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ESTIMATION FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH

MIXED EFFECTS.

V. GENON-CATALOT1 AND C. LARÉDO2

Abstract. We consider the long term behaviour of a one-dimensional mixed effects diffusion
process (X(t)) with a multivariate random effect φ in the drift coefficient. We first study the
estimation of the random variable φ based on the observation of one sample path on the time
interval [0, T ] as T tends to infinity. The process (X(t)) is not Markov and we characterize its in-
variant distributions. We build moment and maximum likelihood-type estimators of the random
variable φ which are consistent and asymptotically mixed normal with rate

√
T . Moreover, we

obtain non asymptotic bounds for the moments of these estimators. Examples with a bivariate
random effect are detailed. Afterwards, the estimation of parameters in the distribution of the
random effect from N i.i.d. processes (Xj(t), t ∈ [0, T ]), j = 1, . . . , N is investigated. Estimators
are built and studied as both N and T = T (N) tend to infinity. We prove that the convergence
rate of estimators differs when deterministic components are present in the random effects. For
true random effects, the rate of convergence is

√
N whereas for deterministic components, the

rate is
√

NT . Illustrative examples are given.

AMS 2000 subject classification: Primary: 62M05, 62F12 ; secondary: 60J60.

Keywords and phrases: Asymptotic mixed normality, invariant distributions, mixed-effects sto-
chastic differential equations, parametric inference, random effects estimation.

Running title: Mixed effects estimation for SDEs.

1. Introduction

Stochastic differential equations constitute a well-established tool for modelling physical phe-
nomena whose dynamics are affected by random noise. Some situations require a hierarchical
modelling of the dynamics of X, with first a random variable φ (the random effect) and second,
given that φ = ϕ, an SDE with drift and diffusion coefficient depending on (x, ϕ) that rules
the X(.)’s dynamics. This occurs in particular when it is of interest to model simultaneously
the performance of several experiments or when adding this hierarchical modelling is needed to
estimate population parameters. Usually, X represents the behaviour of an individual, the ran-
dom components of φ describe the individual specificity and, given φ = ϕ, the model describes
a general evolution for all individuals with individual value ϕ (see e.g. Davidian and Giltinan
(1995), Pinheiro and Bates (2000), Kuhn and Lavielle (2004), Nie and Yang (2005), Nie (2006),
Nie (2007)). Stochastic differential equations (SDE) with mixed effects have been introduced to
generalize classical ordinary differential equations models ( Ditlevsen and De Gaetano (2005),
Overgaard et al. (2005), Donnet and Samson (2008)) and also to model neuronal data (Picchini
et al. (2010)).
The continuous-time stochastic process X = (X(t), t ≥ 0) with dynamics ruled by a stochastic
differential equation with mixed effects satisfies

(1.1) dX(t) = b(X(t), φ)dt + σ(X(t), φ) dW (t), X(0) = η,
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where W is a Brownian motion, φ is a random variable with distribution ν(dϕ), (φ, η) is a
random variable independent of W .
Recently, the estimation of the unknown distribution ν(dϕ) of φ whether parametric or nonpara-
metric based on the observation of N i.i.d. processes (Xj(t), t ∈ [0, T ]), j = 1, . . . , N) distributed
as (1.1) has been the subject of several contributions. Parametric estimation is investigated in
Ditlevsen and De Gaetano (2005) for the specific model of mixed effects Brownian motion with
drift and in Donnet and Samson (2008). In Delattre et al. (2012), the maximum likelihood
estimator (MLE) for random effects SDEs is studied more generally for fixed T and N tending
to infinity (see also Maitra and Bhattacharya (2014) for non i.i.d. sample paths). In partic-
ular, for φ ∈ R having a Gaussian distribution with unknown mean µ and unknown variance
ω2, b(x, ϕ) = ϕb(x), σ(x, ϕ) = σ(x) and b(.), σ(.) known functions, an explicit formula for the
exact likelihood is obtained and a complete asymptotic study of the exact MLE of (µ, ω2) is
given. Approximations of the likelihood are also proposed for general mixed SDEs in Picchini
et al. (2010). For φ real-valued and ν(dϕ) = f(ϕ)dϕ, nonparametric estimation of the density
f is investigated in Comte et al. (2013), under the asymptotic framework that both N and
T = T (N) tend to infinity in such a way that T (N)/N tends to infinity. Only two specific
models are studied: b(x, ϕ) = ϕb(x), b(x, ϕ) = ϕ+b(x), σ(x, ϕ) = σ(x). Nonparametric adaptive
estimation of a mixed-effect φ in the drift coefficient of an Ornstein-Uhlenbeck process has been
investigated in Dion (2014). The general case of mixed-effects both in the drift and diffusion
coefficient of multidimensional diffusions is also addressed from a practical view point in Picchini
and Ditlevsen (2011) with implementation of estimators. For an SDE with a linear mixed effect
in the diffusion coefficient, the estimation of population parameters is investigated in Delattre
et al. (2014).
Our focus here is first to study the long term behaviour of a one-dimensional mixed effects SDE,

(1.2) dX(t) = b(X(t), φ)dt + σ(X(t)) dW (t), X(0) = η,

where σ(x, ϕ) = σ(x) is a known real-valued function defined on R, W is a standard Wiener
process and (φ, η) is a random variable independent of W taking values in Φ × R with Φ ⊂ Rd.
We study the properties of model (1.2). The process (X(t)) is not Markov and has infinitely
many invariant distributions when φ is random. We are interested in the estimation of the
random variable φ based on the observation of one trajectory (X(t), t ∈ [0, T ]) as T tends to
infinity. Let us point out that it is not a statistical problem in the usual sense since φ is not a
parameter but a random variable. Nevertheless, several recent papers now deal with the esti-
mation of random variables. One of the most popular examples concerns the estimation of the
stochastic integrated volatility in semimartingales models based on high frequency observations
of the sample path (see Kessler et al. (2012), Chapters 2 and 3). To build estimators of φ, two
methods are investigated, a moment type method and a maximum likelihood approach. Both
lead to estimators which are consistent and asymptotically mixed normal at rate

√
T . These

two methods are applied on classical examples: the Ornstein-Uhlenbeck and the C.I.R. processes
with a bivariate random effect.
Second, we investigate the framework where N i.i.d. processes (Xj(t), t ∈ [0, T ], j = 1, . . . , N)
are observed and each sample path Xj is associated with a random effect φj. We are interested
in estimating unknown parameters in the distribution ν(dϕ) of the φj’s (the population param-
eters). The results of the first part lead to consider a two-stage procedure. First, build for each
j, an estimator of φj from the trajectory (Xj(t), t ≤ T ). Then, use a plug-in technique to derive
estimators of unknown parameters of ν(dϕ) and study their asymptotic properties as both N
and T tend to infinity. Using moment type estimators, we prove that the convergence rate of
estimators differs when deterministic components (fixed effects) are present in the φj ’s. For true
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random effects, the rate of convergence is
√
N whereas for deterministic components, the rate

is
√
NT . This is consistent with Nie’s results (Nie (2007)). The case of the Ornstein-Uhlenbeck

process with two random effects is especially detailed, i.e. the observed processes are given by
dXj(t) = −φ2,j(Xj(t) − φ1,j)dt + dWj(t),Xj(0) = ηj where φj = (φ1,j , φ2,j) ∈ R × (0,+∞).

Estimators of Eφ1 and Eφ−1
2 are studied both when the two components of φj are random or

when only one is random while the other one is deterministic. The C.I.R. process (square root
diffusion) with two random effects is also studied.
Next, we choose a specific model to develop a maximum likelihood type method. We concen-
trate on the Ornstein-Uhlenbeck model with one multiplicative random effect in the drift, i.e.
dXj(t) = −φjXj(t)dt + dWj(t),Xj(0) = ηj where φj ∈ (0,+∞). Assuming that φj follows a
Gamma distribution with unknown parameters (a, λ), we define appropriate estimators of φj and
log φj that we plug in the likelihood function associated with i.i.d. Gamma random variables.
This defines a contrast. We prove that, as both N,T = T (N) tend to infinity, the associated
maximum contrast estimator is asymptotically equivalent to the maximum likelihood estimator
based on the observation of (φj , j = 1, . . . , N) provided that N/T tends to 0.
The paper is organized as follows. Section 2 contains notations, assumptions and results on the
invariant distributions of (1.2) (see Proposition 2.1). Section 3 is concerned with the estimation
of the random effect φ when only one sample path is continuously observed on [0, T ] as T → ∞.
Section 3.1 is devoted to moment type estimators. Classical theorems for ergodic diffusions
with no random effects are interpreted and restated for the case of diffusions with random ef-

fects. We study the asymptotic behaviour of 1
T

∫ T
0 g(X(s))ds for g a given function and obtain

non asymptotic moment bounds (Propositions 3.1, 3.2, 3.3). These results are applied to the
Ornstein-Uhlenbeck process and the square-root process with two random effects (Propositions
3.4, 3.5, 3.6). The maximum likelihood type estimators are presented in Section 3.2 (Proposi-
tion 3.7). We present a general truncation technique to study the moments of these estimators
(Proposition 3.8). The Ornstein-Uhlenbeck example illustrates these results (Corollary 3.1). In
Section 4, we consider that observations are N i.i.d. trajectories on [0, T ]. It is therefore possible
to estimate unknown parameters in the distribution of random effects (the population param-
eters). Moment type estimators are studied (Theorem 4.1). These results are then applied to
the Ornstein-Uhlenbeck process with two random effects (Proposition 4.1). The maximum like-
lihood approach is detailed for the Ornstein-Uhlenbeck process with one multiplicative random
effect with Gamma distribution (Proposition 4.2). Section 5 contains extensions and concluding
remarks. Proofs are gathered in Section 6.

2. Notations, assumptions and preliminary result.

Consider a real valued stochastic process (X(t), t ≥ 0), with dynamics ruled by (1.2). The
Wiener process W and the r.v. (φ, η) are defined on a common probability space (Ω,F ,P)
endowed with a filtration (Ft, t ≥ 0) satisfying the usual conditions. The couple (φ, η) is assumed
F0-measurable and W is a (Ft, t ≥ 0)-Brownian motion. We use the classical notations for
random effects models, i.e. φ for the random variable and ϕ for the fixed value. We denote by
Xϕ,x0 the process solution of the SDE with fixed ϕ and initial condition x0:

(2.1) dXϕ,x0(t) = b(Xϕ,x0(t), ϕ)dt + σ(Xϕ,x0(t)) dW (t), Xϕ,x0(0) = x0

We introduce now assumptions on model (1.2).
[H1] The real valued function (x, ϕ) → b(x, ϕ) (resp. x→ σ(x)) is continuous on R × Rd (resp.
R) and such that the process (φ,X(t)) where X(t) is given by (1.2) is well defined and adapted
to the filtration (Ft) for all initial condition (φ, η).



4 V. GENON-CATALOT AND C. LARÉDO

[H2] (i) There exists an open subset Φ of Rd and an interval (ℓ, r) ⊂ R such that ∀x ∈
(ℓ, r), σ2(x) > 0, and ∀ϕ ∈ Φ, the scale density of (2.1)

sϕ(x) = exp (−2

∫ x

x0

b(u, ϕ)

σ2(u)
du), x0 ∈ (ℓ, r)

satisfies
∫
ℓ sϕ(x)dx =

∫ r
sϕ(x)dx = +∞ and the speed density mϕ(x) = 1/(σ2(x)sϕ(x)) of (2.1)

satisfies M(ϕ) :=
∫ r
ℓ mϕ(x)dx < +∞.

[H2] (ii) The function (x, ϕ) → b(x, ϕ) is C1 on (ℓ, r) × Rd and x→ σ(x) is C2 on (ℓ, r).
[H2] (iii) The random variable φ takes values in Φ. We denote its distribution by ν(dϕ).
[H3] The random couple (φ, η) has distribution πν(dϕ, dx) = ν(dϕ) ⊗ πϕ(x)dx where

(2.2) πϕ(x) = 1(ℓ,r)(x)
mϕ(x)

M(ϕ)
.

Standard regularity assumptions on b(x, ϕ) and σ(x) ensure (H1) (see e.g. Karatzas and Shreve
(2000) for general results and Comte et al. (2013) for the specific context of SDEs with mixed
effects). Under [H1], the process (φ,X(t)) is strong Markov. The Markov property is enlighted
by looking at (1.2) as a system:

dφ(t) = 0, φ(0) = φ,

dX(t) = b(X(t), φ(t))dt + σ(X(t)) dW (t), X(0) = η.

Thus, (φ,X(t)) is a two dimensional diffusion process with initial distribution

(2.3) µν(dϕ, dx) = ν(dϕ) ⊗ µϕ(dx)

where ν is the distribution of φ and µϕ is a distribution on (ℓ, r) corresponding to the conditional
distribution of η given φ = ϕ. Assumption [H2] is classical for existence and uniqueness of
invariant distributions for SDEs with non random parameters (see e.g. Kessler et al. (2012)).
The unique invariant density of model (2.1) is (2.2). Denote by pϕt (x, y) the transition density
of model (2.1). Assumptions [H1]-[H2] imply the measurability of

(2.4) (x, y, ϕ) → pϕt (x, y) and (x, ϕ) → πϕ(x).

For g : (ℓ, r) → R a positive or πϕ-integrable Borel function, ϕ → πϕ(g) :=

∫ r

ℓ
g(x)πϕ(x)dx is

measurable on Φ. Therefore, we can define the random variables

(2.5) πφ(g) =

∫ r

ℓ
g(x)πφ(x)dx and the sets

(2.6) L1(Φ) = {g : (ℓ, r) → R, Borel ∀ϕ ∈ Φ, πϕ(|g|) < +∞},

(2.7) L2(Φ) = {g : (ℓ, r) → R, Borel ∀ϕ ∈ Φ, πϕ(g2) < +∞}.
For f ∈ C2((ℓ, r)), let us introduce the infinitesimal generator of (2.1):

(2.8) Lϕf(x) =
1

2
σ2(x)f ′′(x) + b(x, ϕ)f ′(x) =

1

2mϕ(x)

(
f ′

sϕ

)′
(x).

To g ∈ L2(Φ), we associate a function Fϕ,g such that (x, ϕ) → Fϕ,g(x) ∈ C2((ℓ, r) × Φ), for all
ϕ ∈ Φ, πϕF

2
ϕ,g < +∞, the limit of F ′

ϕ,g/sϕ as x→ ℓ, r is nul, and

(2.9) LϕFϕ,g = −(g − πϕ(g)).
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From (2.8), we have F ′
ϕ,g(x) = −2sϕ(x)

∫ x

ℓ
(g(u) − πϕ(g))mϕ(u)du. If moreover g satisfies

(2.10)

∫ r

ℓ
(F ′

ϕ,g(x)σ(x))2πϕ(x)dx := Vϕ(g) < +∞,

then, for < ., . >ϕ denoting the scalar product of L2(πϕ),

(2.11) −2 < LϕFϕ,g, Fϕ,g >ϕ= Vϕ(g),

(see Genon-Catalot et al. (2000)) for details on the existence of such function Fϕ,g and (2.9)-
(2.11)). In the case of two functions g, h such that Vϕ(g) < +∞, Vϕ(h) < +∞, we set

(2.12) Vϕ(g) = Vϕ(g, g) and Vϕ(g, h) =

∫ r

ℓ
F ′
ϕ,g(x)F

′
ϕ,h(x)σ

2(x)πϕ(x)dx.

Proposition 2.1. Assume [H1] and consider the process (φ,X(t)) given by (1.2) where the
initial variable (φ, η) has distribution µν (see (2.3)) with ν a distribution on Φ and µϕ a distri-
bution on (ℓ, r). Then, given that φ = ϕ, the conditional distribution of (X(t)) is identical to
the distribution of Xϕ given by

(2.13) dXϕ(t) = b(Xϕ(t)), ϕ)dt + σ(Xϕ(t))dW (t), Xϕ(0) ∼ µϕ, X
ϕ(0) independent of W.

Assume [H1]-[H2]. Then, the distribution πν(dϕ, dx) = ν(dϕ) ⊗ πϕ(x)dx on Φ × (ℓ, r) is an
invariant distribution for the Markov process (φ,X(t)).

The proof of Proposition 2.1 is easily obtained by comparing the finite-dimensional distributions
and using that, by the Markov property of (φ, (X(t)), the conditional distribution of (X(t))
given φ = ϕ,X(0) = x0 is identical to the distribution of Xϕ,x0 satisfying (2.1). When (φ, η)
has distribution πν (assumption [H3]), the process (φ,X(t)) is strictly stationary with marginal
distribution πν . The Markov process (φ,X(t)) having infinitely many invariant distributions is
not ergodic. The marginal distribution of X(0) when (φ,X(0)) has distribution πν is a mixture

distribution with density given by pν(x) =

∫

Φ
ν(dϕ)πϕ(x). The conditional distribution of X

given φ = ϕ is the distribution of the stationary and ergodic solution of the SDE with fixed ϕ.

3. Estimation of a random effect in the drift.

We investigate two methods to estimate the random variable φ based on the observation of
one trajectory (X(t), t ∈ [0, T ]) in the asymptotic framework T → +∞. For this, we need to
extend some classical limit theorems for ergodic diffusions with no random effects to the case of
diffusions with random effects.

3.1. Moment method. We consider the estimation of the random variable πφ(g) (see (2.5))
by

(3.1) π̃φ(g) =
1

T

∫ T

0
g(X(s))ds.

For a vector of functions g = (g1, . . . , gk)
′, we define the vector

(3.2) π̃φ(g) = (
1

T

∫ T

0
gi(X(s))ds, i = 1, . . . , k)′.
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Proposition 3.1. Assume [H1] − [H2] and consider the process (φ,X(t)) defined in (1.2) where
the initial variable (φ, η) has distribution µν (see (2.3)). For g ∈ L1(Φ), almost surely, as T
tends to infinity,

(3.3) π̃φ(g) → πφ(g).

For the following two propositions, we consider g, g1, . . . , gk ∈ L2(Φ) and let Fϕ,g, Fϕ,gi
, i =

1, . . . k be defined by (2.9) and satisfy (2.10) for all ϕ ∈ Φ.

Proposition 3.2. Assume [H1] − [H2] and consider the process (φ,X(t)) given by (1.2) where
the initial variable (φ, η) has distribution µν (see (2.3)). Then,√
T (π̃φ(g) − πφ(g)) converges stably in law to the mixed normal law MN (0, Vφ(g)), i.e. the law

of ε (Vφ(g))
1/2 with ε ∼ N (0, 1) independent of Vφ(g).

Assume that the matrix Vϕ(g) := (Vϕ(gi, gj))1≤i,j≤k is invertible for all ϕ ∈ Φ (see (2.12)).
Then, the random vector √

T (π̃φ(g) − πφ(g))

converges stably in law to the mixed normal law MNk(0, Vφ(g)).

From now on, we assume that [H1] − [H2] − [H3] hold i.e. that the process (X(t)) is in
stationary regime. We thus consider (X(t)) be given by (1.2) where the initial variable (φ, η)
has distribution πν with πϕ defined in (2.2) (stationary regime). Note that conditionally on φ,
(X(t)) is also stationary.
Consider the following condition for g ∈ L2(Φ) and Fϕ,g defined by (2.9) and satisfying (2.10)
for all ϕ ∈ Φ. :
• (Kγ): For γ ≥ 1 and for all ϕ ∈ Φ,

(3.4) Kγ(ϕ, g) := πϕ(F 2γ
ϕ,g) + πϕ((F

′

ϕ,gσ)2γ) < +∞.

The previous results (Propositions 3.1-3.2) show that the random variable πφ(g) for a given

function g is consistently estimated by π̃φ(g). As the process is in stationary regime, we have
E(g(X(s))|φ) = πφ(g) for all s, so the estimators are conditionally unbiased:

(3.5) E(π̃φ(g)|φ) = πφ(g).

Define, using (2.10):

(3.6) ρ(g, φ) = 2πφ(F
2
φ,g) + 2

(
2Vφ(g)πφ(F

2
φ,g)
)1/2

.

Proposition 3.3. Assume [H1] − [H2] − [H3]. For g satisfying condition (Kγ),

(3.7) E
(
[
√
T (π̃φ(g) − πφ(g))]

2γ |φ
)
≤ cγKγ(φ, g),

(3.8) E
(
[
√
T (π̃φ(g) − πφ(g))]

2|φ
)

= Vφ(g) + ZT (g, φ),

where cγ is a numerical constant and |ZT (g, φ)| ≤ 1√
T
ρ(g, φ).

For two functions g, h such that Vϕ(g) < +∞, Vϕ(h) < +∞ for all ϕ ∈ Φ, we have

(3.9) E
(
[T (π̃φ(g) − πφ(g))(π̃φ(h) − πφ(h))]|φ

)
= Vφ(g, h) + ZT (g, h, φ),

where |ZT (g, h, φ)| ≤ 1√
T

(ρ(g + h, φ) + ρ(g − h, φ)).



ESTIMATION FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH MIXED EFFECTS. 7

Remark 3.1. Note that the upper bounds for ZT (g, φ), ZT (g, h, φ) can be improved on examples
(see below) where these quantities are found of order 1/T by exact computation.

We illustrate the method on examples.

3.1.1. Ornstein-Uhlenbeck process. Consider the Ornstein-Uhlenbeck process with two random
effects:

(3.10) dX(t) = −φ2(X(t) − φ1)dt + dW (t), X(0) = η.

Let φ = (φ1, φ2) ∈ Φ = R × (0,+∞). The invariant distribution of the model with fixed ϕ
is πϕ(dx) = N (ϕ1, 1/(2ϕ2))(dx). Assume that (φ, η) has distribution ν(dϕ) ⊗ πϕ(dx) with ν a

distribution on Φ. Define the estimators of φ1, τ = φ−1
2 , φ2 by

φ̃1 =
1

T

∫ T

0
X(s)ds, τ̃ = 2(

1

T

∫ T

0
X2(s)ds− (φ̃1)

2), φ̃2 =
1

τ̃
.

Note that τ is a natural parameter here as it is proportional to the variance of πφ.

Proposition 3.4. As T tends to infinity, (φ̃1, φ̃2) converges a.s. to (φ1, φ2) and√
T (φ̃1 − φ1, φ̃2 − φ2)

′ is asymptotically MN2(0, J(φ)) where

J(φ) =

(
φ−2

2 0
0 2φ2

)
.

It is interesting to look at the case when one component of φ is deterministic. If φ2 is
deterministic, so is J(φ) and the asymptotic distribution is Gaussian. On the contrary, if

φ1 = m is deterministic,
√
T (φ̃1 −m) is still asymptotically mixed normal MN (0, φ−2

2 ).
For the conditional moments, the following holds (. means ≤ up to a constant):

Proposition 3.5. Let γ ≥ 1, then, with τ = φ−1
2 :

(3.11) E((φ̃1 − φ1)
2|φ) =

τ2

T
+ ZT , |ZT | ≤

τ3

T 2
.

(3.12) E(φ̃1 − φ1)
2γ |φ) . T−γ(τ3γ + τ2γ),

(3.13) E(τ̃ − τ |φ) = −2τ2

T
+

2τ3(1 − e−T/τ )

T 2
, E((τ̃ − τ)2|φ) =

2τ3

T
+ ζT ,

(3.14) E((τ̃ − τ)2γ |φ) . T−γ(τ2γ + τ3γ + τ4γ + τ6γ + φ2γ
1 τ3γ + φ2γ

1 τ2γ),

where |ζT | ≤ 1
T
√
T
C(φ) and C(φ) depends on powers of φ1, τ .

Note that τ̃ is not conditionally unbiased. If E(τ3γ + τ2γ) < +∞, we have E(φ̃1 − φ1)
2γ) ≤

CT−γ . Thus, the constraint only depends on the distribution of φ2. If the r.h.s. of (3.14) has a
finite expectation, E(τ̃ − τ)2γ ≤ CT−γ .
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3.1.2. The C.I.R. process. Consider the C.I.R. process with two random effects:

dX(t) = −φ2(X(t) − φ1)dt +
√
X(t)dW (t), X(0) = η

Let φ = (φ1, φ2) ∈ Φ = {2ϕ1ϕ2 ≥ 1, ϕ2 > 0}, where we standardly apply [H2] to obtain
Φ. Assume that (φ, η) has distribution ν(dϕ) ⊗ πϕ(dx) for ν a distribution on Φ and πϕ =
G(2ϕ1ϕ2, 2ϕ2) the Gamma distribution with tail parameter 2ϕ1ϕ2 and scale parameter 2ϕ2 .
Consider the estimators of φ1, β = φ1/(2φ2), φ2 given by

φ̃1 =
1

T

∫ T

0
X(s)ds, β̃ =

1

T

∫ T

0
X2(s)ds− (φ̃1)

2, φ̃2 =
φ̃1

2β̃
.

Proposition 3.6. As T tends to infinity, (φ̃1, φ̃2) converges a.s. to (φ1, φ2) and√
T (φ̃1 − φ1, φ̃2 − φ2)

′ is asymptotically MN2(0, Jcir(φ)) where

Jcir(φ) =

(
φ1φ

−2
2 −φ−1

2

−φ−1
2 4φ2 + 2φ−1

1

)
.

For the conditional moments, the following holds, for γ ≥ 1, :

(3.15) E((φ̃1 − φ1))
2|φ) =

φ1

Tφ2
2

+ ZT , |ZT | ≤
φ1

T 2φ3
2

,

(3.16) E(φ̃1 − φ1)
2γ |φ) . T−γφ−2γ

2 (φγ1 + φ2γ
1 ).

Even if either φ1 or φ2 is deterministic, Jcir(φ) is still stochastic. Note that, as 2φ1φ2 ≥ 1,

φ1φ
−3
2 ≤ 2φ2

1φ
−2
2 . Thus, (3.15) and (3.16) are not contradictory. The conditional moments of β̃

could also be obtained with additional computations.

3.2. Maximum likelihood method. We can also use a maximum likelihood approach.

3.2.1. General drift. Assumption [H2] implies that P(∀s ≥ 0, σ(X(s)) > 0|φ = ϕ) = 1 for all
ϕ ∈ Φ. Therefore, P(∀s ≥ 0, σ(X(s)) > 0) = 1 and the function

LT (ψ) = exp

(∫ T

0

b(X(s), ψ)

σ2(X(s))
dX(s) − (1/2)

∫ T

0

b2(X(s), ψ)

σ2(X(s))
ds

)

is well-defined for all ψ ∈ Φ. Thus, we can introduce:

(3.17) φ̂T = φ̂T (X(s), s ≤ T ) = ArgsupψLT (ψ).

The functional ϕ̂T = φ̂T (Xϕ,x0(s), s ≤ T ) is the exact maximum likelihood of the true value ϕ
based on the observation (Xϕ,x0(s), s ≤ T ). Consider the additional assumptions:
[H4] The function (x, ϕ) → b(x, ϕ) is twice continuously differentiable on (ℓ, r) × Rd.
[H5] The following matrix I(ϕ) = (Ijk(ϕ)) is invertible for ϕ ∈ Φ:

Ijk(ϕ) =

∫

(ℓ,r)

(∂b/∂ϕj)(x, ϕ)(∂b/∂ϕk)(x, ϕ)

σ2(x)
πϕ(x)dx.

Proposition 3.7. Assume [H1]-[H5], that the maximum likelihood estimator ϕ̂T based on

the observation (Xϕ,x0(s), s ≤ T ) with fixed ϕ is consistent and that
√
T (ϕ̂T − ϕ) converges

in distribution to N (0, I−1(ϕ)) for all ϕ ∈ Φ. Then, φ̂T converges in probability to φ and√
T (φ̂T − φ) converges in distribution to the mixed normal law MN (0, I−1(φ)).
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The consistency and the asymptotic normality of the estimator ϕ̂T is detailed in e.g. in Kutoy-
ants (2004). The proof of Proposition 3.7 is obtained by conditioning and omitted.
To illustrate Proposition 3.7, consider a multidimensional linear random effect in the drift,

b(., ϕ) =
∑d

i=1 ϕ
jbj(.) with ϕ = (ϕj , j = 1, . . . , d) ∈ Rd and where the bj ’s are C1(R) functions.

Define the vector

UT =

(∫ T

0

b1(X(s))

σ2(X(s))
dX(s) . . .

∫ T

0

bd(X(s))

σ2(X(s))
dX(s)

)′

and the matrix IT = (Ik,ℓT )1≤k,ℓ≤d) with Ik,lT =

∫ T

0

bk(X(s))bℓ(X(s))

σ2(X(s))
ds.

The estimator φ̂T of φ is defined by the equation: IT φ̂T = UT .
Assume that, for k = 1, . . . , d, σ−1bk belongs to L2(φ) (see (2.7)) and set I(φ) =

(
πφ(bk bℓ/σ

2)
)
.

Then, P(IT/T → I(φ)) = 1. Denote by Φ0 the subset of Φ such that I(ϕ) invertible for all

ϕ ∈ Φ0. On Φ0,
√
T (φ̂T − φ) converges in distribution to MN (0,I(φ)−1).

In particular, for the Ornstein-Uhlenbeck example ( section 3.1.1), set ψ1 = φ1φ2, ψ2 = φ2,
b1(x) = 1, b2(x) = −x, φ = F (ψ) = ((ψ1/ψ2) ψ2)

′. The computation of I(ψ) and J(φ) =
DF (ψ)I−1(ψ)(DF (ψ))′ with ψ = F−1(φ) yields

J(φ) =

(
φ−2

2 0
0 2φ2

)
.

Thus,
√
T (φ̂T −φ) is asymptotically MN (0, J(φ)) with the same matrix J(φ) as in Proposition

3.4.

3.2.2. Truncation technique. For Section 4, we need non asymptotic bounds for the moments of
estimators of φ. The exact moments of φ̂T are untractable. So we present a truncation technique
which allows to study these moments. We detail it on the example of one linear random effect
in the drift. Let b(., ϕ) = ϕb(.) with ϕ ∈ Φ ⊂ R with b ∈ C1(R). The estimator of φ is:

(3.18) φ̂T =

∫ T
0

b(X(s))
σ2(X(s)))

dX(s)
∫ T
0

b2(X(s))
σ2(X(s))

ds
.

To obtain simple bounds, we introduce a truncated version of φ̂T (see (3.18)) and define, for k
a constant:

(3.19) φ̂
(k)
T = φ̂T 1

(
VT
T

≥ k√
T

)
where VT =

∫ T

0
h(X(s))ds, h(x) =

b2(x)

σ2(x)
.

Note that the event (VT

T < k√
T

) has small probability (see below) and we can prove that the two

estimators φ̂T , φ̂
(k)
T are asymptotically equivalent in the sense that

√
T (φ̂T − φ̂

(k)
T ) = oP (1).

Proposition 3.8. Assume [H1] − [H3]. Assume that, for γ ≥ 1, for all ϕ ∈ Φ, πϕh
2γ < +∞.

Assume that Fϕ,h defined in (2.9) satisfies Condition (K2γ). Then,

E(φ̂
(k)
T − φ)2γ |φ) ≤ T−γC(γ, φ),

where

C(γ, φ) .
1

[πφ(h)]2γ

(
πφ(h

γ) + (πφ(h
2γ)K2γ(φ, h))

1/2 + φ2γ(1 +Kγ(φ, h))
)
.
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Moreover, for all p ≥ 1,

(3.20) P(
VT
T

<
k√
T
|φ) . T−p (πφh)

−2p (Kp(φ, h) + 1) .

We can illustrate the above conditions for the Ornstein-Uhlenbeck process.

Corollary 3.1. Consider the Ornstein-Uhlenbeck process with one random effect dX(t) =
−φX(t)dt + dW (t), X(0) = η, with φ ∈ (0,+∞) and (φ, η) ∼ dν(ϕ) ⊗ N (0, (2ϕ)−1) where
ν is a distribution on (0,+∞). Then, for all γ ≥ 1,

E((φ̂
(k)
T − φ)2γ |φ) . T−γ(1 + φγ + φ4γ + φ−2γ + φ−3γ).

with φ̂
(k)
T defined by (3.18)-(3.19) with b(x) = −x, σ(x) = 1, h(x) = x2.

The interest of Proposition 3.8 and its corollary above is that we obtain an explicit and non

asymptotic bound for conditional moments of φ̂
(k)
T −φ. By taking expectation of both sides, this

provides a clear link between the unconditional moments of φ̂
(k)
T − φ and moments of positive

and negative order of the random effect φ.
In the spirit of Proposition 3.5, we can also consider the moment type estimator of φ−1. In
the above model (one multiplicative random effect), for h(x) = x2, we have πφ(h) = (2φ)−1,
Fϕ,h(x) = (2ϕ)−1(x2 − (2ϕ)−1)), and we easily obtain:

Kγ(φ, h) . φ−3γ + φ−4γ .

The random variable φ−1 admits the conditionally unbiased estimator (2/T )
∫ T
0 X2(s)ds and:

(3.21) E(
2

T

∫ T

0
X2(s)ds− φ−1)2γ |φ) . T−γ(φ−3γ + φ−4γ), γ ≥ 1.

For VT =
∫ T
0 X2(s)ds and p ≥ 1,

(3.22) P(
VT
T

<
k√
T
|φ) . T−p (φ2p + φ−2p + φ−p

)
.

4. Estimation of the distribution of the random effect from N i.i.d.
trajectories.

The previous sections show that the random effect φ can be estimated from one trajectory
only as T tends to infinity. To estimate parameters in the distribution of φ requires additional
information. In this section, we consider N i.i.d. sample paths (Xj(t)), j = 1, . . . , N satisfying

(4.1) dXj(t) = b(Xj(t), φj)dt + σ(Xj(t)) dWj(t), Xj(0) = ηj , j = 1, . . . , N,

where (W1, . . . ,WN ) are N independent Wiener processes, (φ1, η1) . . . , (φN , ηN )) are N i.i.d.
random variables taking values in Rd × R, ((φ1, η1) . . . , (φN , ηN )) and (W1, . . . ,WN ) are inde-
pendent. We assume that (Xj(t), t ≤ T ), j = 1, . . . , N are observed. We denote by φj =
(φk,j, k = 1, . . . , d) the components of φj .
We assume that [H1] − [H3] hold,i.e. (φj , ηj) has distribution ν(dϕ) ⊗ πϕ(x)dx for some un-
known distribution ν. To build estimators of the moments of ν, we rely on the double asymptotic
framework N → +∞ and T → +∞.
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4.1. Moment method. We first use the moment estimators described in Section 3. Let g ∈
L1(Φ) (see (2.6)) be such that E|πφ(g)| < +∞, and set

(4.2) mg = E(πφ(g)) =

∫

(ℓ,r)×Φ
πϕ(x)g(x)dν(ϕ)dx, m̃g =

1

N

N∑

j=1

1

T

∫ T

0
g(Xj(s))ds.

In general, πφj
(g) is a random variable. However, if φj contains deterministic components (fixed

effects), then, πφj
g can be deterministic (πφj

g = E(πφ(g)) = mg). The behaviour of m̃g differs
according to these two cases.

Theorem 4.1. Assume that E(Vφ(g)) + ρ(g, φ)) < +∞ (see (2.10) and (3.6)).

• If πφj
(g) is random and E(π2

φ(g)) < +∞, then
√
N(m̃g − mg) converges in distribution to

N (0,Var(πφ(g))), where Var(πφ(g)) = E(π2
φ(g)) −m2

g.

• Let πφj
(g) = mg = E(πφ(g) be deterministic. Assume that condition K(1+ε) holds with ε > 0

and that
EK1+ε(φ, g) < +∞.

Then
√
NT (m̃g −mg) converges in distribution to N (0,E(Vφ(g))).

Let us come back to the Ornstein-Uhlenbeck example. Assume that Xj satisfies dXj(t) =
−φ2,j(Xj(t)−φ1,j)dt+ dWj(t),Xj(0) = ηj where φj = (φ1,j , φ2,j) ∈ R× (0,+∞) and that given
φj = ϕ = (ϕ1, ϕ2), ηj has distribution N (ϕ1, (2ϕ2)

−1). For the Proposition below, we assume

that Eφ2
1,j < +∞,Eφ−3

2,j < +∞ and define m = Eφ1,j, v = E((φ2,j)
−1) and

m̃ =
1

N

N∑

j=1

1

T

∫ T

0
Xj(s)ds, ṽ =

1

N

N∑

i=1

τ̃j with

τ̃j = 2(
1

T

∫ T

0
X2
j (s)ds− (

1

T

∫ T

0
Xj(s)ds)

2).

Proposition 4.1. • If φ1,j is random,
√
N(m̃−m) converges in distribution as both T,N tend

to infinity, to N (0,Var(φ1,j)).

• If φ1,j = m is deterministic,
√
NT (m̃−m) converges in distribution to N (0,E( 1

φ2
2,j

)).

• If φ2,j is random and
√
N/T tends to 0 as both N,T = T (N) tend to infinity, then

√
N(ṽ− v)

converges in distribution to N (0,Var(τj)) where τj = (φ2,j)
−1.

• If φ2,j = v−1 is deterministic and N/T tends to 0 as both N,T = T (N) tend to infinity, then√
NT (ṽ − v) converges in distribution to N (0, 2v3 + 12v2).

The additional constraint linking N and T = T (N) comes from the fact that τ̃j is a condi-
tionally biased estimator of τj = (φ2,j)

−1.

4.2. Maximum likelihood approach. Suppose that a parametric model rules the φj’s, i.e.
ν(dϕ) = f(θ, ϕ)dα(ϕ) where α is a dominating measure on Φ and θ ∈ Θ is unknown. Consider

the log-likelihood associated with (φj , j = 1, . . . , N), ℓN (θ) =
∑N

j=1 log f(θ, φj). As the random

variables φj ’s are not directly observed, a natural strategy consists in plugging in ℓN (θ) estima-
tors of the φj’s based on the results of Section 3. An analogous method is applied in Delattre et
al. (2014) for a different mixed effect model and different observations. Such an approach has to
rely on a precise model for the diffusion process and the parametric model for ν. We choose to
develop the method for the Ornstein-Uhlenbeck process with one multiplicative random effect

dXj(t) = −φjXj(t)dt + dWj(t), Xj(0) = ηj , j = 1, . . . , N.
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where φj belongs to Φ = (0,∞) (see Corollary 3.1). For the parametric model on ν, we assume
that ν is a Gamma distribution with parameter θ = (a, λ), i.e.

f(θ, ϕ) =
λa

Γ(a)
ϕa−1e−λ ϕ1ϕ>0.

Consider the loglikelihood associated with the observation of (φj , j = 1, . . . , N)

ℓN (θ) = Na log λ−N log Γ(a) + (a− 1)

N∑

j=1

log φj − λ

N∑

j=1

φj

and define θN = ArgmaxθℓN (θ) the maximum likelihood estimator based on the direct obser-
vation of (φi, i = 1, . . . , N). The asymptotic behaviour of θN is well known. As N tends to

infinity, θN is consistent and
√
N(θN − θ) converges in distribution to the Gaussian distribution

N2(0, I
−1(θ)) where

I(θ) =

(
ψ′(a) −λ−1

−λ−1 aλ−2

)

and

ψ(a) =
Γ′(a)

Γ(a)
= −γ +

∫ 1

0

1 − ta−1

1 − t
dt

is the di-Gamma function where γ = −Γ′(1) is the Euler constant. Using that

ψ′(a) = −
∫ 1

0
ta−1(log t/(1 − t))dt, yields aψ′(a) − 1 6= 0 so that I(θ) is invertible.

For the plug-in, we must define estimators of both φj and log φj with appropriate moments
properties. In this model, we can use two different estimators. The moment type estimators
given by (

2

T

∫ T

0
X2
j (s)ds

)−1

or the estimator based on a maximum likelihood approach

φ̂j = −
∫ T
0 Xj(s)dXj(s)∫ T

0 X2
j (s)ds

.

For both estimators, getting explicit bounds for their moments is not straightforward. Introduc-
ing some appropriate truncations is a good tool to obtain these bounds. In Section 3.2, we have
applied the truncation method to φ̂j ( see Corollary 3.1) . So we use it for the plug-in device.
Let us set:

φ̂
(k)
i = φ̂i1

(
Vi,T

T
> k√

T
)

with Vi,T =

∫ T

0
X2
i (s)ds.

This estimator may be negative and nul. Therefore we define a specific estimator for Li = log φi
and set, for k a constant:

L̂
(k)
i = (log φ̂i) 1

(φ̂i≥ k√
T
,
Vi,T

T
> k√

T
)
= (log (φ̂

(k)
i )) 1

(φ̂i≥ k√
T
,
Vi,T

T
> k√

T
)
.

Now, set

VN (θ) = Na log λ−N log Γ(a) − λ
N∑

i=1

φ̂
(k)
i + (a− 1)

N∑

i=1

L̂
(k)
i

and define the estimator of θ as any solution of:

θ̃N = ArgmaxθVN (θ).
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Proposition 4.2. Assume that a > 8 and that both N,T tend to infinity. Then, θ̃N is consistent.
If moreover, N/T tends to 0, then

√
N(θ̃N − θN ) = oP (1) where θN is the maximum likelihood

estimator based on the observation of (φ1, . . . , φN ).

5. Concluding remarks

In this paper, we investigate estimation problems linked with the observation of processes
defined by an SDE with mixed effects from a continuous observation on a time interval [0, T ].
Generally, authors are interested in estimating both the fixed effects and unknown parameters
in the distribution of the random effects when N i.i.d. processes (Xj(t), t ≤ T ), j = 1, . . . , N)
are observed and N tends to infinity. Two cases are investigated: Either T is fixed or T tends
to infinity (see references in the introduction). In the latter case, constraints linking N and
T = T (N) are required.

In the case T tends to infinity, the interest of our contribution is to consider separately the
inference based on one sample path and the inference based on N i.i.d. sample paths. This
leads to study the long term behaviour of a one-dimensional SDE with mixed effects. We provide
sufficient conditions for the existence of invariant distributions for a process (X(t)) defined by
an SDE with a random effect φ (see (1.2)). There is no uniqueness of the invariant distributions.
We interpret and restate classical results for ergodic diffusions in the case of diffusions with
random effects in the drift term. Then, we apply these results to derive estimators of the
random variable φ itself based on functionals of the continuous sample path (X(t), t ≤ T ). This
is not a statistical problem in the usual sense as φ is a random variable. Nevertheless, the
estimation of random variables has recently received a lot of attention in the field of statistics
of random processes. Here, two kinds of estimators of φ are studied and proved to be consistent
and asymptotically mixed normal as T goes to infinity with rate

√
T . An important point is

that we also obtain precise non asymptotic conditional moment bounds for the estimators. The
results are applied to various classical examples. We stress that assumption [H3] (stationary
regime) is only required for the conditional moments bounds.
To estimate the common distribution of the φj ’s when N i.i.d. processes (Xj(t), t ≤ T ), j =
1, . . . , N) are observed, we proceed as follows. From each sample path (Xj(t), t ≤ T ) we build an

estimator of φj , say φ̃j and replace φj by φ̃j to obtain estimators of parameters in the distribution
of φj . The method relies on a double asymptotic framework where both N and T go to infinity.
We obtain different asymptotic behaviour of estimators: for fixed effects parameters, the rate
is

√
NT and for parameters in the distribution of the random effects, the rate is

√
N . In some

cases, to control bias, a constraint linking N and T = T (N) is needed.
The distribution of the random effects is often assumed to be normal or log-normal. Our
approach can be applied as well to general diffusion models and to general distributions for the
random effects up to some moments constraints. In this respect, our conditional moment bounds
are particularly useful.
In practice, only discrete time observations are usually available. As it is usual, for small
sampling interval, we can extend our results to estimators obtained by changing the integrals
over [0, T ] into their one-step discretizations.

6. Appendix: proofs

Proof of Proposition 3.1
The process Xϕ defined in (2.13) satisfies the ergodic theorem for all ϕ ∈ Φ:

P(
1

T

∫ T

0
g(Xϕ(s))ds →T→+∞ πϕ(g)) = 1.



14 V. GENON-CATALOT AND C. LARÉDO

By Proposition 2.1,

P(
1

T

∫ T

0
g(X(s))ds → πφ(g)|φ = ϕ) = P(

1

T

∫ T

0
g(Xϕ(s))ds → πϕ(g)).

Thus, P(T−1
∫ T
0 g(X(s))ds → πφ(g)) = 1.

Proof of Proposition 3.2
We consider for fixed ϕ the process Xϕ given by (2.13) and Fϕ,g given by (2.9). By the Ito
formula, we have:

Fϕ,g(X
ϕ(T )) = Fϕ,g(X

ϕ(0)) +

∫ T

0
LϕFϕ,g(Xϕ(s))ds +

∫ T

0
F ′
ϕ,g(X

ϕ(s))σ(Xϕ(s))dW (s).

Therefore,

(6.1) − 1√
T

∫ T

0
LϕFϕ,g(Xϕ(s))ds =

1√
T

∫ T

0
F ′
ϕ,g(X

ϕ(s))σ(Xϕ(s))dW (s) +RϕT ,

with

(6.2) RϕT = T−1/2(Fϕ,g(X
ϕ(0)) − Fϕ,g(X

ϕ(T )).

The ergodic properties of Xϕ imply that Xϕ(T ) converges in distribution to the stationary
distribution πϕ(x)dx as T tends to infinity. Hence, RϕT tends to 0 in probability. We can
conclude that,

− 1√
T

∫ T

0
LϕFϕ,g(Xϕ,g(s))ds → N (0, Vϕ(g)).

Setting gϕ = g − πϕg, we have

(6.3)
1√
T

∫ T

0
gφ(X(s))ds =

√
T (π̃φ(g) − πφ(g))

By conditioning, we obtain, for u ∈ R, v ∈ Rd,

E(exp (iu
1√
T

∫ T

0
gφ(X(s))ds + iv.φ)) → E(exp (−u

2

2
Vφ(g) + iv.φ)),

which gives the convergence in distribution result.

The multidimensional result is obtained by applying the above result to
∑k

i=1 ujgj = u′g with
the Cramer-Wold device. �

Proof of Proposition 3.3
We use the same notation Xϕ for the stationary and ergodic process with fixed ϕ ∈ Φ:

(6.4) dXϕ(t) = b(Xϕ(t)), ϕ)dt + σ(Xϕ(t))dW (t), Xϕ(0) ∼ πϕ

withXϕ(0) independent ofW . The processXϕ has marginal distribution πϕ. Recall the notation
gϕ = g − πϕg. Using (6.1)-(6.2) and the Hölder and the Burkholder-Davis-Gundy inequalities
yields:

E

(∫ T

0
gϕ(Xϕ(s))ds

)2γ

≤ cγ

(
T γπϕ((F

′

ϕ,gσ(.))2γ + πϕ((Fϕ,g)
2γ)
)
.

Now,

E(

(∫ T

0
gφ(X(s))ds

)2γ

|φ = ϕ) = E

(∫ T

0
gϕ(Xϕ(s))ds

)2γ

.
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Hence, the result for all γ ≥ 1 using (6.3) provided that T ≥ 1.
For γ = 1,

E

(
1√
T

∫ T

0
gϕ(Xϕ(s))ds

)2

= πϕ((F
′

ϕ,gσ(.))2 + ZT (ϕ) = Vϕ(g) + ZT (ϕ)

with (see (6.2))

ZT (ϕ) = E(RϕT )2 + 2E

(
RϕT

1√
T

∫ T

0
F ′
ϕ,g(X

ϕ(s))σ(Xϕ(s))dW (s)

)
.

We have:

E(RϕT )2 ≤ 2

T
E(Fϕ,g(X

ϕ(0)))2 =
2

T
πϕ[(Fϕ,g)

2].

And

|E(RϕT
1√
T

∫ T

0
F ′
ϕ,g(X

ϕ(s))σ(Xϕ(s))dW (s))| ≤
(

E(RϕT )2E(
1

T

∫ T

0
(F ′

ϕ,g(X
ϕ(s))σ(Xϕ(s)))2ds)

)1/2

≤
(

2

T
πϕ[(Fϕ,g)

2] Vϕ(g)

)1/2

For considering the two functions g, h, we just write gh = ((g+ h)2 − (g− h)2)/4 and apply the
previous result. �

Proof of Proposition 3.4
Consider g(x) = x, h(x) = x2. Then, πφ(g) = φ1, πφ(h) := Ψ = φ2

1 + 1/(2φ2),

π̃φ(g) = φ̃1 =
1

T

∫ T

0
X(s)ds, π̃φ(h) = Ψ̃ =

1

T

∫ T

0
X2(s)ds

and (φ̃1, Ψ̃) converges a.s. to (φ1,Ψ). For (2.8)- (2.10), we check that

(6.5) Fϕ,g(x) = (x− ϕ1)/ϕ2, Fϕ,h(x) =
(x− ϕ1)

2

2ϕ2
+ 2

ϕ1

ϕ2
(x− ϕ1),

(6.6) Vϕ(g, g) =
1

ϕ2
2

, Vϕ(h, h) =
1

2ϕ3
2

+ 4

(
ϕ1

ϕ2

)2

, Vϕ(g, h) = 2
ϕ1

ϕ2
2

.

The matrix V (ϕ) = Vϕ((g h)′) satisfies detV (ϕ) = 1/(2ϕ5
2) > 0. Consequently,

√
T (φ̃1 − φ1, Ψ̃ − Ψ)′ →D MN2(0, V (φ)).

Using that φ̃2 = (2(Ψ̃ − (φ̃1)
2))−1 and the δ-method, we deduce after some computations that√

T (φ̃1 − φ1, φ̃2 − φ2)
′ →D MN2(0, J(φ)).�

Proof of Proposition 3.5

In this model, the conditional distribution of φ̃1 is explicit and conditionally Gaussian with mean
φ1. To compute the conditional variance, we use the solution of the SDE:

X(t) = φ1 + e−φ2t(η − φ1) + e−φ2t

∫ t

0
eφ2sdW (s).

As (X(t)) is stationary, E(X(t)X(t + h)|φ) = E(X(0)X(h)|φ) = φ2
1 + e−φ2h(2φ2)

−1. Therefore,

E((φ̃1)
2)|φ) = 2T−2

∫

0<s<s′<T
φ2

1 +
e−φ2(s′−s)

2φ2
dsds′ = φ2

1 + ΣT (φ2),
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where

(6.7) ΣT (φ2) =
1

Tφ2
2

− 1 − e−φ2T

T 2φ3
2

.

Conditionally on φ, φ̃1 has distribution N (φ1,ΣT (φ2)). In particular,

(6.8) E((φ̃1 − φ1))
2γ |φ) = C(2γ)Σγ

T (φ2) and

(6.9) E(
√
T ((φ̃1 − φ1))

2|φ) =
1

φ2
2

+ ZT , |ZT | ≤
1

Tφ3
2

.

Note that ρ(g, φ) = φ−3
2 + 2φ

−5/2
2 . Thus, the bound for ZT = ZT (g, φ) given in Proposition 3.3

is really improved by exact computations. We can alsoo check condition (Kγ) for g:

(6.10) Kγ(ϕ, g) = πϕ(F 2γ
ϕ,g) + (πϕ((F

′

ϕ,gσ)2γ) =
C(2γ)

2γϕ3γ
2

+
1

ϕ2γ
2

,

where C(2γ) = EX2γ for X a standard Gaussian variable. Therefore, by (3.7),

(6.11) E(φ̃1 − φ1)
2γ |φ) . T−γ(φ−3γ

2 + φ−2γ
2 ).

Comparing with the exact result (6.8), we see that this bound is accurate.

Next, we study the estimation of τ = φ−1
2 by τ̃ = φ̃2

−1
= 2(Ψ̃ − (φ̃1)

2). Note that, using the

Cauchy-Schwarz inequality and that t → X(t) is not constant, (φ̃1)
2 < Ψ̃, so that τ̃ > 0. We

have

(6.12) E(τ̃ |φ) = τ − 2ΣT (φ2).

We now use the decomposition

(6.13) τ̃ − τ = 2[(Ψ̃ − Ψ) − (φ̃1 − φ1)
2 − 2φ1(φ̃1 − φ1)].

By (3.7)-(3.8) with g replaced by h(x) = x2 (see also (6.6)), we obtain

(6.14) E
(
(Ψ̃ − Ψ)2γ |φ

)
. T−γ(φ−4γ

2 + φ−3γ
2 + φ2γ

1 φ−3γ
2 + φ2γ

1 φ−2γ
2 ),

(6.15) E(
√
T (Ψ̃ − Ψ))2|φ) =

1

2φ3
2

+ 4(
φ1

φ2
)2 + ZT (h, φ).

where |ZT (h, φ)| ≤ (1/
√
T )ρ(h, φ) and ρ(h, φ) is given by (3.6). Using (6.5)-(6.6), we obtain

πφF
2
φ,h =

3

16φ4
2

+ 2
φ2

1

φ3
2

and ρ(h, φ) . (
1

φ4
2

+
1

φ
7/2
2

+
φ2

1

φ3
2

+
|φ1|
φ3

2

+
φ2

1

φ
5/2
2

).

By (6.13), we have

(6.16) (τ̃ − τ)2γ . (Ψ̃ − Ψ)2γ + φ2γ
1 (φ̃1 − φ1)

2γ + (φ̃1 − φ1)
4γ).

Therefore, combining (6.11)-(6.14) yields:

(6.17) E((τ̃ − τ)2γ |φ) . T−γ(φ−2γ
2 + φ−4γ

2 + φ−3γ
2 + φ2γ

1 φ−3γ
2 + φ2γ

1 φ−2γ
2 + φ−6γ

2 ).

Moreover,

E((τ̃ − τ)2|φ) = 4

6∑

i=1

Ai where
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A1 = E((Ψ̃ − Ψ)2|φ) is given in (6.15), A2 = 4E((φ2
1(φ̃1 − φ1)

2|φ) = 4φ2
1ΣT (φ2),

A3 = E((φ̃1 − φ1)
4|φ) = 3(ΣT (φ2))

2, A4 = 4E(φ1(φ̃1 − φ1)
3|φ) = 0.

Using (3.9) and Vφ(h, g) = 2φ1/φ
2
2 yields

A5 = −4E(φ1(Ψ̃ − Ψ)(φ̃1 − φ1)|φ) = −4φ1

T
(
2φ1

φ2
2

) + ZT (h, g, φ)).

Finally, by the Cauchy-Schwarz inequality,

|A6| = | − 2E((Ψ̃ − Ψ)((φ̃1 − φ1)
2|φ)| ≤

(
E((Ψ̃ − Ψ)2|φ)E((φ̃1 − φ1)

4|φ)
)1/2

.

We obtain

(6.18) E(
√
T (τ̃ − τ)2|φ) =

2

φ3
2

+ ζT with |ζT | ≤
1√
T
C(φ).

The exact expression of C(φ) can be derived by some cumbersome computations. If, for γ = 1,
the r.h.s. of (6.17) has finite expectation, then E(C(φ)) < +∞. This yields Proposition 3.5
substituting φ−1

2 by τ . �

Proof of Proposition 3.6
We again set g(x) = x and h(x) = x2. Then,

πφ(g) = φ1, πφ(h) = φ2
1 + β with β =

φ1

2φ2
.

Some computations lead to

Fϕ,g(x) =
x− ϕ1

ϕ2
, Fϕ,h(x) =

(x− ϕ1)
2

2ϕ2
+ (x− ϕ1)(

1

2φ2
2

+ 2
φ1

φ2
).

We need the moments and the centered moments of a Gamma G(a, λ) distribution (recall that
a = 2ϕ1ϕ2, λ = 2ϕ2): for k integer and a ≥ 1

∫
xkdG(a, λ)(x) =

(a+ k − 1) . . . (a+ 1)a

λk
≤ λ−kk!ak,

∫
(x− a

λ
)kdG(a, λ)(x) = λ−k

k∑

j=0

(
k

j

)
(−a)k−j(a+ j − 1) . . . (a+ 1)a.

For a ≥ 1,

|
∫

(x− a

λ
)kdG(a, λ)(x)| ≤ akλ−k

k∑

j=0

k!

(k − j)!
.

This leads to:

Vϕ(g, g) =
ϕ1

ϕ2
2

, Vϕ(g, h) =
ϕ1

ϕ3
2

+ 2
ϕ2

1

ϕ2
2

, Vϕ(h, h) =
5ϕ1

4ϕ4
2

+
9ϕ2

1

2ϕ3
2

+
4ϕ3

1

ϕ2
2

.

The matrix V := Vϕ((g h)′) satisfies detV = ϕ2
1/(4ϕ

6
2)+ϕ

3
1/(2ϕ

5
2) > 0. We apply Propositions 3.1

and 3.2 together with the δ-method to compute Jcir(φ) and obtain the first part of Proposition
3.6.
Now, we look at conditional moments. Using

X(t) = φ1 + e−φ2t(η − φ1) + e−φ2t

∫ t

0
eφ2s

√
X(s)dW (s),
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we find E(X(t)X(t + h)|φ) = E(X(0)X(h)|φ) = φ2
1 + φ1

2φ2
e−φ2h. Therefore,

E((φ̃1)
2)|φ) = φ2

1 + φ1ΣT (φ2),

with ΣT (φ2) given in (6.7).

Finally, we get, for γ integer, Kγ(ϕ, g) . ϕ−2γ
2 (ϕ2γ

1 + ϕγ1). �

Proof of Proposition 3.8

We have:
√
T (φ̂

(k)
T − φ) = A1 +A2, with

(6.19) A1 = −
√
Tφ 1

(
VT
T
< k√

T
)
, A2 =

MT /
√
T

VT /T
1
(

VT
T

≥ k√
T

)
,

where MT =
∫ T
0 (b(X(s))/σ(X(s)))dW (s). Recall that h = b2/σ2. We first study the term A2.

Note that:

E[
VT
T

|φ] =
1

T

∫ T

0
E[h(X(s))|φ]ds,

and E[h(X(s))|φ = ϕ] = E[h(Xϕ(s))] = πϕ(h). Thus,

L = πφ(h) = E(
VT
T

|φ) = Eh(X(0))|φ).

We have: A2 = A′
2 +A′′

2 with

(6.20) A′
2 =

MT√
T

(
1

VT /T
− 1

L

)
1
(

VT
T

≥ k√
T

)
, A′′

2 =
MT

L
√
T

1
(

VT
T

≥ k√
T

)
.

Using that L is F0-measurable, < M >T= VT , the Burkholder-Davis-Gundy and the Hölder
inequalities, we get:

E((A′′
2)

2γ |φ) ≤ C2γE(
V γ
T

L2γT γ
|φ) ≤ C2γE(

1

L2γT

∫ T

0
hγ(X(s))ds|φ) = C2γ

πφ(h
γ)

L2γ
,

where C2γ is the constant of the B-D-G inequality. We need πφ(h
γ) < +∞.

For γ = 1, we have E((A′′
2)

2|φ) ≤ L−1. We look at A′
2:

E((A′
2)

2γ |φ) ≤ 1

k2γ

(
E

(
(
MT

L
√
T

)4γ |φ
)

E
(
(
√
T (L− VT /T ))4γ |φ)

))1/2

.

We have:

E

(
(
MT

L
√
T

)4γ |φ
)

≤ C4γE(
1

L4γ

(
VT
T

)2γ

|φ) ≤ C4γ
πφ(h

2γ)

L4γ
.

Therefore, we need πφ(h
2γ) < +∞. Then, we apply Proposition 3.3 and get:

E(
(√

T (L− VT /T )
)4γ

|φ) . K2γ(φ, h).

There remains the term A1. We have A2γ
1 ≤ T γφ2γ1

(
VT
T
< k√

T
)
. Therefore, setting ℓ = πϕh, we

have, for all p ≥ 1,

P(
VT
T

<
k√
T
|φ = ϕ) ≤ P(|ℓ− VT

T
| > ℓ− k√

T
|φ = ϕ) 1(ℓ> 2k√

T
) + 1(ℓ≤ 2k√

T
)

≤ P(|ℓ− VT
T

| > ℓ

2
|φ = ϕ) + 1

(ℓ−1≥
√

T
2k

)

≤ (
2

ℓ
)2pE(ℓ− VT

T
)2p|φ = ϕ) + (

2k√
T

)2pℓ−2p.
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Thus, by Proposition 3.3, we get

E(A2γ
1 |φ) ≤ T γ−p

[
φ2γ(

2

L
)2pKp(φ, h)

]
+ T γ−p(2k)2p φ2γL−2p)

. T γ−pφ2γL−2p(1 +Kp(φ, h))

We need p ≥ γ and that the left-hand side be finite. We take p = γ.
�
Proof of Corollary 3.1
With h(x) = x2, in this model, we have Fϕ,h(x) = (2ϕ)−1(x2 − (2ϕ)−1), F ′

ϕ,h(x) = x/ϕ. This
yields for p ≥ 1:

Vϕ(h) =
1

2ϕ3
, πϕ(hp) = C(2p)(2ϕ)−p, H(p, ϕ, h) . (ϕ−3p + ϕ−4p).

We compute C(γ, φ) (Proposition 3.8) and get the result. �

Proof of Theorem 4.1 Assume that πφj
(g) is random. We write

√
N(m̃g −mg) = T1 + T2 with

T1 =
1√
N

N∑

j=1

(
1

T

∫ T

0
g(Xj(s))ds− πφj

(g)), T2 =
1√
N

N∑

i=1

(πφj
(g)) −mg).

The term T2 is ruled by the standard central limit theorem and converges in distribution to
N (0,Var(πφ(g))).
For T1, we write:

T1 =
∑

j≤N
AN,j, AN,j =

1√
N

(
1

T

∫ T

0
g(Xj(s))ds − πφj

(g)).

We use the simple Lemma.

Lemma 6.1. Let ξN =
∑N

j=1 ξN,j where conditionally on φ = (φ1, . . . , φN ), the ξN,j ’s are

independent. If

N∑

j=1

E(ξN,j|φ) → ξ and

N∑

j=1

E(ξ2N,j|φ) → 0 in probability, then ξN → ξ in

probability.

Proof of Lemma 6.1

ξN − ξ =
N∑

j=1

(ξN,j − E(ξN,j|φ)) +
N∑

j=1

E(ξN,j|φ) − ξ := DN +
N∑

j=1

E(ξN,j|φ) − ξ.

We only need to prove that DN tends to 0. Using the conditional independence, we have:

E[D2
N |φ] =

∑

j≤N
(E(ξ2N,j |φ) − [E(ξN,j |φ)]2) ≤

∑

j≤N
E(ξ2N,j|φ) → 0.

Hence, for h > 0, P(|DN | ≥ h|φ) ≤ h−2E[D2
N |φ] → 0. This implies P(|DN | ≥ h) → 0.�

Let us apply Lemma 6.1. Conditionally to φ, the AN,j’s are independent, centered and by
Proposition 3.3,

∑

j≤N
E(A2

N,j |φ) =
1

T


 1

N

∑

j≤N
(Vφj

(g) + ZT (g, φj))


 ,
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where |ZT (g, φj)| ≤ (1/
√
T )ρ(g, φj). By assumption, E(Vφj

(g) + ρ(g, φj)) < +∞. This implies,

as both N and T tend to infinity,
∑

j≤N E(A2
N,j |φ) →a.s. 0. Thus, T1 → 0.

Assume now that πφj
(g) = mg is deterministic. Then,
√
NT (m̃g −mg) =

∑

j≤N
BN,j, BN,j =

√
TAN,j .

As above, given φ, the BN,j’s are independent, centered and

∑

j≤N
E(B2

N,j|φ) =


 1

N

∑

j≤N
(Vφj

(g) + ZT (g, φj))


→a.s. EVφ(g).

To complete the proof of the convergence in distribution, we check a Lyapounov condition (see
e.g. Hall and Heyde (1980)). For ε > 0, using Proposition 3.3 (γ = 1 + ε),

∑

j≤N
E(B

2(1+ε)
N,j |φ) ≤ c1+ε

N ε

1

N

∑

j≤N
K1+ε(φj , g) →a.s. 0.

Therefore, conditionally on φ,
√
NT (m̃g−mg) converges in distribution to N (0,EVφ(g)). Thus,

the result. �

Proof of Proposition 4.1 Let m = Eφ1,j . We apply the result of Theorem 4.1 to the estimation
of m with g(x) = x. We have πφj

(g) = φ1,j . We use formulae (6.5)-(6.10):

EVφj
(g) = E(

1

φ2
2,j

), Eπφj
(Fφj ,g)

2 = E(
1

2φ3
2,j

).

From (3.6), Eρ(g, φj) < +∞ holds if EVφj
(g) < +∞ and Eπφj

(F 2
φj ,g

) < +∞. If φ1,j is random

and E( 1
φ3

2,j

) < +∞,
√
N(m̃ − m) converges in distribution as both T,N tend to infinity, to

N (0,Var(φ1,j)).

If φ1,j = m is deterministic and E( 1
φ3

2,j

) < +∞ (as m̃ is Gaussian, the condition E( 1

φ
3(1+ε)
2,j

) < +∞

for some ε > 0 is not required),
√
NT (m̃ −m) converges in distribution to N (0,E( 1

φ2
2,j

)). This

is consistent with relation (6.9) obtained for one trajectory.
Now, we consider the estimation of v = E((φ2,j)

−1). Assume that

τj = (φ2,j)
−1

is random. We use the decomposition
√
N(ṽ − v) = T1 + T2 with

T1 =
∑

j≤N
AN,j, AN,j =

1√
N

(τ̃j − τj), T2 =
1√
N

N∑

j=1

(τj − v).

The term T2 is ruled by the classical central limit theorem. Provided that E(τ2
j ) < +∞, T2

converges in distribution to N (0,Var(τj)). For the term T1, we have:

E(AN,j |φ) = − 2√
N

ΣT (φ2,j) = −2

√
N

T

1

N

∑

j≤N
(

1

φ2
2,j

+
1 − e−φ2,jT

Tφ3
2,j

).

If
√
N/T tends to 0 and E(φ−3

2 ) < +∞,
∑

j≤N E(AN,j|φ) tends a.s. to 0. Moreover,
∑

j≤N
E(A2

N,j|φ) → 0.
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Therefore,
√
N(ṽ − v) converges in distribution, as T,N tend to infinity and

√
N/T tends to 0,

to N (0,Var(τj)).

Assume that τj = v is deterministic. Then
√
NT (ṽ− v) =

√
T√
N

∑
j≤N(τ̃j − v) =

√
T
∑

j≤N AN,j.

If N/T tends to 0,

√
TE(AN,j |φ) = −2

√
T√
N

∑

j≤N
ΣT (φ2,j) = −2

√
N√
T

1

N

∑

j≤N
(

1

φ2
2,j

− 1 − e−φ2,jT

Tφ3
2,j

) → 0.

Moreover, (see Proposition 3.5),

T
∑

j≤N
E(A2

N,j|φ) → 2v3.

In this case,
√
NT (ṽ− v) converges in distribution to a centered Gaussian random variable with

variance 2v3. �

Proof of Proposition 4.2 We have

1

N
(VN (θ) − ℓN (θ)) =

a− 1

N

N∑

i=1

(
L̂

(k)
i − log φi

)
− λ

N

N∑

i=1

(
φ̂

(k)
i − φi

)
,

1√
N

(
∂VN
∂a

(θ) − ∂ℓN
∂a

(θ)) =
1√
N

(
N∑

i=1

(
L̂

(k)
i − log φi

)

1√
N

(
∂VN
∂λ

(θ) − ∂ℓN
∂λ

(θ)) =
1√
N

(

N∑

i=1

(
φ̂

(k)
i − φi

)
,

and
∂VN
∂a2

(θ) =
∂ℓN
∂a2

(θ),
∂VN
∂a∂λ

(θ) =
∂ℓN
∂a∂λ

(θ),
∂VN
∂λ2

(θ) =
∂ℓN
∂λ2

(θ),

where

− 1

N
∂2ℓn(θ) = I(θ).

To obtain the announced result, it is enough to prove that, as both N,T tend to infinity,

1

N

N∑

i=1

(
L̂

(k)
i − log φi

)
= oP (1),

1

N

N∑

i=1

(
φ̂

(k)
i − φi

)
= oP (1),

and that, if moreover N/T tends to 0,

1√
N

N∑

i=1

(
L̂

(k)
i − log φi

)
= oP (1),

1√
N

N∑

i=1

(
φ̂

(k)
i − φi

)
= oP (1).

We have, applying Corollary 3.1 with γ = 1:

E

(
N∑

i=1

(φ̂
(k)
i − φi)

)2

= NE(φ̂
(k)
1 − φ1)

2 +N(N − 1)
(

E(φ̂
(k)
1 − φ1)

)2

.
N +N(N − 1)

T
(1 + E(φ1 + φ4

1 + φ−2
1 + φ−3

1 ).
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Thus, 1
N

∑N
i=1

(
φ̂

(k)
i − φi

)
= oP (1) if both T,N tend to infinity. Under the additional constraint

N/T → 0, 1√
N

∑N
i=1

(
φ̂

(k)
i − φi

)
= oP (1).

To complete the proof, it remains to study E
(
L̂

(k)
1 − log φ1

)2
.

Lemma 6.2. If a > 8, E
(
L̂

(k)
1 − log φ1

)2
. T−1.

Proof of Lemma 6.2. As we deal with only one trajectory, we drop the index 1 in all notations.
Set A = (φ̂ ≥ k/

√
T , VT /T ≥ k/

√
T ). We write:

(6.21) L̂(k) − log φ = (log φ̂− log φ)1A − log φ1Ac := T1 + T2.

On the set A, φ̂ = φ̂(k). Applying the Taylor formula yields:

T1 = 1A(φ̂(k) − φ)

∫ 1

0

ds

φ+ s(φ̂(k) − φ)
= 1A

(
φ̂(k) − φ

φ
+

(φ̂(k) − φ)2

φ

∫ 1

0

−s ds
s(φ̂(k) + (1 − s)φ)

)
.

On A, s(φ̂(k) + (1 − s)φ) ≥ s k/
√
T . Therefore,

|T1| ≤
|φ̂(k) − φ|

φ
+

(φ̂(k) − φ)2

φ

√
T

k
.

So,

E(T 2
1 |φ) ≤ 2

φ2

(
E((φ̂(k) − φ)2|φ) +

T

k2
E((φ̂(k) − φ)4|φ)

)
.

By Corollary 3.1 with both γ = 1 and γ = 2,

E(T 2
1 |φ) .

1

T φ2

(
1 + φ+ φ4 + φ−2 + φ−3 + φ2 + φ8 + φ−4 + φ−6

)
.

Thus, provided that a > 8, E(T 2
1 ) . 1

T .
Next, we study T2:

P(Ac|φ) ≤ P(φ̂ <
k√
T
|φ) + P(VT /T <

k√
T
|φ) ≤ P(φ̂ <

k√
T
, VT /T ≥ k√

T
|φ) + 2P(VT /T <

k√
T
|φ)

≤ P(φ̂(k) <
k√
T
|φ) + 2P(VT /T <

k√
T
|φ).

The bound for the second term above is given in (3.22): For all p ≥ 1,

P(VT /T < k/
√
T |φ) . T−p (φ2p + φ−2p + φ−p

)
.

Next, as (φ− k/
√
T ≥ φ/2) = (φ ≥ 2k/

√
T ), we have the bound for all γ, s ≥ 1

P(φ̂(k) <
k√
T
|φ) ≤ P(|φ− φ̂(k)| ≥ φ

2
) + 1

(φ−1≥
√

T
2k

)

≤
(

2

φ

)2γ

E(|φ̂(k) − φ|2γ |φ) +

(
2k√
T

)2s

φ−2s.

Finally, taking γ = p = s = 1,

E(T 2
2 |φ) . T−1(log φ)2(φ−1 + φ−2 + φ2 + φ−4 + φ−5).

Provided that a > 5, E(T 2
2 ) . T−1. The Lemma follows from the two inequalities for T1 and T2.

�
The proof of Proposition 4.2 is now complete. �
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