                     (4) 

 

𝐴∞ =
𝑟∞

𝑟0
=  

1

2
𝑐𝑜𝑠𝜃𝑚𝑎𝑥  1 + 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥   

2
            (5) 

 

wheremax corresponds to the semicone angle defining the 25 

restricted motion of the chromophore. Using r0 = 0.28 and r∞ = 

0.10/0.14 for (S)- and (R)-FBP, values of max were calculated as 

45° and 38°, respectively. Therefore,(R)-FBP will cover a 

smallersolid angle during its rotational diffusion than the(S)-

enantiomer. This, together with the fact that its characteristic 30 

reorientational time is much slower indicatesa more restricted 

conformation of the (R)-enantiomer within the protein. 

Conclusions 

 The goal of the present work is to elucidate the interaction 

between the two enantiomers of flurbiprofen and tryptophan. To 35 

this aim, we have comparedthe photophysical behaviour of the 

drug when covalently linked to Trp in model dyads with that of 

itsnon-covalent complex with human serum albumin. 

 A dramatic fluorescence quenching is observed in the dyads, 

which display only a residual emission assigned to the Trp 40 

unit.According to the analysis of the FU decays, this quenching is 

dynamic (k > 1010 s-1) and stereoselective, with a higher rate 

constant for the (R,S)-diastereomer. The absence of 1FBP* 

fluorescence has previously been attributed to energy transfer to 

Trp.38 While this explanation remains a possibility, it can neither 45 

be confirmed nor discarded by the present time-resolved 

experiments. At longer timescales, a slower stereoselective 

quenching (k >109 s-1) of the1Trp* fluorescence isalso observed, 

together with exciplex formation. 

 Similar trends were observed in the drug/protein complexes, 50 

although the kinetics of the involved processes are slower. 

Thefluorescence decayat em= 310 nm (FBP maximum)revealed 

astereoselective dynamic quenching, both on the picosecond (FU) 

and nanosecond (TCSPC) timescales. This kinetic 

stereodifferentiation was still evident at longer wavelengths (380 55 

nm), where only HSA is emitting. As in the dyads, the nature of 

thisslower quenching can be attributed to a stereoselective 

exciplex formation and/orelectron transfer. 

 Finally, theanisotropy at 310 nm recorded by TCSPC clearly 

showed that the protein microenvironment plays a significant role 60 

in the conformational relaxation of FBP, which is more restricted 

in the case of the (R)-enantiomer. This stereoselectivity is 

possibly related to the modes of drug binding to the protein, a 

process of pharmacological relevance. 

 Comparing the behaviour of the dyads with that of the 65 

complex, the same fundamental processes occur in the two 

systems, although on different timescales. The observed dynamic 

quenching rates are much lower in the latter,which can be 

understood in terms of the strong conformation dependence of the 

involved processes. 70 

 It should be noted that stereoelectronic effects are quite 

sensitive to the vector approach of the interacting partners. This is 

because a critical factor in stereodifferentiation is the relative 

spatial arrangement of the reactive sites, which is strongly 

influenced by the steric hindrance found in the approach 75 

trajectories. Hence, the limitation of the degrees of freedom 

imposed by the covalent linker in the dyads is not comparable to 

the restrictions associated with the non-covalent, supramolecular 

binding existing in the protein complexes. As a consequence, the 

interest of the employed dyads as models is that they allow us to 80 

predict the interchromophoric excited state interactions and to 

assess the dynamic nature of quenching, as well as to anticipate 

the possibility of observing stereodifferentiation in the involved 

processes. The magnitude of the kinetic rate constants, as well as 

the sign of stereodifferentiation, are expectedly difficult to 85 

reproduce, also because the dyads lack the tertiary structure of 

proteins, whose folding generates the binding sites for complexed 

ligands. However, this limitation does not diminish at all the 

value of the dyads as well-defined chemical models to interrogate 

relevant interactions between photoactive drugs and the key 90 

amino acids present at the protein binding sites. 
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