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Abstract—In this work 1, we consider the joint precoding across
K transmitters (TXs), sharing the knowledge of the user’s data
symbols being transmitted toK single-antenna receivers (RXs).
We consider a distributed channel state information (DCSI)
configuration where each TX has its own local estimate of
the overall multiuser MIMO channel. Our focus is on the
optimization of the allocation of the CSI feedback subject to a
constraint on the total amount of feedback. As a starting point,
we consider the Wyner model where we derive a distance-based
CSI allocation achieving close to the optimal performance using
only a small percentage of the total feedback. The approach relies
on the exploitation of the attenuation to restrict the cooperation
at a local scale. Indeed, the CSI and the user’s data symbols are
then shared to only a finite number of neighbors such that our
approach appears as an improved alternative to clustering.

I. I NTRODUCTION

Network or Multicell MIMO methods, whereby multiple
interfering transmitters (TXs) share user messages and al-
low for joint precoding, are currently considered for next
generation wireless networks [1]. With perfect message and
channel state information (CSI) sharing, the different TXscan
be seen as a unique virtual multiple-antenna array serving
all receivers (RXs), in a multiple-antenna broadcast channel
(BC) fashion. However, the allocation of the data symbols and
the CSI to the cooperating TXs impose huge requirements
on the architecture. The common solution is to use disjoint
clusters to reduce the amount of data to be shared [2], [3].
Yet, clustering limits the performance of the system because
of the interference created at the edge of the clusters.

In recent works, adaptive allocation of the CSI feedback bits
in a multicell network has been studied [4]–[7], yet, always
considering that the TXs jointly designing the beamformers
were sharing thesame channel estimate. On the opposite,
we consider here the joint precoding from TXs having their
own local channel estimates which models more realistically
the cooperation of non-colocated TXs which are unlikely to
receive the CSI with the same delay and the same quality. This
setting, introduced in [8], [9] as thedistributed CSI(DCSI)-
MIMO channel, opens up completely new research problems
as it can be seen as a team-decision problem [10].

Furthermore, it opens up the possibility to allocate each TX
with exactly the CSI it really needs. Indeed, it is very intuitive

1This work has been performed in the framework of the European research
project ARTIST4G, which is partly funded by the European Union under its
FP7 ICT Objective 1.1 - The Network of the Future.

that, in wireless networks, the precision with which a channel
to a given RX should be known at a given TX depends on the
distance between the TX and the RX. However, no result exists
in the literature to describe this effect. Quantifying thiswell
known intuition and translating it into an efficient allocation
of the CSI is precisely the objective of this work.

We start by analyzing a very simplified channel model,
referred to in the literature as theWyner model, in which
the TXs and the RXs are placed on a one-dimensional space
(e.g. a line) and receive signals only from a few neighboring
TXs. This simplistic model has the advantage of being more
tractable while still offering valuable insights on more realistic
channels. This model has been introduced in [11] and has
been very successful since, particularly to model cooperation
in wireless networks [12]–[14]. Furthermore, its simplicity has
allowed the development of the approach which could then be
extended to more general channel models [15].

In this work, we use an asymptotic analysis taking into
account the geometry of the network to derive analytically a
distance-basedCSI allocation allowing for a large reduction of
the CSI required at the TXs at the cost of reduced performance
losses. Furthermore, the CSI allocation proposed reduces the
sharing of the user’s data symbol and the CSI at a local scale
and consequently reveals itself as a realistic alternativeto
clustering, with improved performance and similar cost.

II. SYSTEM MODEL

We consider the distributed CSI (DCSI)-MIMO channel,
in which K transmitters (TXs) transmitjointly using linear
precoding toK receivers (RXs) equipped with a single antenna
and applying single user decoding. Each TX has the knowl-
edge of theK symbols to transmit to theK RXs. Besides the
knowledge of data symbol, each TX is supposed to acquire,
through an unspecified feedback or sharing mechanism, its
own estimate on the channel vectors to all the users.

The channel is represented by the channel matrixH ∈
C

K×K and the transmission is described mathematically as
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whereyi is the signal received at thei-th RX, hH
i ∈ C

1×K the
channel to thei-th RX, η = [η1, . . . , ηK ]T ∈ C

K×1 the zero



mean unit variance i.i.d. complex Gaussian noise (CN (0, 1)).
x ∈ C

K×1 is the transmitted signal obtained from the symbol
vectors = [s1, . . . , sK ]T ∈ C

K×1 (i.i.d. CN (0, 1)) as

x = Ts =
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whereT ∈ C
K×K is the precoding matrix andti ∈ C

K×1

is the beamforming vector used to transmitsi to RX i. We
consider a per-stream power constraint‖ti‖2 = P .

Our focus is on the maximization of the sum rate averaged
over the fading distribution, where the rate of useri reads as

Ri , EH

[
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. (3)

A. Distributed CSI and Distributed Precoding

In the DCSI-MIMO channel, thej-th TX has its own
individual estimate of its channelhH

i to RX i for all i, denoted
by h

(j)H
i and obtained fromRandom Vector Quantization

(RVQ) [16] usingB(j)
i bits. We focus on interference limited

wireless networks working at high SNR so that we assume
that Zero Forcing (ZF) precoders are used. The beamformers
then read as

∀i ∈ {1, . . . ,K}, t(j)i ,
√
P
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‖
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ei‖
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Although a given TXj may compute the whole precoding
matrixT(j), only thej-th row will be used in practice. Finally,
the effective precoder is given by
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More detail on the distributed precoding can be found in [9].

B. Optimized CSI Allocation

Depending on the CSI accuracy at a TX, the coefficients
implemented will be very different or not from the coefficients
obtained with perfect CSI. Considering a realistic constraint
on the total number of CSI bits transmitted via the multiuser
feedback channel, which we denote byBmax, the ideal ap-
proach would be to find the allocation of the feedback bits
maximizing the average sum rate:

maximize
{B

(j)
i

}

K
∑

i=1

Ri, s.t.
K
∑

j=1

K
∑

i=1

B
(j)
i ≤ Bmax. (6)

However, this problem is very hard to solve because it is a
discrete optimization where in each step we have to derive
the sum rate with the partial CSI allocation.

C. Asymptotic Approach

Thus, we consider this problem asymptotically in the SNR
and we aim in fact at finding the minimal CSI allocation
achieving the full Multiplexing Gain (MG) when the interfer-
ence attenuation increases in terms ofP . We will then show
that this leads to an efficient solution for the optimization
problem (6). We start by recalling an asymptotic result for
the DCSI-MIMO channel without pathloss.

Theorem 1. [9] In the DCSI-MIMO Rayleigh channel with
K single antennas RXs andK single antennas TXs, it is nec-
essary and sufficient with RVQ in order to achieve the maximal
Multiplexing Gain to quantize each normalized channel vector
h̃i with a number of bits in the order ofO((K − 1) log(P )).
Furthermore, the maximal Multiplexing Gain is achieved if
and only if E[‖ti − tPCSI

i ‖2] = O(1/(P )).

In the Wyner model, the factorK is replaced by the number
of non-zero coefficient, i.e.,3. We study the mean square error
between the beamformer implemented and the beamformer
with perfect CSI because this has been recognized in [9]
as being well adapted to the DCSI-MIMO channel. Indeed,
each TX implements one beamforming coefficient and the
consistency between the TXs has a critical impact on the
performance.

III. W YNER MODEL

We consider a finite linear version of the Wyner model
whereK TXs equipped with only one antenna are uniformly
distributed along a line. A RX receives interference coming
from its two direct neighboring TXs with an interference atten-
uation factor equal toµ ∈ (0, 1), while the short term fading
is assumed to be Rayleigh distributed. Thus, the multiuser
channel matrixH ∈ C

K×K is a tridiagonal matrix defined as
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wherebi, di, andai are distributed as standard i.i.d. complex
Gaussian (CN (0, 1)). We denote the estimates ofbi, di, andai
at TX j by b

(j)
i , d(j)i , anda(j)i , respectively, while the estimate

errors are then∆b
(j)
i , ∆d

(j)
i , and∆a

(j)
i , respectively.

A. Inverse of a Tridiagonal Matrix

The Wyner model allows to obtain a closed form for the
channel inverse [17], which we recall in the following and
will be useful to quantify the effect of the limited CSI.

We start by introducing twoK + 1 dimensional vectors
β , [β1, . . . , βK+1] and α , [α0, . . . , αK ] which will be



used in the matrix inverse and are defined as

αi ,
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The channel inverseH−1 then reads as follows. First, the
diagonal elements fori = 2, . . . , n− 1 are

{H−1}ii=
(

di−
µ2biai−1αi−2

αi−1
−µ2bi+1aiβi+2

βi+1

)−1

while the two extremal diagonal elements read as

{H−1}11 =
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µ2b2a1β3
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)−1
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(
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.

Last, the off-diagonal elements are given by

{H−1}ij =
{

(−µ)j−i(
∏j−i

k=1 aj−k)
αi−1

αj−1
{H−1}jj if i < j

(−µ)i−j(
∏i−j

k=1 bj+k)
βi+1

βj+1
{H−1}jj if i > j.

B. CSI Allocation in the Wyner Model

We can observe in the expressions given in Subsection III-A
for the inverse of a tridiagonal channel that the amplitude of
the coefficients in the inverse decreases exponentially as the
elements get away from the diagonal.

To obtain analytical results at high SNR, we consider that
the interference attenuation factorµ can be written as a fixed
fraction of P , i.e., P−ζ for a certainζ ∈ (0, 1). Thus, the
interference attenuation factor decreases as the SNR increases.
Note that this is only an artifact to model the impact of
the attenuation at high SNR, as the impact of the pathloss
is otherwise neglected. We confirm by simulations that the
performance remain good asµ increases.

Theorem 2. Considering thatµ = P−ζ for someζ ∈ (0, 1),
it is sufficient in order to achieve the maximal MG to quantize
the channel vectorshH

i at TX j with a number of bits

B
(j)
i = max(2 log2(Pµ2|i−j|), 0). (7)

Proof: A sketch of the proof is given in the following
and more detail is given in [15].

We start by inserting the CSI error estimates in the off-
diagonal elements of the inverse given in Subsection III-A.We
consider the coefficient withj < i as the casej > i follows by

symmetry. In a first step we consider the coefficient at TXj
corresponding to the transmission of streami.
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where we have done a first order approximation in the error
terms as the CSI allocation will be derived so as to fulfill the
scaling of the mean square error in1/P as given in Theorem 1.
To proceed, we approximate the first ratio in (8) by keeping
only the first order coefficients inµ which gives:
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To obtain an approximate closed form for the channel inverse,
we also need to approximate the diagonal terms in the denom-
inator of the Left Hand Side in (8) as

{H−1}ii=
(

di−
µ2bi+1aiβi+2

βi+1
−µ2biai−1αi−2

αi−1

)−1

≈ 1

di
. (10)

The sum of all the error terms arising in (8) has to tend
to zero asO(1/P ) due to the fact that the channel inverse
elements given in (8) are further normalized so as to fulfilled
the per-streampower constraint ofP .

Inserting (9) and (10) in (8) we conclude by inspection that
this condition is fulfilled on the first order whena(j)ℓ andd(j)ℓ

for ℓ ∈ {i− 1, i− 2, . . . , j} as well asd(j)i are obtained from
the quantization of the channel vectorhℓ for ℓ ∈ {i − 1, i −
2, . . . , j} with max(2 log2(Pµ2(i−j)), 0) bits.

These conditions correspond only to the strongest require-
ment for that stream at that TX, but the other channel
parameters need obviously to be also known, although with
a lower accuracy. These additional requirements are obtained
by proceeding similarly but with higher order approximation
in (9). Furthermore, for a given TX, this has to be done for
all the streams to be transmitted.

Yet, only the strongest requirements are of interest
and going through all the conditions, we obtain that the
strongest requirements are fulfilled by allocating to TXj
max(2 log2(Pµ2(i−j)), 0) bits for the vector quantization of
h
(j)
i from which d̂

(j)
i stems, andmax(2 log2(Pµ2(i−j+1)), 0)

bits for the vector quantization ofh(j)
i from which â

(j)
i

and b̂
(j)
i come. Taking the first, more constraining, condition

concludes the proof.
Intuitively, the CSI allocation is based on the fundamental

property that a given TX contributes a large power only to the
streams transmitted to neighboring RXs. When contributing
with only a small amount of power, a less accurate CSI is



then needed to maintain a constant interference level created
by the transmission of that stream.

C. Discussion of the Derived CSI Allocation

The increase of the feedback allocation to a given TX when
the total number of cooperating TXs increases, i.e., its scaling
in K, is a very good indicator of the feasibility of the CSI
allocation. In the full CSI allocation given in Theorem 1, the
number of feedback bits allocated per TX increases linearly
with the number of cooperating TXs since each TX needs
to know all the channel vectors. This is problematic because
adding one TX increases the feedback required atall the
TXs of the network and we discuss in the following the
improvement brough by the proposed CSI allocation.

Proposition 1. For finite P and µ, the CSI allocation given
in Theorem 2 leads to a number of CSI bits allocated per TX
which does not increase with the number of cooperating TXs.

Proof: The proof follows easily from the CSI allocation
given in Theorem 2 and a detailed proof is given in [15].

Intuitively, the boundedness of the number of feedback bits
allocated to each TX follows from the exponential decay of
the off-diagonal coefficients. This reduces the cooperation to
a local scalesince the power allocated to the transmission of
datas to users asymptotically far away is asymptotically small.

With the sharing of the CSI, the second main requirement
for joint precoding comes from the sharing of the user’s data
symbols to all the TXs. This condition cannot be fulfilled in
realistic networks when the size of the network increases.
This represents an hindrance for the practical use of large
cooperation areas and we now discuss whether full sharing
of the data symbols is really necessary.

Corollary 1. Considering thatµ = P−ζ for a fixedζ ∈ (0, 1),
the CSI allocation proposed in Theorem 2 requires only the
sharing of symbolsi to TX j if 2 log2(Pµ2|i−j|) > 0. Thus,
for finite P and µ, each symbol is shared only to a finite
number of cooperating TXs which does not increase with the
total number of cooperating TXs.

Proof: The proof is similar to the proof of Proposition 1
and is available in [15].

The distance-based CSI allocation extends to the routing of
the user’s data symbols. Combining the two properties, the
proposed solution offer a practical alternative to clustering.

D. Heuristic Finite SNR CSI Allocation

The CSI allocation has been discussed only asymptotically
and we aim now at using this insight to design a feedback
scheme performing well in realistic conditions. It is proved
in [18] that it is necessary and sufficient for achieving an
optimally scaling sum rate to use for each normalized channel
a number of bits in the order ofO((K − 1) log(K2P )) in a
Rayleigh fading channel with distributed CSI. The adaptation
of this formula to the Wyner channel is out of the scope of this

paper, but we conjecture it to beO(2 log(KP )) which can be
shown to be at least a lower bound for the scaling [15].

Achieving good performance requires the proposed CSI al-
location to be close toO(2 log(KP )) whenµ increases. Thus,
we propose a heuristic solution which preserves the property of
local cooperation described above, yet converges to the desired
CSI allocation whenµ tends to one. It consists in finding iter-
atively aKSNR verifying thatµ2KSNR < 1/(KSNRP ) and then
use the CSI allocation from Theorem 2 withmin(KSNR,K)P
instead of onlyP . The numberKSNR can be understood as
being the number of TXs which are inside the cooperation
neighborhood and for which we apply the CSI allocation
without pathloss.

E. Extension to More General Channel Models

The analysis has been carried out in the Wyner model but
has been extended toexponentially decayingchannel matrices
and polynomially decayingchannel matrices. These matrices
model much more realistically practical channels as they have
only nonzero elements and solely a condition on the rate of
decrease of the outer-diagonal elements. Furthermore, this can
be shown to model well the wireless transmission from a linear
array (e.g., TXs along a road). Interestingly, the properties of
the CSI allocation derived (scaling inK, user’s data allocation)
are not proper to the Wyner model and are preserved in the
other models considered. The extension can be found in [15].

IV. SIMULATIONS

We simulate the average sum rate in the Wyner model
presented at the beginning of Section III for a network made of
25 TXs. For comparison, we show the performance achieved
when perfect CSI is available at all TXs. To evaluate the
efficiency of thedistance-basedCSI allocation proposed in
Theorem 2 using the heuristic described in Subsection III-D,
we also compare it to two alternative CSI allocations using the
same total number of feedback bits but allocated differently:
the uniform CSI allocation and the conventionalclustering
solution with disjoint clusters made of5 TXs.

In Fig. 1, we plot the average rate per user as a function of
the normalized transmit power forµ = 0.5. The distance-based
CSI allocation outperforms the clustering solution which fails
to achieve a positive MG as well as the uniform CSI allocation
which becomes efficient only at asymptotically high SNR.

In Fig. 2, we plot the percentage of the sum rate with perfect
CSI which is achieved using the different CSI allocations, in
terms of the interference attenuation factorµ. Additionally,
we plot in Fig. 3 the matching number of bits used by the
distance-based CSI allocation normalized over the ”full” CSI
allocation2 log2(KP ). The proposed solution achieves most
of the performance attained with perfect CSI while using only
a small percentage of the total feedback required.

V. CONCLUSION

In this work, we have studied the allocation of the CSI
bits to non-colocated TXs cooperating to transmit jointly to
their associated RXs. For the Wyner model, we have derived
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a distance-based CSI allocation achieving most of the perfor-
mance attained with perfect CSI while requiring only a small
share of the total feedback. Particularly, the solution proposed
requires only the sharing of the CSI and the user’s data
symbol to a local neighborhood around each TX. Thus, the
solution proposed has the same requirements as a conventional
clustering solution and appears as a realistic alternative. Our
approach has been presented for the simplistic Wyner model
but its extension to more realistic channel models has been
carried in [15]. As an alternative to clustering, the optimization
of the CSI allocation at finite SNR and in other settings
represents an interesting direction of research.
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