
HAL Id: hal-00807272
https://hal.science/hal-00807272

Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empirical Evaluation of Bug Linking
Tegawendé F. Bissyandé, Ferdian Thung, Shaowei Wang, David Lo, Lingxiao

Jiang, Laurent Réveillère

To cite this version:
Tegawendé F. Bissyandé, Ferdian Thung, Shaowei Wang, David Lo, Lingxiao Jiang, et al.. Empirical
Evaluation of Bug Linking. 17th European Conference on Software Maintenance and Reengineering
(CSMR 2013), Mar 2013, Genova, Italy. pp.1-10. �hal-00807272�

https://hal.science/hal-00807272
https://hal.archives-ouvertes.fr

Empirical Evaluation of Bug Linking

Tegawendé F. Bissyandé1, Ferdian Thung2, Shaowei Wang2, David Lo2, Lingxiao Jiang2 and Laurent Réveillère1

1LaBRI, University of Bordeaux, France
2Singapore Management University, Singapore

{bissyand,reveille}@labri.fr,{ferdianthung,shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

Abstract—To collect software bugs found by users, develop-
ment teams often setup bug trackers using systems such as
Bugzilla. Developers would then fix some of the bugs and com-
mit corresponding code changes into version control systems
such as svn or git. Unfortunately, the links between bug reports
and code changes are missing for many software projects as the
bug tracking and version control systems are often maintained
separately. Yet, linking bug reports to fix commits is important
as it could shed light into the nature of bug fixing processes
and expose patterns in software management.

Bug linking solutions, such as ReLink, have been proposed.
The demonstration of their effectiveness however faces a
number of issues, including a reliability issue with their ground
truth datasets as well as the extent of their measurements.

We propose in this study a benchmark for evaluating bug
linking solutions. This benchmark includes a dataset of about
12,000 bug links from 10 programs. These true links between
bug reports and their fixes have been provided during bug
fixing processes. We designed a number of research questions,
to assess both quantitatively and qualitatively the effectiveness
of a bug linking tool. Finally, we apply this benchmark on
ReLink to report the strengths and limitations of this bug
linking tool.

I. INTRODUCTION

Software bugs greatly affect system reliability and as

such entail significant effort to learn how to avoid them,

predict them, and fix them when they appear. Work on

software maintenance [1]–[3] and evolution [4]–[6] often

require information on both the bugs that are reported and

the fixes that developers applied. Such valuable information

is available in bug tracking systems such as Bugzilla and

version control systems such as Subversion. When analyzed

together, information from the two kinds of systems can be

used to better understand software development and main-

tenance processes, measure software cost, triage and reduce

duplicate bug reports, predict bug locations, recommend bug

fixes, and many other software engineering tasks [2], [3],

[7], [8]. Unfortunately, information from these two kinds of

systems are generally maintained separately. Links between

bug reports and bug fixes are therefore not readily available

to researchers or practitioners to analyze.

To address the problem of bug linking, a number of

solutions have been proposed. Most of the solutions that

aim to establish bug links rely on the fact that meticulous

developers, when pushing a fix into the code version control

system, always insert specific information that identifies the

corresponding bug [9]. Thus, these solutions can establish

bug links based on heuristics to match a set of indicative

keywords (e.g., Fixed, Bug) and the corresponding bug

identifiers (e.g., #1234) in code change logs with those in

bug reports [9]–[11]. Sureka et al. have used a probalistic

approach to trace such links [12]

Other research work has shown that available datasets in

both bug tracking and version control systems are actually

plagued by quality issues and require bug linking solutions

to be augmented with heuristics for verifying the correctness

of their results [13]. The Linkster tool was designed in

this respect to enable an expert developer to quickly find,

examine, and annotate relevant changes that were identified

through heuristics [14]. However it does not solve the

problem of incompleteness and bias in datasets as many

“missing” links cannot be uncovered with these heuristics.

ReLink extends previous bug linking approaches by im-

plementing an information retrieval based solution [15].

Using similarity metrics, ReLink is able to find up to

twice more links found by previous approaches. To evaluate

ReLink, however, the authors of ReLink used as the ground

truth a dataset with links that were manually labeled by

themselves and a posteriori by an Apache Web Server

developer for their Apache Web Server dataset. Several

issues are then raised by this process:

1) The collected “ground truth” is quantitatively con-

strained by the tediousness of a posteriori manual

labeling.

2) The data may be plagued by bias as the labelers are

not the actual bug fixers, thos who without doubt could

link a bug report with all, and only, the commits that

address it.

Furthermore, the effectiveness of ReLink has been evalu-

ated only against traditional approaches without introducing

variations in the input data, such as the quality and quantity

of training data used in their bug linking process. We under-

take to build a benchmark for evaluating the effectiveness

of bug linking tools with a dataset of 10 programs1, and we

provide a more extensive evaluation of ReLink.

To build the benchmark dataset, we investigate a set of

clean data where the links between bug reports and code

revisions that fix the bugs are well maintained. We perform a

1ReLink was originally assessed on 3 programs

1

manual check to verify that links in the dataset are sound and

complete. These links are inserted by the actual developers

during their actual bug-fixing activities over a long period

of time. The benefit of using such a dataset is clear: we can

get a large number of highly accurate bug links, and with

this ground truth, we can propose various dimensions to test

the effectiveness of bug linking tools.

In addition, there are many other widely-used information

retrieval techniques besides the one used in ReLink, such as

Vector Space Modelling (VSM), Latent Semantic Indexing

(LSI), and Latent Dirichlet Allocation (LDA) (c.f. [16]);

they have been shown to be effective for many software

engineering tasks, such as software traceability [17]–[20].

Thus in this study, we adapt these existing IR techniques

for bug linking and compare them against ReLink. These

experiments are performed to gain insights on the effective-

ness of the IR technique that was used in the bug linking

tool.

We find that the ReLink tool offers good precision in

recovering links that are actually correct, but is less effective

in recovering missing links. We also found that training

data has limited impact on the results of ReLink due to

other filtering steps used by ReLink to consolidate its

outputs. Cross-project validation has shown that, overall,

training data cannot be borrowed across different projects.

Finally, our comparison between ReLink and other standard

Information Retrieval solutions shows that there is still room

for improving the effectiveness of ReLink.

The contributions of this work are as follows:

1) We provide a benchmark dataset2 of known true links

that could be used to evaluate bug linking work, and

discuss a number of research questions for assessing

the effectiveness of a bug linking tool.

2) We evaluate the effectiveness of ReLink, a recently

proposed bug linking tool, on the benchmark.

3) We compare the effectiveness of ReLink versus stan-

dard information retrieval approaches that have been

used in prior studies on software traceability.

4) We qualitatively characterize the kinds of links that

ReLink misses and others that ReLink wrongly assigns.

The structure of this paper is as follows. In Section II, we

describe bug linking and ReLink in more details. Section III

describes the dataset that we use as the benchmark. We

elaborate how we obtain and use this dataset. Section IV

details the research questions and the metrics that we use

for assessing a bug linking tool. We describe our evaluation

results in Section V. We provide a list of related studies in

Section VI. We conclude with future work in Section VII.

II. BUG LINKING

Bug linking is the process of integrating information

from bug tracking systems with information from version

2The benchmark is available at http://momentum.labri.fr/bugLinking/

control systems to map developer code changes with the

corresponding reported issues/bugs. Once extracted, such

information can be used to understand development activities

and measure software maintainability which in return can be

used to predict defects or recommend bug fixes and to help

improve software quality.

a) Excerpt of commit change log

Revision: r363 Author: srowen Date: Apr 15, 2008
Log message: Fix Issue 50 , not building on Windows, by adding some

small workarounds for Windows paths in build files for Android

b) Excerpt of issue report

Issue 50: Building Android project problems

Status: Fixed Owner:srowen Closed: Apr 2008
Reported by his. . .@gmail.com, Mar 30, 2008
When building a BarcodeReader.apk on Windows, I got the below error. . .

I attached a diff to fix the problem for android/build.xml.
Please, check and merge it if you think it is useful.

Figure 1. An example of explicit bug link in Zxing

Figure 1 shows sample code commit log and issue/bug

report that are from the Zxing project3. In this case, the

developer who committed the code voluntarily referred to

the bug report (Issue 50) that is handled by his proposed

fix. Thus, the link between the two logs are explicit. Using

heuristics for scanning change logs to match a set of

common keywords, one can easily uncover a number of such

explicit links. Previous approaches to bug linking leverage

such heuristics for mining bug links. Unfortunately, such

approaches have weaknesses:

• There are no specific formats for referring to bugs in

code change logs, which makes it impossible to exhaus-

tively and automatically uncover all explicit links. For

example, developers may insert a bug identifier as part

of a sentence (e.g., “solve problem 101”, “see #123”,

“fixed 423”) with the possibility for typos (e.g., “fic

239”) [21], or may refer to the bug as an issue (“issue

#184”), a problem report (“PR: 11312”), etc.

• Adding bug references to a change log is not manda-

tory. This leads to a situation where many commits

that fix bugs have no references to the relevant bug.

In this context, previous approaches to bug linking are

insufficient. Figure 2 shows an example of a change

log from the same Zxing project where no reference to

the bug fixed by the commit is provided.

Incompleteness and bias are therefore two main problems

with previous approaches and may impact other studies

based on the links produced. These weaknesses have been

recently addressed in a novel approach, namely ReLink,

which is a recent work on bug linking.

Bug linking with ReLink is based on an algorithm for

identifying and assessing a set of features of links in a two-

3https://code.google.com/p/zxing/

2

a) Excerpt of commit change log

Revision: r154 Author: srowen Date: Jan 22, 2008
Log message: Explictly add Yes/No commands to "Open xxx" dialog

to ensure that both options show on all platforms

b) Excerpt of issue report

Issue 20: "Open xxx" dialog has only "Cancel" option

Status: Fixed Owner:srowen Closed: Feb 2008
Reported by project member srowen, Jan 22, 2008
Looks like the way the app works now, the "OK" button in dialogs

like "Open URL?" does not show up on some phones. That is bad.

Comment 1 by horvath. . . .@gmail.com, Jan 23, 2008
Hi! I have Nokia N61i and I am in the same situation! . . .

Comment 2 by project member srowen, Jan 23, 2008
This is fixed in subversion. . .

Figure 2. An example of missing link in Zxing

fold run. In the first run, ReLink relies on the explicit links

that can be uncovered with previous approaches to build a

learning base to learn about the features that characterize

bug links. In the second run, ReLink uses those features to

further recover “missing” links—links involving fix logs that

do not contain any explicit reference to their corresponding

bug reports. To select features of links, the ReLink authors

have first performed a manual analysis of some explicit links.

We briefly describe in the following the features considered

in ReLink.

Time Interval: The ReLink algorithm considers the

interval between the bug-fixing time and the change-commit

time to filter out false positives and confirm the possibility

of a link using a threshold inferred from the explicit links

that were identified by previous heuristics.

Bug owner and change committer: ReLink authors

have performed an empirical study of explicit links to

establish that, often, there exist some relationships between

change committers in software repositories and bug owners

in bug tracking systems. Indeed, they have observed that

although the person committing the bug fix is not always

the one responsible for handling the bug report, the mapping

between them could be identified, e.g. by mining bug report

comments where developers discuss the fix.

Text similarity: Finally, in ReLink, bug reports and

change logs are considered as text documents which make

them good candidates for processing with Information Re-

trieval technology to compute their similarity. Indeed, the

text of a bug-fixing commit log is often meant to explicitly

state the problem that the commit resolves, and the problem

is likely to be described and commented with the same terms

in the corresponding bug report messages.

ReLink builds upon the Vector Space Model (VSM) [22]

in which each document containing n distinct terms is

represented as a n-dimension vector. After preprocessing

of bug reports and change logs to remove common stop

words and normalization using a stemming algorithm along

with a synonym replacement phase, ReLink relies on the

Term Frequency-Inverse Document Frequency (TFIDF) met-

ric [22] to compute the weight of each unique term.

Algorithm 1: The ReLink algorithm

Input: L // set of all possibilities of links

Lr ← ∅ // Links found by ReLink;

Le ← mineLinksUsingPreviousHeuristics();

(Tt, St) ← determineTimeAndSimilarityThresholds(Le);

Mbc cc ← determineCommenterAndCommitterMappings(Le);

foreach link l in L− Le do

if (bugCommenter(l), changeCommitter(l)) ∈ Mbc cc then

if ∃t · t← bugCommentTime(l) | satisfiesThreshold(t, Tt)=True

then

lb ← bug report;

lc ← change log;

Siml ← computeTextSimilarity(lb, lc);

if satisfiesThreshold(Siml, St) then

Lr ← {Lr, l};

return Lr + Le;

Algorithm 1 presents the overall high-level description

of ReLink’s processing steps. According to this algorithm,

ReLink produces links which include explicit links mined

through previous heuristics and missing links identified

based on selected features of links.

The ReLink paper for automatic recovery of missing links

reported very good performance: the average precision rate

was 89% and the average recall was 78% for a limited

dataset containing 3 projects. However, the ReLink authors

relied on a manually labeled “ground truth” for their ex-

periments. Given the importance of bug linking, we believe

that it is necessary to more thoroughly evaluate ReLink and

assess its effectiveness on a variety of projects, a variety

of training datasets, and a variety of usage scenarios to

effectively establish its strengths and limits with regards to

bug linking.

III. BENCHMARK DATASET

Our bug linking evaluation is performed based on a

benchmark dataset collected from ten open source projects

hosted by the Apache Software Foundation4. These pro-

grams are described in Table I with the number of bug

reports considered for each program and the number of

labeled links collected. Overall, the dataset includes about

7,000 bug reports fixed by one or more commits, thus

leading to around 12,000 bug links in the dataset. Our choice

of these software systems is influenced by (1) the capabilities

of JIRA5, a commercial bug/issue tracking system used by

Apache projects, (2) the maturity of the projects, (3) the

diverse application domains of the projects, and (4) the

different programming languages used in the programs.

JIRA has various features that make it a desirable toolkit

for dealing with bug reports. For example, as a voting-

based system, JIRA is often relied upon for effectively

prioritizing important issues (e.g., the ones that interest users

the most) [23]. Another feature of JIRA is that it provides

4http://www.apache.org/
5https://www.atlassian.com/software/jira/

3

Table I
SOFTWARE SYSTEMS IN THE BENCHMARK DATASET

Program Description # bug reports # labeled links

activemq Message broker 1068 1560

felix OSGi implementation 1660 2287

hadoop Support for distributed computing 2451 4421

lucene Search library 952 2139

mahout Machine learning library 244 327

opennlp Machine learning toolkit 100 127

stdcxx C++ standard library 398 571

struts Web application framework 83 92

xalan C++ XSLT processor 139 157

xerces C++ API for XML parsing 178 200

add-ons for connecting issues to version control systems. In

the case of the programs used in our benchmark dataset, the

Apache JIRA-based issue tracker6 was linked to the Apache

subversion repository7, allowing links to be automatically

inferred when commits are checked into the repository. One

benefit of the JIRA add-ons is that it is very convenient for

programmers to refer to the bug report they are addressing

in their commit logs. Thus, there are immediately more

opportunities for recovering links with improved quality.

In JIRA, issue/bug identifiers are composed of two parts

separated by a dash: a keyword that identifies the project

(e.g., “LUCENE” for the Lucene project) and a unique

number for each issue/bug in the project.

Table I details the number of labeled links that can be

extracted from the issue tracker for each program. These

numbers only include links to bugs fixes in the development

trunk, excluding branches. For an efficient link mining by the

issue tracker, the strategy used stills requires some manual

effort from the developers, thus introducing opportunities

for wrong links if developers make typos or mistakenly use

in their change log a format that may be confused with

a bug reference format. Figure 3 details an example of a

link automatically inferred by the issue tracker for the issue

LUCENE-1. As one can immediately notice, this link was

wrongly mined since the identifier in this case is actually

just a part of a release version number.

Repository: Revision Date User Message

ASF #151795 Mon dnaber increase version number from 1.5
Feb 07 to 1.9, so that the jar is called

called LUCENE−1.9−rc1−dev.jar

Figure 3. Wrongly labeled link

In order to use labeled links as the ground truth we have

set to manually assess those links to ensure that they were

properly inferred.

Soundness: This term refers to whether the labeled

links are correct. To assess the soundness of the labeled

links, we have randomly sampled 100 links distributed

6https://issues.apache.org/jira/
7https://svn.apache.org/repos/asf/

across the ten projects and manually checked whether these

were true links. We have found that 100% of those links

were true. The link example in Figure 3 actually refers to

a revision number that is part of a branch, thus outside the

development trunk considered in our benchmark dataset.

This empirical evaluation reveals that Apache developers

are meticulous in their efforts to insert bug references in the

change logs of their fixing commits. However, we have also

noted that some bug reports were automatically imported

from a previous Bugzilla-based setup of the project’s bug

tracking system into the JIRA setup, which may reduce the

reliability of links that were not labeled by bug fixers. We

have therefore parsed all labeled links from our datasets

and found that 37 out of 6507 involved a bug report

with an initial Bugzilla ID. Manually checking these links

exposed 22 wrong links with LUCENE-3. In all these links

the expression “LUCENE-3”, which was actually part of

the release version number “Lucene3.1.0”, was mistakenly

inferred as a bug number during the automated labeling

by JIRA. We have then removed these links from the

benchmark dataset.

Completeness: This term refers to whether all links

between bug reports and code commits are labelled. Com-

pleteness is an important property that should be ensured to

accurately evaluate false negative rates of bug linking tools.

We find that every issue/bug in our benchmark dataset has

been linked to some commits. In addition, for links provided

by JIRA for the issues/bugs, we want to make sure whether

all code commits related to an issue/bug have been linked

to the issue/bug in JIRA. For this purpose, we randomly

sampled 100 links to check whether a bug report may be

related to a commit not linked by JIRA. Two situations may

explain why a given commit is not linked to a bug report.

First, the commit may not be a bug-fixing commit, or it

may fix a bug that was not reported in the bug tracking

system. Second, the commit may be part of a number of

commits addressing the same bug. In this case, we assume

that the unlinked commit was caused by missing references

to its corresponding issue/bug report in its commit log when

it actually belongs to the fix split in several commits. We

have investigated the dataset and found that when a bug

is fixed by many commits, those are usually close in time,

and for the ten programs, the number of commits do not

reach 20 for a given bug. Thus, for each linked commit

in the sample set, we manually examine the 10 commits

that precede it and the 10 commits that follow it to see

whether there are unlinked commits for the same issue/bug.

Our manual investigation has established that 100% of the

sampled links were complete.

The results of these investigations allow us to use the

links extracted from the JIRA-based issue tracking system

with little clean-up as our ground truth for evaluating bug

linking tools.

4

IV. RESEARCH QUESTIONS & METRICS

We now discuss a number of important research questions

that we have formulated to assess the effectiveness of a bug

linking tool.

RQ1. How effective is the tool in recovering links

for non-linked bug reports?: In this research question, we

propose to evaluate the completeness and accuracy of the

links generated by a bug linking tool when provided with

completely non-linked bug reports. Indeed, a tool may fail

to find a link for some bug reports (false negatives) and may

assign incorrect links to other bug reports (false positives).

It is therefore important to assess the effectiveness of the

bug linking tool based on such cases.

RQ2. How effective is the tool in recovering links for

partially-linked bug reports?: Partial links refer to links

involving bugs that are fixed in several commits but not

all of the commits are explicitly linked to the bugs. Using

partial links in studies may introduce bias whose impact

can be significant [14]. It is therefore often necessary to

identify, for every bug report, all the commits that are related

to it. Intuitively, recovering such links could be more readily

possible than in the case of completely non-linked bug

reports, as the similarity between the commits can also be

leveraged. In this research question, we investigate whether

a bug linking tool could recover missing links from partially-

linked bug reports and whether it could be more accurate in

doing so.

RQ3. What is the sensitivity of the tool when train-

ing data is changed?: Advanced techniques for recovering

missing links, as with the ReLink tool, use machine learning

algorithms that rely on training data for computing the

similarity thresholds for detection of bug links. Variations in

real-world datasets may therefore impact the performance of

such bug linking tools. Consequently, for a bug linking tool

that relies on machine learning approaches, it is important

to investigate its sensitivity when training data is changed.

RQ4. Could the tool be trained on one software system

and used to link reports in other software systems?: Related

to the previous research question, a worst case scenario may

arise when no training data can be found in the project. For

example, for the first bug report in a software project, there

is no training data available. Because explicit links are not

readily available in all real-world projects, a bug linking

tool would be more valuable if it can use training datasets

from one project to infer links in another. We explore in this

research question if the thresholds learned in one software

system could be used in other systems.

RQ5. How effective is the tool as compared with

standard information retrieval solutions including VSM, LSI,

and LDA?: Bug linking algorithms, such as ReLink, can

be built atop of Information Retrieval technology. However,

since there are many standard information retrieval solutions,

it is important to survey the benefits of the linking algorithm

compared to the results that can be directly obtained with

standard techniques. In this research question, we propose

to compare the performance of the tool with standard

information retrieval solutions that are used to measure the

textual similarity of two documents.

RQ6. What kinds of links are often missed by the bug

linking tool?: When a bug linking tool misses some links

(false negatives), what are the characteristics of those links?

Thouroughly studying this question can give insights for

researching new ways to collect more links. We propose

to answer this research question by performing a qualitative

study of the false negatives of the tool’s outputs.

RQ7. What are the characteristics of extraneous links

generated by the bug linking tool?: Besides false negatives,

a bug linking tool can generate false positives, i.e., incorrect

links. Exploring the characteristics of those links can

provide insighs on the limits of the solution implemented

by the bug linking tool, and suggest potential research

methodology for improving bug linking tools.

To quantitatively evaluate a bug linking tool, we propose

to use standard metrics from the field of Information Re-

trieval, namely the Precision, Recall, and F-measure metrics.

• PRECISION, as captured by Equation (1), quantifies

the effectiveness of the tool to recover links that are

actually correct.

Precision =
|{labeled links} ∩ {link inferred by tool}|

|links inferred by tools|
(1)

• RECALL on the other hand explores the capability of

the tool to recover most of the missing links. Equa-

tion (2) provides the formulation for its computation.

Recall =
|{labeled links} ∩ {links inferred by tool}|

|labeled links|
(2)

• Finally, we compute the F-MEASURE, the harmonic

mean between Recall and Precision. We consider that

both Precision and Recall are equally important and

thus, they are equally weighted in the computation of

F-measure in Equation (3).

F −measure = 2 ·
Precision · Recall

Precision + Recall
(3)

V. RELINK EVALUATION RESULTS

In this section we report the evaluation of ReLink with

our benchmark dataset and following the research questions

previously outlined. The discussions are based on the metrics

described above. For our evaluation process, we use the

ReLink tool as a black box, only providing desired inputs

and analyzing the outputs. We have downloaded the version

of the tool that was available at the project web page8 at the

time of writing.

Since our ground truth always contains references to the

bug reports that are involved in a link, which would hinder

8http://www.cse.ust.hk/∼scc/ReLink.htm

5

Table II
10-FOLD CROSS VALIDATION RESULTS

activemq felix hadoop lucene mahout opennlp stdcxx struts xalan xerces

Average # of test links 203 321 67 66 38 15 119 10 16 23

Precision 0.922 0.821 0.712 0.7 0.927 0.4 0.007 1.0 0.6 0.975

Recall 0.181 0.17 0.101 0.088 0.164 0.027 0.029 0.207 0.038 0.188

F-measure 0.302 0.28 0.176 0.155 0.276 0.051 0.011 0.331 0.072 0.307

the evaluation of ReLink’s capability in finding “missing

links”, we accordingly pre-process the inputs of change logs

to remove the references from the portions of data that are

used for testing, but leaving them in the training data for

ReLink to infer link features using traditional heuristics.9

A. RQ1: Link Effectiveness (Non-Linked)

Since ReLink relies on a learning algorithm, k-fold cross

validation is a well suited statistical method to evaluate its

effectiveness [24]. To answer the first research question we

therefore perform a 10-fold cross validation for each of the

programs in our benchmark dataset. For this purpose, we

have randomly distributed the labeled links into 10 sets of

equal size. For each program, we ran 10 experiments using

every time 1 set as the testing set and the 9 others for training

data. The results are shown in Table II for all programs.

Discussion: These experiments show that, in general, the

ReLink tool has good precisions, reaching 100% for the

struts program, though this precision can drop in some cases,

as for the stdcxx program. Recalls, however, are very low,

which in turn cause low F-measures. The recall of ReLink

is sacrificed by the algorithm in favor of precision.

B. RQ2: Link Accuracy (Partially-Linked)

For the second research question, we consider bug reports

that are involved in multiple labeled links, i.e., bugs for

which there are more than one corresponding revisions. For

each bug, we successively consider 25%, 50% and 75% of

the relevant links for training, and compute the effectiveness

of ReLink in recovering the remaining. The results of these

experiments are shown in Table III.

Discussion: The quantitative analysis reveals that ReLink

does not succeed in inferring partially missing links more

than in the case of non-linked bug reports. We suspect

that this is due to the fact that while different change

logs may address the same bug, they often do so with

different terms which in return will reduce the success of

ReLink. Indeed, the ReLink algorithm strictly considers the

similarity between 1 commit change log and 1 bug report

and, thus, does not leverage the similarity between commits

that address the same bug.

9We have checked that ReLink contains rules for the matching text
patterns (e.g., LUCENE-123, BUG #123, etc.) used in Apache systems
for denoting bug IDs

 % of training data

0.0

0.5

1.0

	
P

re
ci

si
o
n

activemq

felix

hadoop

lucene

mahout

opennlp

stdcxx

struts

xalan

xerces

10%
20%

30%
40%

50%
60%

70%
80%

90%

Figure 4. Precision – sensitivity to training data

C. RQ3: Sensitivity to Training Data

To assess the sensitivity of ReLink to training data,

we perform a series of experiments with varying sizes of

the training data. Practically, for each program, we have

randomly distributed the labeled links into nine buckets of

potential training data. We then run 9 successive experiments

where in the first experiment labels from the first bucket

are used for training, and in the second experiment we add

labels from the second bucket to double the size of training

data, and so on. This experimental scenario enables us to

consider from 10% to 90% of the labeled links as training

data and the remaining, i.e., from 90% to 10% as testing

data. Figures 4, 5 and 6 show the results of our experiments

for the different programs.

Discussion: In Figure 4, we note that precision is not

significantly impacted by the size of training data. We

believe that this is due to the fact that ReLink uses different

heuristics aside from the similarities between change logs

and bug reports, to consolidate its outputs.

The impact on recall rates is observable on datasets of

the highest and lowest sizes. Figure 5 shows that recall

is increasing for the felix program and overall is dropping

for the struts program. These results suggest that smaller

datasets, in which outliers are more noticeable, would affect

the recall of ReLink.

Finally, in Figure 6, we notice that the F-measure follows

the results of the Recall metrics. This was expected based on

the results of Precision which did not appear to be affected

by the variation in proportion of training data.

D. RQ4: Cross Project Effectiveness

To answer the research question related to cross project

effectiveness of ReLink, we ran experiments with all combi-

6

Table III
EVALUATION OF LINK ACCURACY FOR PARTIALLY LINKED LINKS

% partial links
activemq felix hadoop lucene mahout opennlp stdcxx struts xalan xerces

used for training

25%
Precision 1 0.977 1 1 1 1 0.212 1 1 1
Recall 0.114 0.092 0.133 0.036 0.016 0.03 0.058 0.103 0.03 0.261
F-measure 0.204 0.169 0.235 0.07 0.032 0.059 0.091 0.188 0.059 0.414

50%
Precision 0 1 1 0 0 0 0.111 0 0 1
Recall 0 0.008 0.015 0 0 0 0.023 0 0 0.16
F-measure 0 0.015 0.03 0 0 0 0.038 0 0 0.276

75%
Precision 0 1 0 0 0 0 0.083 0 0 1
Recall 0 0.008 0 0 0 0 0.016 0 0 0.095
F-measure 0 0.015 0 0 0 0 0.027 0 0 0.174

 % of training data

0.0

0.2

0.4

	
R

ec
a
ll

activemq

felix

hadoop

lucene

mahout

opennlp

stdcxx

struts

xalan

xerces

10%
20%

30%
40%

50%
60%

70%
80%

90%

Figure 5. Recall – sensitivity to training data

 % of training data

0.0

0.2

0.4

0.6

	
F

-m
ea

su
re

activemq

felix

hadoop

lucene

mahout

opennlp

stdcxx

struts

xalan

xerces

10%
20%

30%
40%

50%
60%

70%
80%

90%

Figure 6. F-measure – sensitivity to training data

nations of pair-program in our benchmark dataset. Thus, for

each program, we consider training data from exclusively

another program, and we repeat this scenario for all other

programs. For a baseline result, we compute the effective-

ness of ReLink when no training data is used. The results

of our experiments are highlighted in Figures 7 and 8.

Discussion: From the graphs detailing the precision and

recall results, we observe that, overall, using training data

from other projects datasets leads to lower precision and

recall. In a few cases, such as with the mahout and opennlp

programs, smaller sets of training data (e.g., from struts)

have less impact on the precision of ReLink and may even

improve it slightly.

E. RQ5: Comparison with Other IR Solutions

To answer this research question we use several stan-

dard information retrieval techniques namely vector space

modeling (VSM), latent semantic analysis (LSA), and latent

 Software system used for test data

0.0

0.2

0.4

0.6

0.8

1.0

	
P

re
ci

si
o

n

No training data

activemq

felix

hadoop

lucene

mahout

opennlp

stdcxx

struts

xalan

xerces

xerces

xalan

struts

stdcxx

opennlp

m
ahout

lucene

hadoop

felix

activem
q

Figure 7. Precision – Cross project evaluation

 Software system used for test data

0.0

0.2

0.4

0.6

	
R

ec
a

ll

No training data

activemq

felix

hadoop

lucene

mahout

opennlp

stdcxx

struts

xalan

xerces

xerces

xalan

struts

stdcxx

opennlp

m
ahout

lucene

hadoop

felix
activem

q

Figure 8. Recall – Cross project evaluation

Dirichlet allocation (LDA), which have also been used in

studies on software traceability analysis. Following is the

description of how we use these techniques for bug linking.

Practically for the purpose of fair comparison, we have

implemented the considered standard information retrieval

solutions to follow the same steps as described in the

ReLink paper. These solutions perform a simple retrieval

without considering some features of links (time interval

and mapping between bug owner and change committer).

The process for each model is the same. First, they pre-

process the text data through stemming and stop words

removal. Second, they take bug reports as query and search

the relevant change logs for this query. For every bug report,

the similarity scores between its text data and change logs

are computed based on the model in use (VSM, LSA or

LDA). Links are then inferred by selecting change logs for

which the similarity score is above a threshold which was

determined in a training phase as in ReLink.

7

Table IV
COMPARISON OF RELINK WITH EXISTING IR TECHNIQUES: VECTOR SPACE MODELING (VSM), LATENT SEMANTIC ANALYSIS (LSA), AND LATENT

DIRICHLET ALLOCATION (LDA)

activemq felix hadoop lucene mahout opennlp stdcxx struts xalan xerces

Precision
ReLink 0.922 0.821 0.712 0.700 0.927 0.400 0.007 1.0 0.600 0.975
VSM 0.068 0.148 0.303 0.137 0.172 0.169 0.028 0.087 0.017 0.061
LSA 0.035 0.095 0.025 0.077 0.069 0.160 0.010 0.101 0.017 0.046
LDA 0.011 0.021 0.013 0.036 0.031 0.075 0.011 0.028 0.017 0.657

Recall
ReLink 0.181 0.17 0.101 0.088 0.164 0.027 0.029 0.207 0.038 0.188
VSM 0.128 0.226 0.455 0.283 0.306 0.278 0.077 0.218 0.045 0.121
LSA 0.116 0.175 0.125 0.151 0.135 0.163 0.066 0.185 0.062 0.084
LDA 0.352 0.254 0.08 0.263 0.344 0.556 0.404 0.194 0.056 0.015

F-measure
ReLink 0.302 0.28 0.176 0.155 0.276 0.051 0.011 0.331 0.072 0.307
VSM 0.068 0.155 0.331 0.152 0.199 0.18 0.035 0.106 0.02 0.068
LSA 0.037 0.099 0.029 0.083 0.078 0.155 0.014 0.11 0.018 0.051
LDA 0.011 0.024 0.018 0.04 0.037 0.071 0.015 0.028 0.018 0.015

a) Excerpt of commit change log

revision: 682831 author: apetrelli date: 2008−08−05 17:50:09
msg: Applied patch provided by Yannick Haudry

b) Excerpt of issue report (JIRA)

key name: STR−3160 reporter name: Yannick Haudry

created: Tue, 22 Jul 2008 21:53:28 assignee name:Antonio Petrelli

resolved: Tue, 5 Aug 2008 18:09:13 resolution: Fixed

summary: TilesRequestProcessor processTilesDefinition. . .
description: Here is the code. . .

Figure 9. ReLink missed link – Unleveraged feature of links

To compare ReLink and the aforementioned IR tech-

niques, we resort to 10-fold cross validation. The experiment

scenario for each technique is similar to the one used for

answering the first research question (RQ1) for ReLink. The

results of these various IR techniques as compared to ReLink

is shown in Table IV. From the table, we could notice that

ReLink outperforms the existing IR techniques in terms of

F-measure for: activemq, felix, lucene, mahout, struts, xalan,

and xerces. VSM outperforms ReLink for: hadoop, opennlp,

and stdcxx. LDA and LSA outperform Relink for: opennlp

and stdcxx. Thus in general, ReLink is better than existing

IR approaches. The existing IR approaches are promising

too as it could outperform ReLink on 2 or 3 out of the 10

programs. In the future, it would be interesting to propose

an approach that could extend ReLink such that it could

outperform all existing IR techniques on all datasets.

F. RQ6: Missing Links

In Figures 9 and 10 we detail two categories of missing

links that Relink fails to recover. The examples are presented

as used in the testing dataset where we had removed any

explicit reference to the bug reports so as to assess the core

algorithm of ReLink.

The first example highlights the fact that ReLink’s features

of links could be augmented to take into account mappings

between bug reporter name and patch acknowledgement

texts. Indeed, although the change log and bug report de-

scription texts in Figure 9 are not similar, we can infer a link,

based on the date, report metadata and the acknowledgement

in change log.

Figure 10 however details a different miss by ReLink.

a) Excerpt of commit change log

revision: 1177597 author: joern date: 2011−09−30 11:10:28
msg: Replaced encoding lookup with UTF−8 encoding, and

removed restriction on specific language codes

b) Excerpt of issue report (JIRA)

key name: OPENNLP−305
created: Fri, 30 Sep 2011 11:09:17 assignee name:Joern Kottman

resolved: Mon, 31 Oct 2011 23:49:31 resolution: Fixed

summary: Update leipzig format parsing code to work with their latest release

description: The Leipzig project added more content and changed the encoding

and language codes. [. . .] UTF−8 [. . .]

Figure 10. ReLink missed link – Excessive filtering

Although there exist text similarity between the change log

and the bug report, and a mapping between the bug owner

(i.e., assignee) and the change committer, ReLink dismisses

a relevant link as the bug report was tagged “Resolved” until

1 month after it was actually fixed in the version control

system. This kind of miss was also mentioned by the authors

as a source of false negatives, explaining in part the poor

recall of ReLink.

key name: STDCXX−11
created: Thu, 4 Aug 2005 11:09:02 +0000 assignee name : Unassigned

resolved: Fri, 5 Aug 2005 10:45:55 +0000 resolution: Fixed

summary: IA64 32−bit atomic operations broken

description: The atomic operations on IA64 are broken in 32−bit mode:
$ cat t.cpp && nice gmake SRCS=t.cpp

#include <iostream>

int main () { }
aCC −c −D RWSTDDEBUG −mt −D RWSTD USE CONFIG [. . .]
$ gdb −q t

(gdb) r

Starting program: /build/sebor/aCC−5.57−15s/examples/t [. . .]
Program received signal SIGSEGV, Segmentation fault [. . .]

si code: 1 − SEGV MAPERR − Address not mapped to object.
0x4118da0:1 in rw atomic add32+0x1 ()
(gdb) where

#0 0x4118da0:1 in rw atomic add32+0x1 ()
#1 0x4070880:0 in rw::rw atomic [. . .]

Figure 11. Bug report involved in several ReLink extraneous links

G. RQ7: Extraneous Links

The precision of ReLink results is usually very high as

detailed in Sections V-A, V-B and V-C. This, as the authors

have suggested in their paper [15], is largely due to the use

of different heuristics through a number of features of links.

Nonetheless, we have found that the stdcxx program involves

8

datasets that make ReLink’s precision drop significantly.

Manual investigation of the false positives for this program

has exposed two bug reports, namely STDCXX-11 and

STDCXX-8, for which ReLink mistakenly finds links to sev-

eral commits. Figure 11 shows an excerpt of STDCXX-11.

In the bug reports extraneously linked we observe that the

bug reporter has directly dumped his code, his compilation

command lines and even gdb output. The generality of the

terms appearing in the text may have lead ReLink to wrongly

assign many links to the bug. Though developers expect

users to provide crash information to easily reproduce the

bug, such data can be provided as part of an attachment. Bug

reporters however may not follow developer instructions.

One research roadmap for improving ReLink could therefore

consist of a more thorough analysis of bug reports to

separately process source code data and to also exclude user

command-line information which may be out of scope.

H. Threats to Validity

Our empirical evaluation bears some threats to both inter-

nal and external validity. The main threats to internal validity

are related to the process of building the benchmark dataseti.

We have tried to minimize this threat by our assessment of

the soundness and completeness of the links extracted from

the JIRA-based issue tracking system.

Threats to external validity refers to the generalizability of

our findings. We minimize this threat by considering a wide

range of projects of various domains written in different

programming languages. Another threat lies in the use of

only JIRA as a bug tracking system. To improve this study,

there is a need to evaluate other bug linking tools including

tools that do not use data-mining, machine learning and

information retrieval techniques.

VI. RELATED WORK

We highlight in the following subsections a number of

related studies on evaluation framework and bug linking.

A. Bug Linking

There have been a number of studies that propose various

techniques to either identify bug reports or link bug reports

to the revisions that fix them. Antoniol et al. propose a

technique to classify if a change request is a request for

enhancement or a bug report [25]. Tian et al. propose a

technique that detects if a revision is a bug fixing revision or

not [26]. Bird et al. propose a technique named LINKSTER

that could be used to aid developers in linking bug reports

to the revisions that fix them [14]. Their approach is semi-

automated.

Sureka et al. have used a probabilistic approach based

on the Fellegi-Model for traceability link to recover bug

links [12]. Wu et al. have recently proposed ReLink which

is an information-retrieval based technique [15].

In this study, we evaluate the effectiveness of ReLink

in several dimensions and compare it with existing work

on information retrieval that has been applied to software

traceability studies [17]–[19].

B. Empirical Evaluation & Evaluation Framework

A number of studies perform empirical evaluation to

measure the effectiveness of existing approaches [27]–[30].

Lo and Khoo propose an evaluation framework called

QUARK that evaluates existing automata-based specifica-

tion mining tools [27]. Bogdanov and Walkinshaw extend

QUARK by proposing a new metric to evaluate automata-

based specification mining tools [28]. Pradel et al. extend

the above two studies by yet another metric which is shown

to outperform the existing metrics [31].

Engstrom et al. compare and contrast various regression

test selection techniques [32]. Hutchins et al. evaluates

the effectiveness of dataflow and control-flow based test

adequacy criteria [33]. They produce a set of benchmark

programs often referred to as the Siemens test suite. Siemens

test suite itself has been widely used to evaluate many

fault localization approaches, e.g., [34]–[38]. Jones et al.

empirically evaluate a fault localization tool called Tarantula

in [35] first proposed in [34]. Lucia et al. empirically

evaluates the effectiveness of various association measures

proposed in the data mining and statistics community for

fault localization [38].

Wang et al. compare and contrast many information

retrieval solution for concern localization problem (i.e., the

detection of traceability links between a requirement docu-

ment to program elements that implement it) [20]. Lamkanfi

et al. investigate the effectiveness of various classification

algorithms for the task of predicting severity labels of bug

reports [39].

In this work, we also perform an empirical evaluation.

Our study is orthogonal to the above as we are evaluating

another important research problem namely the linking of

bug reports to the revisions in source control repositories

that fix them.

VII. CONCLUSION AND FUTURE WORK

Bug linking is an important problem which, if thoroughly

addressed, will significantly improve software maintenance

and evolution studies and enhance capabilities of various

research tools for improving defect prediction and fix rec-

ommendations. Such studies are indeed largely discussed in

the literature as useful for improving the quality of software.

In our work we provide a clean benchmark dataset

for evaluating bug linking tools. We have applied several

research questions to the state of the art tool, namely

ReLink, to assess its effectiveness on recovering missing

links. The results of our experiments show that, overall,

ReLink achieves very good precisions, over 90%, for some

programs, but delivers lesser recall rates, dropping below

9

10%. The F-measure results in our various scenarios show

that there is room for improvement in the area of bug

linking. Our qualitative assessments of ReLink’s missed and

extraneous links, as well as the comparison with various

standard IR techniques, point out some weaknesses in the

algorithm and the filtering strategy of ReLink, thus opening

up new directions for future work on bug linking.

Availability. The benchmark constructed in this work is

available at: http://momentum.labri.fr/bugLinking

REFERENCES

[1] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasun-
daram, “How do fixes become bugs?” in ESEC/FSE, 2011.

[2] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 3,
pp. 309–346, 2002.

[3] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for eclipse,” in PROMISE, 2007.

[4] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving
defect prediction using temporal features and non linear
models,” in IWPSE, 2007, pp. 11–18.

[5] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting
the location and number of faults in large software systems,”
IEEE Trans. Softw. Eng., vol. 31, no. 4, pp. 340–355, 2005.

[6] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” in MSR, 2005, pp. 1–5.

[7] A. Hindle, D. M. German, and R. Holt, “What do large
commits tell us?: a taxonomical study of large commits,” in
MSR, 2008.

[8] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic identification of bug-introducing changes,” in
ASE, 2006.

[9] M. Fischer, M. Pinzger, and H. Gall, “Populating a release
history database from version control and bug tracking sys-
tems,” in ICSM, 2003, pp. 23–32.

[10] H. Zhang, “An investigation of the relationships between lines
of code and defects,” in ICSM, 2009, pp. 274 –283.

[11] A. Schroter, T. Zimmermann, R. Premraj, and A. Zeller, “If
your bug database could talk...” in ISESE, 2006, pp. 18–20.

[12] A. Sureka, S. Lal, and L. Agarwal, “Applying fellegi-
sunter (fs) model for traceability link recovery between bug
databases and version archives,” in APSEC, 2011.

[13] A. Bachmann and A. Bernstein, “Data retrieval, processing
and linking for software process analysis,” Technical Report
IFI-2009.0003, Dept. of Informatics, University of Zurich,
May 2009.

[14] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bern-
stein, “The missing links: bugs and bug-fix commits,” in FSE,
2010.

[15] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink:
Recovering links between bugs and changes,” in FSE, 2011.

[16] C. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[17] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia,
“Information retrieval models for recovering traceability links
between code and documentation,” in ICSM, 2000.

[18] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in ICSE, 2003.

[19] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software
traceability with topic modeling,” in ICSE (1), 2010.

[20] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization
using information retrieval: An empirical study on linux
kernel,” in WCRE, 2011, pp. 92–96.

[21] A. Murgia, G. Concas, M. Marchesi, and R. Tonelli, “A
machine learning approach for text categorization of fixing-
issue commits on cvs,” in ESEM , 2010.

[22] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, 1st ed. Addison Wesley, May 1999.

[23] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao, “A market-
based approach to software evolution,” in OOPSLA, 2009.

[24] R. R. Bouckaert, “Choosing between two learning algorithms
based on calibrated tests,” in ICML03, 2003, pp. 51–58.

[25] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement? a text-based
approach to classify change requests,” in CASCON, 2008.

[26] Y. Tian, D. Lo, and C. Sun, “Information retrieval based
nearest neighbor classification for fine-grained bug severity
prediction,” in http://www.mysmu.edu/ faculty/davidlo/drafts/
severity.pdf , 2012.

[27] D. Lo and S.-C. Khoo, “Quark: Empirical assessment of
automaton-based specification miners,” in WCRE, 2006.

[28] K. Bogdanov and N. Walkinshaw, “Computing the structural
difference between state-based models,” in WCRE, 2009.

[29] E. Engström, P. Runeson, and G. Wikstrand, “An empirical
evaluation of regression testing based on fix-cache recom-
mendations,” in ICST, 2010.

[30] J. A. Jones and M. J. Harrold, “Empirical evaluation of
the tarantula automatic fault-localization technique,” in ASE,
2005.

[31] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for
the evaluation of specification miners based on finite state
machines,” in ICSM, 2010, pp. 1–10.

[32] E. Engström, M. Skoglund, and P. Runeson, “Empirical eval-
uations of regression test selection techniques: a systematic
review,” in ESEM, 2008, pp. 22–31.

[33] M. Hutchins, H. Foster, T. Goradia, and T. J. Ostrand, “Exper-
iments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria,” in ICSE, 1994, pp. 191–200.

[34] J. Jones, M. Harrold, and J. Stasko, “Visualization of test
information to assist fault detection,” in ICSE, Orlando,
Florida, May. 2002, pp. 467–477.

[35] J. Jones and M. Harrold, “Empirical evaluation of the taran-
tula automatic fault-localization technique,” in ASE, 2005.

[36] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the Ac-
curacy of Spectrum-based Fault Localization,” in TAICPART-
MUTATION, 2007.

[37] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-
Based Multiple Fault Localization,” in ASE, 2009.

[38] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evalua-
tion of association measures for fault localization,” in ICSM,
2010.

[39] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck,
“Comparing mining algorithms for predicting the severity of
a reported bug,” in CSMR, 2011.

10

