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Cross-sections to semi-flows on 2-complexes

A dynamical 2-complex is a 2-complex equipped with a set of combinatorial properties which allow to define non-singular semi-flows on the complex. After giving a combinatorial characterization of the dynamical 2-complexes which define hyperbolic attractors when embedded in compact 3-manifolds, one gives an effective criterion for the existence of cross-sections to the semi-flows on these 2-complexes. In the embedded case, this gives an effective criterion of existence of cross-sections to the associated hyperbolic attractors. We present a similar criterion for boundary-tangent flows on compact 3-manifolds which are constructed by means of our dynamical 2-complexes.

Introduction

The theme of searching cross-sections to flows on manifolds, or semi-flow on complexes, is an old theme. We refer for instance the reader to [START_REF] Schwartzman | Asymptotic cycles[END_REF], [START_REF] Fuller | On the surface of section and periodic trajectories[END_REF] or [START_REF] Fried | Geometry of cross-sections to flows[END_REF]. However, it is not so easy in practice to apply the criteria of these papers and effectively find a cross-section to a given flow or semi-flow. For instance, even in the case where one is given a Markov partition of some non-singular flow, Fried's criterion ( [START_REF] Fried | Geometry of cross-sections to flows[END_REF]) only applies to prove the existence, or nonexistence, of a cross-section in a given cohomology-class. If the rank of the first homology group of the ambient manifold M is strictly greater than one, this forces to check an infinite number of cohomology-classes. Assuming that one can restrict to check only a finite set of such classes, for instance, in the case where M is 3-dimensional, by using the structure given by the Thurston's semi-norm (see [START_REF] Thurston | A norm for the homology of 3-manifolds[END_REF] or [START_REF] Fried | Fibrations over S 1 with pseudo-Anosov monodromy[END_REF]) of the first homology group of M , one still has to compute all the minimal periodic orbits ( [START_REF] Fried | Geometry of cross-sections to flows[END_REF]) of the flow. These orbits are those which cross at most once each box of the Markov partition. Thus, if one has n boxes, their number might be as large as

n j=1 n! j!(n -j)!
. Moreover, computing the unit-ball of the Thurston's semi-norm is not, a priori, a so easy exercise. In this work the emphasis is more on semi-flows rather than on flows. Very recent papers show a renew of interest in this kind of dynamics (see [START_REF] Ikeda | Inverse limit stability for semi-flows[END_REF] and the references cited therein).

Considering non-singular semi-flows on dynamical 2-complexes as introduced in [START_REF] Gautero | Dynamical 2-complexes[END_REF], one will take advantage of the combinatorial nature of these objects to give an effective criterion for the existence of cross-sections to the semi-flows and flows constructed by means of these complexes. Roughly speaking, the dynamical 2-complexes are special polyhedra (see [START_REF] Matveev | Special spines of piecewise linear manifolds[END_REF] -these are polyhedra whose points admit neighborhoods of certain types, illustrated in figure 1) equipped with an orientation of the 1-cells satisfying two simple combinatorial properties. These conditions of orientation of the 1-cells allow to define non-singular semiflows on these 2-complexes, by giving in some sense the orientation of the semi-flow in a neighborhood of the 1-skeleton. These semi-flows are called combinatorial semi-flows. The criterion of existence of cross-sections we establish here relies on the existence of certain non-negative cocycles in C 1 (K; Z), namely nice non-negative cocycles (see definition 5.1). The search of these cocycles is done by searching for the non-negative integer solutions of δ 1 X = 0, where δ 1 : C 1 (K; Z) → C 1 (K; Z) is the first co-boundary operator of the complex. This system is a linear system of equations with integer coefficients, and thus the set of non-negative integer solutions is generated by a finite number of them. This implies the finiteness of our process. Furthermore, the number of equations and unknowns of the above system depends only linearly on the number of 1-cells in the singular set, that is the set of points where the complex is not a manifold. For more details on the effectivity of the given criterion, we refer the reader to [START_REF] Gautero | Dynamical 2-complexes[END_REF]: Although this paper deals with an other type of cocycles, the case of nice non-negative cocycles is handled similarly.

Let us now be more precise on our results. For the sake of simplicity and brievety, we did not intent to establish criteria of existence of cross-sections for the whose class of dynamical 2-complexes, but essentially for an important case, i.e. when the dynamical 2-complex admits, in a compatible way, a structure of dynamic branched surface as defined by Christy (see [START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF]). It is then called a special dynamic branched surface (see definition 3.2). We give here a combinatorial and effective criterion for a dynamical 2-complex to admit such a structure (proposition 3.7). We refer the reader to [START_REF] Gautero | Dynamical 2-complexes[END_REF] for a more complete discussion about the relationships between dynamical 2-complexes and dynamic branched surfaces. Let us recall that branched surfaces, introduced by Williams in [START_REF] Williams | Expanding Attractors[END_REF], are 2complexes equipped with a smooth structure. Dynamic branched surfaces are branched surfaces carrying non-singular semi-flows. They were introduced by Christy for the study of hyperbolic attractors in 3-dimensional manifolds. We refer the reader to [START_REF] Shub | Global stability of dynamical systems[END_REF][START_REF] Christy | Intransitive Anosov flows on 3-manifolds[END_REF][START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF] among others for basic notions of hyperbolic dynamics. Our result is the following one (section 5):

Theorem 0.1 An efficient semi-flow on a special dynamic branched surface W admits a cross-section if and only if there exists a nice non-negative cocycle u ∈ C 1 (K; Z). Any such cocycle defines a cross-section to any efficient semi-flow on W .

Efficient semi-flows form a particular class of combinatorial semi-flows, they are everywhere transverse to the singular set of the branched surface. They so belong to the class of semiflows on dynamic branched surfaces defined by Christy in [START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF]. Roughly speaking, in the work of Christy, a dynamic branched surface is obtained from a hyperbolic attractor by cutting along the stable foliation of the hyperbolic flow, and then identifying any two points lying on a same stable segment. One says that the hyperbolic attractor collapses to the dynamic branched surface. In this "embedded case" theorem 0.1 above implies the following corollary (see section 7):

Corollary 0.2 If an hyperbolic attractor in a compact 3-manifold collapses to a special dynamic branched surface, then the corresponding hyperbolic flow admits a cross-section if and only if there exists a positive cocycle u ∈ C 1 (K; Z). Any such cocycle defines a cross-section to this hyperbolic flow.

Indeed, if a dynamical 2-complex K is the spine ( [START_REF] Matveev | Special spines of piecewise linear manifolds[END_REF]) of a compact 3-manifold M K (this is a dynamical 2-spine), then, for any combinatorial semi-flow (σ t ) t∈R + on K, there is a non-singular flow (φ t ) t∈R + on M K , transverse to ∂M K and pointing inward, which is semiconjugated to (σ t ) t∈R + . The retraction of the manifold onto the complex plays the role of the semi-conjugacy. This fact is well-known in the context of branched surfaces. Let us observe that the nature of the cocycles involved changes from theorem 0.1, "nice nonnegative cocycles", to corollary 0.2, "positive cocycles". A positive cocycle is in particular a nice non-negative cocycle, and thus corollary 0.2 sharpens our result in the embedded case. This is due to the fact that the cross-sections we find in theorem 0.1 might miss some positive loops in the singular graph (where "positive" refers here to the orientation put on the edges in the definition of dynamical 2-complex), which are not necessarily homotopic to periodic orbits of the semi-flow in the general case, but which are in the embedded case. These are the so-called "boundary periodic orbits" in the work of Christy (see [START_REF] Christy | Intransitive Anosov flows on 3-manifolds[END_REF][START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF]). We give a proof of corollary 0.2 without using this knowledge on the periodic orbits of hyperbolic flows. Speaking of cross-sections leads to think to the mapping-torus or suspension operation. This construction, when applied to a homeomorphism of a compact surface with boundary, gives a 3-dimensional manifold, together with a non-singular flow tangent to the boundary and admitting a cross-section. In the Appendix (section 8), we show how to define boundary-tangent flows from dynamical 2-spines. We prove that the existence of a positive cocycle again is a necessary and sufficient criterion of existence of cross-section to these flows. Let us observe that this is no more true if, instead of considering boundary-tangent flows, one considers flows transverse to the boundary of the manifold, as in the case of special dynamic branched surface, but the dynamical 2-complex considered is not a dynamic branched surface.
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Flat and dynamical 2-complexes

All the complexes considered in this paper will be piecewise-linear and, unless otherwise stated, connected, and compact. The j-skeleton K (j) of a n-dimensional CW-complex K (0 ≤ j ≤ n) is the union of all the cells in K whose dimension is less or equal to j. Let us recall that each i-cell C, 1 ≤ i ≤ n, comes with an attaching-map h C which is a continuous map from its boundary (this is a (i -1)-sphere -S 0 consists of two points) to the complex. We will not distinguish between the boundary of C and its image in the complex under this attaching-map h C , both denoted by ∂C, but leave to the reader the (easy) task to know in each occurence what designates the symbol ∂C.

We will denote by Con(X) the cone over a space X, that is the space X × [0, 1], where X × {1} is identified to a single point. Finally, we denote by ∆ 3 the closed 3-dimensional simplex.

The 0-cells (resp. 1-cells) of a CW-complex are called the vertices (resp. edges) of the complex. If e is an oriented edge, then e is said to be an incoming edge at its terminal vertex t(e) and an outgoing edge at its initial vertex i(e). Let us observe that an oriented edge e can be both incoming and outgoing at a same vertex, if this edge is a loop. A graph is a 1-dimensional CW-complex. We call path (resp. loop) in a topological space X a locally injective continuous map from the interval (resp. circle) to X. Let us observe that a loop in a graph, or a path between two vertices in a graph, defines and is defined by a word in the edges of the graph. This word is unique for a path, and unique up to a cyclic permutation for a loop. We will denote by L(p) (resp. F (p)) the last (resp. first) edge intersected by a path p in a graph Γ. A path or loop in Γ is positive (resp. negative) if it is oriented such that its orientation agrees (resp. disagrees) at any point with the orientation of the edges that it intersects.

Basic definitions

We first recall the notions of standard complex introduced by Casler (see [START_REF] Casler | An imbedding theorem for connected 3-manifolds with boundary[END_REF] and also [START_REF] Matveev | Special spines of piecewise linear manifolds[END_REF][START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF]), and the derived notion of flat 2-complex (see [START_REF] Gautero | Dynamical 2-complexes[END_REF]).

Following [START_REF] Matveev | Special spines of piecewise linear manifolds[END_REF], we call special 2-polyhedron a piecewise-linear 2-complex satisfying the following property: For any point x ∈ K, there is a neighborhood N (x) of x in K, a neighborhood N (y) of a point y in the interior of Con((∂∆ 3 ) (1) ), and a homeomorphism

h x : N (x) → N (y) such that h x (x) = y.
Let K be a special 2-polyhedron. The singular graph K

sing is the closure in K of the set of points x whose image under h x belongs to an open 1-cell of the interior of Con((∂∆ 3 ) (1) ). The set of crossings K (0) sing is the set of points x of K such that h x (x) is the base of Con((∂∆ 3 ) (1) ). We set K

(2)

sing = K. The connected components of K (m+1) sing -K (m)
sing , 0 ≤ m ≤ 1, are called the (m + 1)-components of the complex (the 0-components are the crossings). With this terminology, a standard 2-complex, as defined by Casler, is a special 2-polyhedron whose all 2-components are 2-cells. We will call flat 2-complex a special 2-polyhedron whose 2-components are either 2-cells, annuli or Moebius-bands. Important: Let K be any flat 2-complex. Then K admits a canonical structure of CWcomplex defined as follows: The vertices are the crossings of the complex, together with a set of valency 2-vertices, one for each connected component of K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing which is a loop without any crossing. The edges are the 1-components of the complex, together with a set of valency 2 edges, one in each 2-component which is not a disc. We will always assume that our flat 2-complexes K are equipped with this canonical structure of CW-complex, and their singular graph K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing with the induced structure. In particular, the edges of K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing are the 1-components of K. This causes no loss of generality for our purpose.

Let K be a flat 2-complex, together with an orientation on the edges of the singular graph. Let C be any 2-component or 2-cell of K. We will say that C contains an attractor (resp. a repellor) in its boundary if there is a crossing v of K and a germ g v (C) of C at v such that the two germs of edges of K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing at v contained in g v (C) are incoming (resp. outgoing) at v. We will say that the crossing v above is or gives rise to an attractor (resp. a repellor) for C (and for the given orientation). Definition 1.2 A flat dynamical 2-complex is a flat 2-complex K together with an orientation on the edges of the singular graph K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing satisfying the following two properties:

1. Each crossing of K is the initial crossing of exactly 2 edges of K

(1) sing .

2. Any 2-component which is a 2-cell has exactly one attractor and one repellor for this orientation in its boundary. The other components have no attractor and no repellor in their boundary.

A standard dynamical 2-complex is a flat dynamical 2-complex which is also a standard 2-complex.

Lemma 1.3 ([9])

Let K be a flat dynamical 2-complex. The boundary circles of the annulus and Moebiusband components are positive loops in K

sing . The boundary circle of a disc component D decomposes as pq -1 where p and q are two positive paths in K The annulus components whose orientations of the boundary loops agree are called coherent, whereas the others are incoherent annulus components.

We will need the analog, for flat 2-complexes, of the notion of a surface embedded in a 3-manifold. This will be the role played by the r-embedded graphs defined below.

Definition 1.5 A graph r-embedded in a flat 2-complex K is a graph Γ embedded in K transversaly to the singular graph K

sing and such that:

• The vertices of Γ belong to the interior of the edges of K

sing and its edges are disjointly embedded in the 2-components of K.

• If v ∈ V (Γ) belongs to e ∈ K (1)
sing , then there is exactly one germ of edge of Γ at v embedded in each germ of 2-cell of K at e. See figure 3.

Figure 3: A r-embedding A graph Γ r-embedded in K is 2-sided if it has a neighborhood homeomorphic to the trivial I-bundle Γ × [-1, 1], with Γ identified to Γ × {0}. One always will assume a 2-sided graph to be transversely oriented.

Homology of flat 2-complexes

Let us remind that the singular graph

K (1)
sing of a flat 2-complex K is always assumed to be equipped with a structure of CW-complex whose 0-cells are the crossings of K, together with a set of valency 2-vertices in the loops containing no crossing, and whose 1-cells are the 1-components of K. Furthermore, these edges and vertices of K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing are the only edges and vertices of K contained in K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing . If Γ is a graph, an integer cocycle of Γ is a collection of integer weigths, positive, negative or null, on the edges of Γ. If K is a flat 2-complex, an integer cocycle of K is a cocycle in C 1 (K; Z), i.e. an integer cocycle of the 1-skeleton of K such that the algebraic sum of its weights along the boundary of the 2-cells is zero.

Lemma 1.6 ([9])

If K is a flat 2-complex, then any integer cocycle u ∈ C 1 (K; Z) defines a graph Γ u rembedded and 2-sided in K. The converse is true.

For each edge e of the 1-skeleton, the value u(e) is the number of vertices of Γ u in e, each with a weight of +1 or -1 according to u(e) > 0 or u(e) < 0. One so obtains a collection of weighted points in the boundary of each 2-cell. These weighted points can be connected by arcs disjointly embedded in the 2-cells and whose transverse orientation agrees (resp. disagrees) at their extremities with the orientation of the corresponding edges of the 1-skeleton if the sign of the considered weighted point is positive (resp. negative). Conversely, any graph r-embedded and 2-sided in a flat 2-complex is easily proved to define an integer cocycle in C 1 (K; Z). ♦ Definition 1.7 A directed graph Γ is a graph equipped with an orientation on its edges such that any two vertices are connected by a positive path.

A non-negative cocycle in C 1 (Γ; Z) is an integer cocycle u such that u(e) ≥ 0 holds for any edge e ∈ Γ. A non-negative cohomology class of Γ is a cohomology-class c ∈ H 1 (Γ; Z) such that c(l) ≥ 0 holds for any positive embedded loop l in Γ.

The following lemma is straightforward and explains why we introduced the notion of directed graph. Lemma 1.8 Let K be a flat dynamical 2-complex. The singular graph of K, equipped with the orientation on its edges which makes K a flat dynamical 2-complex, satisfies that each of its connected components is a directed graph. Definition 1.9 Let K be a flat dynamical 2-complex. A non-negative cocycle of K is an integer cocycle u ∈ C 1 (K; Z) which defines a nonnegative, non-null cocycle of the singular graph K

(1) sing . A non-negative cohomology class of K is a cohomology-class c ∈ H 1 (K; Z) which defines a non-negative, non-null cohomology-class of the singular graph K Remark 1.10 It might be worth noticing that the notion of non-negative cocycle, or nonnegative cohomology-class, of a flat dynamical 2-complex is required to be non-negative only on the singular graph, and not on the whole 1-skeleton.

Any non-negative integer cocycle defines a non-negative cohomology class. The converse is true, as shown by proposition 1.13 below. Let us stress that this proposition, and more precisely its corollary 1.17, plays a crucial role in the proof of our main result (theorem 5.2). Before stating it we need an additional definition. Definition 1.11 Let Γ be a graph. Let v be any vertex of Γ. We will call pushing-map µ v : C 1 (Γ; Z) → C 1 (Γ; Z) the map defined by: (µ v (u))(e) = u(e) if e is any 1-cell which either is not incident to v or is both incoming and outgoing at v, (µ v (u))(e) = u(e)+1 if e is incoming, not outgoing at v, (µ v (u))(e) = u(e)-1 if e is outgoing, not incoming at v. We will denote by µ k v the composition of k pushing-maps µ v .

Remark 1.12 Clearly, the image of an integer cocycle u of a graph Γ under any pushingmap is an integer cocycle of Γ in the same cohomology class than u. Furthermore, if Γ is the 1-skeleton of a flat dynamical 2-complex K, then the image of an integer cocycle of K under a pushing-map also is an integer cocycle of K in the same cohomology-class.

Proposition 1.13 Let Γ be a directed graph. If u is any integer cocycle of Γ in a nonnegative cohomology-class, then some finite sequence of pushing-maps transforms u to a non-negative cocycle in the same cohomology-class.

Proof of proposition 1.13: To prove this proposition, we need first to introduce some terminology. Let T be a tree together with an orientation on its edges. T is a rooted tree if there is exactly one vertex v in T whose all incident edges are outgoing edges. This vertex v is the root of T . The ends of a rooted tree T are the vertices with exactly one incident edge. These edges are the terminal edges of T (since T is a rooted tree, each terminal edge is an incoming edge at the corresponding end).

Let T = π -1 (Γ) be the universal covering of Γ (π is the associated covering-map). This is an infinite tree. The edges of T inherit an orientation from the orientation of the edges of Γ. Let u ∈ C 1 (Γ; Z) be any integer cocycle in a non-negative cohomology class. If u is a nonnegative cocycle there is nothing to prove. Let us thus assume that u is not a non-negative cocycle.

Let e be any edge of Γ such that u(e) < 0. Let e 0 be any edge of T with π(e 0 ) = e.

One defines inductively a sequence

T 0 ⊂ T 1 ⊂ • • • ⊂ T i ⊂ • • • of rooted trees T i ⊂ T with root v 0 , and a sequence of integer cocycles u 0 , u 1 , • • • , u i , • • • of C 1 (Γ; Z)
in the following way:

T 0 = e 0 , u 0 = u. For i = 1, 2, • • •: Let v i-1 1 , • • • , v i-1
k be a maximal (in the sense of the inclusion) set of ends of T i-1 such that:

• π(v i-1 j ) = π(v i-1 k ) if j = k. • If x j is the terminal edge of T i-1 incident to v i-1 j , then m j = |u i-1 (π(x j ))| = max{|u i-1 (π(x))| , x is a terminal edge of T i-1 , π(t(x)) = π(v i-1 j )}. u i = (µ m 1 v i-1 1 • • • • • µ m k v i-1 k )(u i-1 ).
T i is the union of T i-1 with the edges x of T whose initial vertex is one of the ends

v i 1 , • • • , v i k of T i-1
and such that u i (π(x)) < 0.

Lemma 1.14 Let i ≥ 1 such that T i-1 is a proper subset of T i . Then for any positive path e 0 e 1 • • • e i with e j ∈ T j , for any 0 ≤ j ≤ i, π * u i (e j • • • e i ) < 0.

Proof of lemma 1.14: We proceed by induction on i. For i = 1: Since u 0 is in a nonnegative cohomology-class and by assumption π * u 0 (e 0 ) < 0, the edge e 0 is not a loop and thus has distinct initial and terminal vertices. Therefore, since u 1 is obtained from u 0 by applying a pushing-map at the terminal vertex of e 0 , π * u 1 (e 0 ) = 0. By construction the values of u i on the terminal edges of T i are negative. The assertion is thus satisfied for i = 1.

Let us assume that it is satisfied until i, that is for any positive path e 0 e 1 • • • e i with e j ∈ T j , for any 0

≤ j ≤ i, π * u i (e j • • • e i ) < 0.
One wants to prove that this property is still true at i + 1.

Let us consider a positive path e 0 e 1 • • • e i+1 . By construction π * u i+1 (e i+1 ) < 0. Furthermore as for π * u 1 (e 0 ), and since all the ends of T i have distinct images under π, π * u i+1 (e i ) is zero. Since the cohomology-class of u i is non-negative, and by the hypothesis of induction, the terminal vertex of e i , which is the initial vertex of e i+1 , is distinct from all the initial vertices of e 0 , e 1 , • • • , e i . If the terminal vertex of e i is the only end of T i , this observation implies π * u i+1 (e j ) = π * u i (e j ) for j = 0, • • • , i-1. The hypothesis of induction, together with the remarks above on π * u i+1 (e i ) and π * u i+1 (e i+1 ), allows to conclude. Let us thus assume that T i has other ends than t(e i ). If the image under π of these ends is distinct from the image under π of the initial vertices of the e j , j ≤ i, then the conclusion is obvious. If the image under π of one of these ends is the same than the image of some i(e j ), j ≤ i, then the pushing-map µ k π(i(e j )) applied at this vertex increases the value of u i on e j-1 by k and decreases the value of u i on all the outgoing edges at i(e j ), and in particular on e j , by k. Therefore π * u i+1 (e j • • • e i+1 ) < 0 still holds. This completes the proof of the induction, and so the proof of lemma 1.14. ♦ Corollary 1.15 There exists an integer k ≥ 1 such that T n = T k and u n = u k for any n ≥ k.

Proof of corollary 1.15: We set M the number of vertices in Γ. If T M +1 = T M then lemma 1.14 says that π * u M +1 is negative on any positive path e j • • • e M +1 . Since M + 1 is strictly greater than the number of vertices of Γ, for some integer j, i(e j ) = t(e M +1 ). Then π(e j • • • e M +1 ) is a loop l with u M +1 (l) < 0. This is a contradiction with the fact that the cohomology-class of u, and thus of u M +1 , is non-negative. The corollary follows. ♦ Lemma 1.16 Let k be the integer given by corollary 1.15.

1. The cocycle u k is non-negative on the edge π(e 0 ) = e.

2. If u k (x) < 0 for some edge x of Γ, then u(x) < 0.

Proof of lemma 1.16: The cocycle u 1 is non-negative on the edge π(e 0 ) (see the beginning of the proof of lemma 1.14. If no non-negative cocycle u i takes a negative value on π(e 0 ), there is nothing to prove. If some u j satisfies u j (π(e 0 )) < 0 then T j is a proper subset of T j+1 . Since for n ≥ k T n = T k , u k (π(e 0 )) ≥ 0. Item (1) is proved. ♦ ♦ Corollary 1.17 Let K be a flat dynamical 2-complex. Any non-negative cohomology class in H 1 (K; Z) is represented by a non-negative cocycle in C 1 (K; Z). This is a straightforward consequence of proposition 1.13 and of lemma 1.8. It suffices to apply the sequence of pushing-maps given by proposition 1.13 to the 1-skeleton of K. ♦

Non-singular semi-flows

Definition 1.18 A non-singular semi-flow on a flat dynamical 2-complex K is a one parameter family (σ t ) t∈R + of continuous maps of the complex, which depends continuously on the parameter t, such that σ 0 = Id K , σ t+t ′ = σ t • σ t ′ , and satisfying the following properties:

• No point of K is fixed by the whole family.

• It defines a C ∞ non-singular flow in restriction to each 2-component. Definition 1.19 A cross-section to a non-singular semi-flow on a flat dynamical 2-complex is a 2-sided, r-embedded graph which intersects transversaly, positively, and in finite time, all the orbits of the semi-flow.

In what follows, the triangle T denotes the cone, based at the origin (0, 0) of the oriented plane R 2 , over the interval y

= 1 -x, x ∈ [0, 1]. The rectangle R is the square [0, 1] × [0, 1].
The model-flow on T (resp. on R) is the restriction to T (resp. to R) of the non-singular flow on R 2 whose orbits are the lines y = µ-x, µ ∈ [0, 1] (resp. the lines x = µ, µ ∈ [0, 1]). Definition 1.20 A combinatorial semi-flow on a flat dynamical 2-complex K is a nonsingular semi-flow on K satisfying the following properties:

1. There is a decomposition of K in a finite number of triangular and rectangular boxes whose boundary-points are pre-periodic under the semi-flow and such that the semi-flow in restriction to each box is topologically conjugate to the corresponding model-flow.

2. The orientation of the semi-flow agrees, in a neighborhood of the singular graph

K (1)
sing , with the orientation of the edges of K

sing .

3. In each disc component, an orbit-segment connects the repellor to the attractor.

4. Let X be a 2-component which is either a coherent annulus component or a Moebiusband. Then the semi-flow is transverse to the rays of X and the core of X is a periodic orbit.

Remark 1.21 The orbit-segment which connect in each disc component the repellor to the attractor will be called separating orbit-segment. The union of all the separating orbitsegments is a collection of periodic orbits of the combinatorial semi-flow considered. These orbits will be called separating orbits. Each crossing belongs to exactly one separating orbit. In particular, the crossings are periodic under any combinatorial semi-flow.

Lemma 1.22 ([9]

) Any flat dynamical 2-complex K carries a combinatorial semi-flow.

We will call properly embedded orbit-segment of a non-singular semi-flow (σ t ) t∈R + on a flat dynamical 2-complex K an orbit-segment of (σ t ) t∈R + whose endpoints, if any, are in the boundaries of some 2-components of K, and which is transverse to these boundaries at these endpoints.

Lemma 1.23 ([9])

Let K be a flat dynamical 2-complex. Any properly embedded orbit-segment of any combinatorial semi-flow on K is homotopic, relative to its endpoints if any, to a positive path in the singular graph of K.

Proposition 1.24 ([9]) Any non-negative cocycle u ∈ C 1 (K; Z) of a flat dynamical 2-complex K defines, for any combinatorial semi-flow (σ t ) t∈R + on K, a r-embedded graph Γ u transverse to (σ t ) t∈R + .
2 From semi-flows to flows on 3-manifolds

We recall below the definition of a spine of a manifold (see for instance [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF][START_REF] Casler | An imbedding theorem for connected 3-manifolds with boundary[END_REF][START_REF] Matveev | Special spines of piecewise linear manifolds[END_REF]).

Definition 2.1 A flat n-complex K (n = 1, 2) is the spine of a compact (n + 1)-manifold with boundary M K if there is an embedding i: K → M K and a retraction r M K : M K → i(K), which is a homotopy equivalence, such that the manifold M K is homeomorphic to

∂M K × [0, 1] quotiented by the equivalence relation (x, t) ∼ (x ′ , t ′ ) if and only if t = t ′ = 0 and r M K (x) = r M K (x ′
). The fibers r -1 M K (x) are (n + 2j)-ods centered at x, where j is the smallest integer for which x ∈ K (j) sing .

If K is a flat 2-complex, figure 4 shows the pre-image under r M K of a neighborhood in K of each of the two types of singular points. Proposition 2.3 Let K be a flat dynamical 2-spine of a 3-manifold M K . Then, for any combinatorial semi-flow (σ t ) t∈R + on K, there is a non-singular flow (φ t ) t∈R + on M K , transverse and pointing inward with respect to ∂M K , such that the retraction r M K : M K → K given by definition 2.1 defines a semi-conjugacy between (φ t ) t∈R + and (σ t ) t∈R + .

Proof of proposition 2.3: Let us consider any maximal (in the sense of the inclusion) orbit-segment I x contained in some triangular or rectangular box for the semi-flow, where x is the initial point of I x . For each point y ∈ r -1 M K (x) in the interior of M K , one defines an interval I y which projects to I x under r M K . The glueing of these oriented intervals defines the orbits of a non-singular flow on M K -∂M K which is semi-conjugated to (σ t ) t∈R + by r M K . For each point x ∈ K, for each y ∈ r -1 M K (x) ∩ ∂M , one now defines an oriented interval I y transverse to ∂M K at y and which projects under r M K to I x . One so completes the above flow to a non-singular flow on M K which is as anounced. ♦ Remark 2.4 Proposition 2.3 above and remark 2.2 imply that two non-singular flows on two 3-manifolds which are semi-conjugated to a same semi-flow on a same dynamical 2-spine are not necessarily topologically conjugated since their ambient manifolds might be not homeomorphic. Definition 2.5 A cross-section to a non-singular flow on a compact 3-manifold M 3 is a surface properly embedded in M 3 , that is with its boundary embedded in ∂M 3 , and which intersects transversely, positively and in finite time all the orbits of the flow. Proposition 2.6 With the assumptions and notations of proposition 2.3, any cross-section Γ u , u ∈ C 1 (K; Z), to a combinatorial semi-flow (σ t ) t∈R + on K defines a cross-section S u = r -1 M K (Γ u ) to a flow (φ t ) t∈R + on M K semi-conjugated to (σ t ) t∈R + , as given by proposition 2.3.

Proof of proposition 2.6: The following lemma is straightforward: Lemma 2.7 Let K be a flat 2-spine of a 3-manifold M K , and let r M K : M K → K be the retraction given by definition 2.1.

Any cocycle u ∈ C 1 (K; Z) defines a surface S u = r -1 M K (Γ u ) properly embedded in M K . By construction of (φ t ) t∈R + (see proposition 2.3), it is clear that, if Γ u is a cross-section to (σ t ) t∈R + , then the surface S u = r -1 M K (Γ u ) is a cross-section to (φ t ) t∈R + . ♦ Remark 2.8
With the assumptions and notations of lemma 2.7, if i:

K → M K denotes the embedding of K in M K and [u] the cohomology class of u in H 1 (K; Z), then i # ([u]) is the cohomology class in H 1 (M K ; Z) associated to S u .

Special dynamic branched surfaces

Let K be a flat 2-complex or a graph. A smoothing on K consists of defining at each point of K a tangent space T x K, which depends continuously on x.

When a smoothing is defined on a graph Γ, a tangent line is in particular defined at each vertex v of Γ (we will say that a smoothing is defined at v). There are thus two sides at v. If a smoothing is defined at some vertices of a graph Γ, and p is a path in Γ, one says that p is carried by Γ if p does not cross any turn of edges which are in the same side of a vertex. When a smoothing is defined along a path p in the singular graph of a flat 2-complex K, it defines two sides with respect to any interval I ⊂ p embedded in K. Since there are three germs of 2-cells incident to each point x of I, two points in two distinct germs at x will be on the same side with respect to x. The corresponding germs are said to be in the locally 2-sheeted side of I at x. The other side is the locally 1-sheeted side of I at x. Definition 3.1 Let K be a flat dynamical 2-complex, together with a smoothing along a path p in the singular graph K

sing . This smoothing is compatible with K if, for each embedded interval I ⊂ p, for each crossing v contained in I, exactly two edges in St K (1) sing (v) are oriented from the locally 2-sheeted side of I to the locally 1-sheeted side of I. Definition 3.2 A special dynamic branched surface is a standard dynamical 2-complex which admits a compatible smoothing along its singular graph.

The following lemma comes from the work of Christy (see [START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF]).

Lemma 3.3 ([3])

Any special dynamic branched surface carries a combinatorial semi-flow transverse to its singular graph S and going at every point of S from the locally 2-sheeted side to the locally 1-sheeted side. Such a semi-flow is called an efficient semi-flow.

In figure 5, we illustrate what looks like, up to diffeomorphism, an efficient semi-flow in a neighborhood of a crossing of a special dynamic branched surface. We will call corner of a positive path (or loop) p in the singular graph of W a crossing v = p(t 0 ) of K in p which is a point of tangency of some efficient semi-flow on W with the interval [p(t 0ǫ), p(t 0 + ǫ)] for ǫ > 0 sufficiently small. A positive path (resp. loop) without any corner will be called a flat path (resp. a flat loop). A flat positive, immersed loop is called a circuit of W . Thus, any flat path either is contained in, or contains, a circuit of W . Any flat loop in the singular graph of a special dynamic branched surface W is a circuit of W , or turns k times along a circuit of W . In the following lemma, we precise, with the above terminology, the form of the 2components of a special dynamic branched surface. It comes straightforwardly from the work of Christy in [START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF] and the preceding definitions. 3) contains exactly one corner, i.e. ∂D admits exactly two points of tangency x 1 , x 2 with any efficient semi-flow (σ t ) t∈R + on W .

2. In particular, ∂D \ {x 1 , x 2 } decomposes in two connected components such that (σ t ) t∈R + is incoming in D with respect to one of them and outgoing of D with respect to the other. In other words, D is in the locally 1-sheeted side of the first connected component, and in the locally 2-sheeted side of the other.

3. The connected component along which (σ t ) t∈R + is incoming in D is the union of the two outgoing edges at some crossing of W , which is the repellor of D.

4. The connected component along which (σ t ) t∈R + is outgoing of D is the union of two flat paths, one in each ∂-positive path of D, from x 1 (resp. x 2 ) to the crossing of W which is the attractor of D. These two flat paths are called the flat 2-sides of D.

See figure 6. The definition of an efficient semi-flow on a special dynamic branched surface, together with lemma 3.5 above and classical arguments about symbolic codings lead to the following lemma: Lemma 3.6 Let W be a special dynamic branched surface and let (σ t ) t∈R + be any efficient semi-flow on W . We call coding train-track τ W a train-track embedded in W as follows:

1. There is one vertex in each open edge of the singular graph S. There are two vertices in each 2-component D, one on each side of the separating orbit-segment of (σ t ) t∈R + in D.

2. The edges of τ W are disjointly embedded in the 2-components and do not intersect the separating orbit-segments of the semi-flow. Each of these edges connects a vertex in S to a vertex in a 2-component. There are exactly three edges incident to each vertex in S, one in each 2-component of W incident to this point.

3. The smoothing at each vertex in S is the smoothing induced by the smooth structure of the branched surface. The smoothing at a vertex v in a 2-component D is such that the edge connecting v to the locally 1-sheeted side of D is in the locally 1-sheeted side of v.

Then, for any loop carried by a coding train-track τ W , there is a periodic orbit of (σ t ) t∈R + embedded in a regular neighborhood of τ W in W and which projects along the ties of this neighborhood to the given loop. See figure 7. In proposition 3.7 below, we give an effective criterion to check whether or not a given standard dynamical 2-complex is a special dynamic branched surface.

Proposition 3.7 A standard dynamical 2-complex K admits a compatible smoothing along its singular graph if and only if the following two properties are satisfied:

1. No edge in the boundary of any 2-component connects its repellor to its attractor.

2.

Each edge e of the singular graph appears exactly once in second position in the union, over all the disc components C, of the ∂-positive paths of C (see lemma 1.3).

Proof of proposition 3.7: Let us first prove the sufficiency of the given conditions. Let e be any edge of the singular graph S. By item (2), there is a ∂-positive path p of some component C in which e appears in second position. Thus e is consecutive in p to an incoming edge e ′ at i(e), which occupies the first position in p. From item (2), any edge e appears exactly once in second position in the set of all ∂-positive paths of disc components. Furthermore, by definition of a dynamical 2-complex, any edge e ′ appears exactly once in first position in this same set. Thus, one can choose an embedding in R 2 of a small neighborhood in S of each crossing which satisfies the following property: Let e be any edge of the singular graph. Let p be the ∂-positive path containing e in second position. Let e ′ be the incoming edge at i(e) which is consecutive to, and precedes e in p. Then, e and e ′ are adjacent in the cyclic ordering at i(e) induced by the chosen local R 2 -embedding at this crossing.

There is now a unique way to define a smoothing of the 2-complex in a neighborhood of the crossings which is a compatible smoothing, and such that the tangent plane so defined agrees with the chosen local R 2 -embedding. The point is to prove that these smoothings can be extended to a compatible smoothing along the singular graph. Let us consider any edge e i 1 of K

sing . There is a disc component

C with l C = e i 1 • • • e ir e -1 i r+1 • • • e -1 i r+p , r ≥ 1. Item (1) implies r > 1.
By definition of l C , C is on the locally 1-sheeted side of e i 1 at i(e i 1 ). For the chosen local R 2 -embedding, e i 1 and e i 2 are adjacent in the cyclic ordering at t(e i 1 ) = i(e i 2 ). Thus, by definition of the smoothing in a neighborhood of the crossings, C does not change side along e i 1 , lying on its 1-sheeted side, and therefore no 2-component changes side along e i 1 . The same argument can be applied for any edge of K [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] sing . Thus, no germ of 2-component changes side along any edge of the singular graph, and we so have a compatible smoothing along the singular graph of the complex. Let us now prove the reverse implication of proposition 3.7. The necessity of item (1) is straightforward from the definitions. To prove the necessity of item (2), let us assume that K admits a compatible smoothing along its singular graph. This smoothing defines a local R 2 -embedding at each crossing of the singular graph. Since a smoothing is defined along each edge, each edge e which is in second position in some ∂-positive path p of a disc component is adjacent, according to the induced cyclic ordering at i(e) = t(e ′ ), to the edge e ′ in first position in p. The conclusion follows. The proof of proposition 3.7 is completed. ♦

Periodic orbits of efficient semi-flows

The aim of this section is to prove proposition 4.1 below. This proposition is the main step to prove one implication of our main result (theorem 5.2), that is if some efficient semi-flow on a special dynamic branched surface admits a cross-section, then there exists what we call a nice non-negative cocycle (see definition 5.1). Proposition 4.1 Any non flat positive loop in the singular graph of a special dynamic branched surface W is homotopic to a periodic orbit of an efficient semi-flow on W .

In a first step, we are going to define a class of positive loops in the singular graph which have the property to be homotopic to periodic orbits of any efficient semi-flow. We will then define elementary homotopies and show that any non-flat positive loop in the singular graph can be transformed to such a loop by a finite sequence of elementary homotopies. Let us recall that, if p is a path, then L(p) (resp. F (p)) denotes the last (resp. first) edge intersected by p. If p ′ is an oriented subpath of p, with i(p) = i(p ′ ) or t(p) = t(p ′ ), then pp ′ will denote the complementary oriented subpath q of p ′ in p, i.e. either p = p ′ q or p = qp ′ . 

f 0 , • • • , f k of l \ {c 0 , • • • , c k } with i(f j ) = c j = t(f j-1 ), j ∈ Z (k+1)Z .
In all what follows, the indices to the flat pieces of a given positive loop l will always be considered written modulo the total number of flat pieces in this loop. Thus, if f j is any flat piece in l, f j+1 (resp. f j-1 ) is the flat piece following (resp. preceding) f j in l, and might be equal to f j if there is only one flat piece in l. • For i < k, each p i is a flat 2-side (see lemma 3.5) of some 2-component D i ,

• The path p k is contained in a flat 2-side of some 2-component D k ,

• The integer k is maximum among the decompositions satisfying the preceding properties.

The subpaths p i (resp. 2-components D i ) above are called the characteristic subpaths (resp. characteristic 2-components) of p. We call characteristic ∂-paths of p the ∂-positive paths q i of the characteristic 2-components D i which are in the complement of the p i in ∂D i .

See figure 8 or 9.

Proof of lemma 4.3: By definition of a dynamical 2-complex, there are two incoming edges e, e ′ at the crossing i(p). Exactly one of these two edges, say e ′ , is such that e ′ F (p) is a flat path. By remark 1.1, there are exactly two 2-component D(e, F (p)), D(e ′ , F (p)) incident to the two turns formed by these incoming edges e, e ′ with the outgoing edge F (p). By definition of a flat 2-side, if p 1 exists, then it is the flat 2-side h 1 of D(e, F (p)) which follows the edge e. Since each edge appears exactly once in first position in the set of ∂-positive paths, there is no ambiguity. Since p is flat, either p strictly contains h 1 or p is contained in h 1 . In the first case, one takes p 1 = h 1 . One iterates the process with p ′ = pp 1 . The process is finite and gives us a decomposition of p satisfying the anounced properties. The unicity of such a decomposition is easily deduced from the above arguments. ♦ Remark 4.4 One proves in the course of the proof of lemma 4.3 that the characteristic 2-components D 1 , • • • , D k-1 are also uniquely defined, where p = p 1 • • • p k . However, there is a choice for D k . One will always consider D k to be the 2-component D(e, F (p k )), where e is, as in the proof of lemma 4.3, the incoming edge at i(p k ) which forms a corner with F (p k ).

Definition 4.5 The po-length of a flat path in the singular graph of a special dynamic branched surface is the number of its characteristic subpaths minus 1.

The po-length of a positive loop l in the singular graph of a special dynamic branched surface is the sum of the po-lengths of its flat pieces.

The following lemma justifies the introduction of these definitions:

Lemma 4.6 Let W be a special dynamic branched surface. Let l be a positive loop in the singular graph of W which contains at least one corner. If the po-length of l is zero, then any efficient semi-flow on W admits a periodic orbit homotopic to l.

Proof of lemma 4.6: Since po(l) = 0, po(f j ) = 0 for any flat piece f j of l. By definition of the po-length, and with the notations above, for any j, there exists a segment in the boundary of the characteristic 2-component D 1 j (this is the unique characteristic 2component of f j ) connecting L(f j ) to L(f j+1 ). This implies that any coding train-track for W (see lemma 3.6) carries a loop l τ which decomposes in such segments. Lemma 3.6 gives then, for any efficient semi-flow (σ t ) t∈R + on W , a periodic orbit of (σ t ) t∈R + homotopic to l τ in W . By construction, l τ is homotopic to l, which completes the proof of lemma 4.6. ♦ Definition 4.7 Let l be a non flat positive loop in the singular graph of a special dynamic branched surface. Let f 1 , • • • , f r be the flat pieces of l. Let

f j = f 1 j • • • f k(j) j
be the decomposition of f j in characteristic subpaths given by lemma 4.3. An elementary homotopy on l at f j consists of substituting the characteristic ∂-path q 1 j of the characteristic 2-component D 1 j to the subpath L(f j-1 )f 1 j of l. An elementary homotopy at f j is necessary if the po-length of f j is non null. 1. If l ′ is the image of l under some necessary elementary homotopy, then l ′ is not flat and po(l ′ ) ≤ po(l).

2. Let f i , i = 1, • • • , k be the flat pieces of l, and let

f i = f 1 i • • • f k(i) i
be the decomposition of f i in characteristic subpaths. We denote by l ′ the image of l under a necessary homotopy at f j (which consists of substituting the characteristic ∂-path q 1 j to L(f j-1 )f 1 j -see definition 4.7). If po(l ′ ) = po(l), then:

• The flat piece f j-1 contains exactly one edge.

• There is a natural bijection between the flat pieces f i of l and the flat pieces

f ′ i of l ′ such that f ′ j-2 = f j-2 F (q 1 j ) and f k(j-2) j-2
does not contain F (q 1 j ).

See figures 8 and 9.

Proof of lemma 4.8: Since the elementary homotopy that one applies is necessary, the terminal point of the flat subpath of l that one substitutes is not a corner of l. Therefore, by definition of an elementary homotopy, the new loop l ′ admits a corner at this point, and thus is not flat.

One applies an elementary homotopy to l at f j , and one denotes by l ′ the resulting loop. One distinguishes two cases:

Case I: The flat piece f j-1 contains more than one edge.

Case II: The flat piece f j-1 contains exactly one edge.

We refer the reader to figures 8 and 9.

Let us first consider the case I above, illustrated in the first picture of figure 8. The loop l ′ admits two flat pieces more than the loop l. They form the path q 1 j . The first one consists of a single edge, the edge F (q 1 j ), where q 1 j is the characteristic ∂-path given by lemma 4.3. The second one is then q 1 j -F (q 1 j ). By definition, po(F (q 1 j )) = 0 and po(q 1 j -F (q 1 j )) = 0. One has then a natural identification between the flat pieces f i of l and the flat pieces f ′ i of l ′ in l ′q 1 j : Under this identification, the flat piece

f ′ j is equal to f 2 j • • • f k(j) j
, where

f j = f 1 j • • • f k(j) j
is the decomposition in characteristic subpaths given by lemma 4.3. Thus, po(f ′ j ) = po(f j ) -1. The flat piece f ′ j-1 is equal to f j-1 -L(f j-1 ). Beware that with the numerotation we use for the flat pieces of l ′ , there are the two additional flat pieces given above between f ′ j-1 and f ′ j . Since f j-1 contains more than one edge, po(f ′ j-1 ) ≤ po(f j-1 ). The other flat pieces of l are not modified when passing from l to l ′ , and thus, if i = j and i = j -1, then po(f ′ i ) = po(f i ). Therefore, in this case, po(l ′ ) < po(l). Let us now consider case II (see figure 9). This figure illustrates the natural identification between the flat pieces f i of l and the flat pieces f ′ i of l ′ . As in case I, po(f

′ j = po(f j ) -1. The piece f ′ j-1 is equal to q 1 j -F (q 1 j ). Thus po(f ′ j-1 ) = 0. If i is distinct from j, j -1, j -2, as in case I, f ′ i = f i , hence po(f ′ i ) = po(f i ). It remains to compute po(f ′ j-2 )
. By definition of an elementary homotopy, f ′ j-2 = f j-2 F (q 1 j ). Therefore, by definition of the po-length, if p

k(j-2) j-2 contains F (q 1 j ), then po(f ′ j-2 ) = po(f j-2
). Thus, in this case, po(l ′ ) = po(l) -1. In the other case, po(f ′ j-2 ) = po(f j-2 ) + 1, and thus po(l ′ ) = po(l). This completes the proof of lemma 4.8. ♦ One can now complete the proof of proposition 4.1. One assumes given some efficient semi-flow (σ t ) t∈R + on a special dynamic branched surface W . By lemma 4.6, any non-flat positive loop l in the singular graph S of W with po(l) = 0 is homotopic to a periodic orbit of (σ t ) t∈R + . Let us now consider a non-flat positive loop l in S with po(l) = 0. One applies a necessary elementary homotopy to l, say at the flat piece f j+2 . One denotes by l 1 the resulting loop. By lemma 4.8, po(l 1 ) ≤ po(l). If po(l 1 ) = po(l) then by lemma 4.8, item (2) one has a bijection between the flat pieces of l and the flat pieces of l 1 . Under this bijection the flat piece f j of l has as image the flat piece f j of l 1 , equal to f j e 1 for some edge e 1 . The edge e 1 satisfies that, if one applies all the necessary elementary homotopies along f j , one eventually gets a flat piece reduced to this single edge. In particular, the po-length of f j is non-zero. One applies an elementary homotopy on l 1 at f j . One iterates the process. Then:

• Either at some step one obtains a loop l i with po(l i ) < po(l i-1 ).

• Or the number of flat pieces remains constant by lemma 4.8. Thus one eventually applies an elementary homotopy at the flat piece f j+2 of a new loop l k 1 . If this elementary homotopy does not make decrease the po-length of l k 1 , then, as at the first step, the flat piece f j of the new loop is the concatenation of f j e 1 with a single edge e k 1 +1 . Furthermore, always by the same observation than at the first step, the edge e 1 is the flat 2-side of some 2-component. By iteration of this process, if the po-length never decreases, then the finiteness of the singular graph implies the existence of a circuit C = e 1 e k 1 +1 • • • e km+1 such that each edge in this circuit is the flat 2-side of some 2-component (see figure 10). By definition of a special polyhedron, the circuits of W are trivalent. Since a smoothing is defined along the circuits, one so gets the existence of a 2-component in the locally 2-sheeted side of C which admits C as boundary loop. Since a special dynamic branched surface admits only disc components and is a dynamical 2-complex, this is impossible.

One so obtains a sequence of elementary homotopies which always terminates with a nonflat positive loop l n , homotopic to l in W and such that po(l n ) = 0. Together with lemma 4.6, this completes the proof of proposition 4.1. ♦ 5 Searching cross-sections Definition 5.1 A nice non-negative cocycle of a special dynamic branched surface W is a non-negative cocycle u ∈ C 1 (W ; Z) such that the union of all the positive loops l in the singular graph for which u(l) = 0 holds is a union of disjointly embedded circuits of W .

This section is devoted to a proof of the following theorem.

Theorem 5.2 Some, and hence any, efficient semi-flow on a special dynamic branched surface W admits a cross-section if and only if there exists a nice non-negative cocycle u ∈ C 1 (K; Z). Any such cocycle defines a cross-section to any efficient semi-flow on W .

Remark 5.3 Theorem 7.3 sharpens theorem 5.2 above in the case where the special dynamic branched surface is the spine of some compact 3-manifold. However, one can construct special dynamic branched surfaces admitting nice non-negative cocycles which are not positive one (see definition 7.2). This forbids to hope to obtain a better criterion in the general case of special dynamic branched surfaces.

From a nice non-negative cocycle to a cross-section

The following lemma is a straightforward corollary of lemma 3.5 and of the definition of efficient semi-flow in lemma 3.3 (see figure 6).

Lemma 5.4 Any properly embedded orbit-segment of any efficient semi-flow on a special dynamic branched surface is homotopic, relative to its endpoints if any, to a positive path in the singular graph whose number of corners is equal to the number of 2-components intersected by this orbit-segment (there is at least one).

Let us assume the existence of some nice non-negative cocycle u ∈ C 1 (W ; Z), where W is any special dynamic branched surface. By proposition 1.24, this cocycle defines, for any efficient semi-flow (σ t ) t∈R + on W , a r-embedded graph Γ u transverse to (σ t ) t∈R + . Since u is a nice non-negative cocycle, the intersection-number of this graph Γ u with any positive loop containing at least one corner is strictly positive. By finiteness of the singular graph, lemma 5.4 implies then that any orbit of (σ t ) t∈R + will intersect Γ u transversely and positively in finite time. The above r-embedded graph Γ u is then a cross-section to (σ t ) t∈R + . One so proved the last point of theorem 5.2, and one implication of this theorem.

From cross-sections to nice non-negative cocycles

By definition of a cross-section, proposition 4.1 implies that any integer cocycle u defined by a cross-section to an efficient semi-flow on a special dynamic branched surface W is positive on any non-flat positive loop of the singular graph S. Let us consider the flat loops, that is the embedded circuits. If u is negative on some embedded circuit C, then u is negative on some positive loop C k p, where p is some positive path in S between two crossings of W , which does not intersect C in its interior, and k is an integer greater than | u(p) u(C) |. The existence of p comes from the fact that any two crossings in S are connected by a positive path. The loop C k p has at least one corner, at i(p) or t(p), and u is negative on C k p. Proposition 4.1 implies then a contradiction with u representing a cross-section. Therefore, u is non-negative on the embedded circuits of S. One so proved that the cohomology class defined by the cross-section is a non-negative cohomology class. Corollary 1.17 implies then that it is represented by a non-negative cocycle, and, from which precedes, this non-negative cocycle has to be a nice non-negative cocycle. This completes the proof of the missing implication of theorem 5.2.

Efficient semi-flows are dilating

In this section, we are interested in the dynamical behaviour of the efficient semi-flows of a special dynamic branched surface. Our result is proposition 6.4 below. This proposition is an intermediate step to prove proposition 7.1 further in the paper, and to eventually obtain a criterion of existence of cross-sections in certain hyperbolic attractors (theorem 7.3). Definition 6.1 Let W be a special dynamic branched surface. A path p in W is carried by W if it is transverse to the singular graph S of W and, at each intersection-point x in p ∩ S, crosses both the locally 2-sheeted side and the locally 1-sheeted side of x. A path p in W is properly embedded if it is an embedded path which does not contain any crossing of W and such that:

• Its endpoints belong to some separating orbit-segment of W .

• For each 2-component C of W , each connected component of p ∩ C intersects exactly once the separating orbit-segment of C.

The combinatorial length l(p) of a properly embedded path p is equal to the number of intersection-points of p with the union of the separating orbits of W minus 1.

Remark 6.2 When speaking of the "number of intersection-points of a path p with the union of the separating orbits", we mean the number of points in the image of p which also belong to some separating orbit. The combinatorial length of a properly embedded path p is also equivalently defined as the number of intersection-points of the interior of the path with the union of the separating orbits, plus 1, or also the number of 2-components crossed by the path, plus 1.

Definition 6.3 Let W be a special dynamic branched surface. Let (σ t ) t∈R + be some efficient semi-flow on W . If p is a properly embedded path carried by W , then p is dilated by (σ t ) t∈R + if there is λ > 1, C > 0 and t 0 > 0 such that l(σ nt 0 (p)) ≥ Cλ n l(p) for any integer n ≥ 1.

Proposition 6.4 Let W be a special dynamic branched surface. Let (σ t ) t∈R + be some efficient semi-flow on W . There exists M > 0 such that, if p is any properly embedded path carried by W , of combinatorial length greater or equal to M , then p is dilated by (σ t ) t∈R + .

Let us first notice that the hypothesis for p to be carried by W is necessary in order to have σ t (p) a path in W for any time t ≥ 0. Indeed, one required that a path is a locally injective map from the interval to W . By definition of an efficient semi-flow, this is not the case for σ t (p), t any positive real, if p is not carried by W .

Lemma 6.5 With the assumptions and notations of proposition 6.4, let C(p) be the set of points x ∈ p such that there exists t x > 0 satisfying that σ tx (x) is a crossing of W , for all t ′ < t x , σ t ′ (x) is distinct from the crossings and σ t ′ (x) does not belong to p.

Then the cardinality N (p) of C(p) is finite. If N (p) is strictly greater than the combinatorial length of p, then l(σ t 1 (p)) ≥ l(p) + 1 for some t 1 > 0.

Proof of lemma 6.5: Since W is compact, the number of crossings is finite. By definition, N (p) is lesser or equal to the number of crossings, and thus is finite. Assume now that N (p) is strictly greater than the combinatorial length of p. This implies that there exists at least one point x ∈ p which is not in a separating orbit, but whose image after t x belongs to a separating orbit. Furthermore, if some point x belongs to a separating orbit, then this remains true for any σ t (x), t ≥ 0. Figure 11 illustrates the phenomenom of dilatation, or non-dilatation when homotoping p along the semi-flow through a crossing.

In this figure, α denotes the possible intersections of p with the neighborhood of a crossing, it is important here to recall that p is carried by W . Let t max be the supremum of all the times t x for x ∈ C(p). Since N (p) is finite, t max is finite. From which precedes, the combinatorial length of σ tmax+ǫ (p), ǫ > 0 small, which consists of counting the number of intersection-points of the interior of the path with the union of the separating orbits, is equal to N (p) ≥ l(p) + 1. This completes the proof of the lemma. ♦ α α α dilated not dilated Proof of lemma 6.6: Let p be any properly embedded loop carried by W . Let C be any circuit of W intersected by p (there exists at least one). By compacity of W , there exists t ′ 2 > 0 such that any crossing of C is in the image of some σ t , t < t ′ 2 . If for some t ≤ t ′ 2 , N (σ t (p)) > l(p), then l(σ t ′ 2 (p)) ≥ l(p) + 1 by lemma 6.5. Let us assume N (σ t ′ 2 (p)) = l(p). Then, for any t < t ′ 2 , any connected component of the intersection of σ t (p) with a small neighborhood of any crossing v in C is an arc which intersects in this neighborhood the separating orbit of v. In other words, the intersection of σ t (p) with a neighborhood of a crossing in C is in the case of no dilatation illustrated by figure 11. This implies that none of the two phenomenoma illustrated by figure 12 occurs along any edge in C. That is: Let v be any crossing in C. Let w be the crossing following v in C, and let [vw] an edge in C connecting v to w. If some germ of 2-component at v contains two germs of edges at v which are consecutive in C, then the germ at w to which it is connected through [vw] satisfies this same property. Therefore, there exists a 2-component which is on the locally 2-sheeted side of any point of C, and which contains C in its boundary, that is admits C as boundary circle. By definition of a special dynamic branched surface, the 2-components are discs. And a special dynamic branched surface is in particular a dynamical 2-complex.

One so obtains a contradiction with the definition of dynamical 2-complex, which states in particular that, in the boundary of a disc component, there are exactly one repellor and one attractor for the orientation induced by the edges of the singular graph. The proof of lemma 6.6 is completed.

♦ v w v w [vw] [vw]
Figure 12: Never occurs if no dilatation Corollary 6.7 With the assumptions and notations of proposition 6.4, there exist M > 1 and t 2 > 0 such that, if p is any properly embedded path carried by W of combinatorial length l(p) ≥ jM , j ≥ 1, then l(σ t 2 (p)) ≥ l(p) + j.

Proof of corollary 6.7: Since the singular graph S of W is finite, there exists M > 1 such that if l(p) ≥ M , then some edge of S will contain two points of p. This implies that one can embed a loop b in a small neighborhood of a subpath p ′ of p in W , which intersects the same edges of the singular graph than p ′ . One proved in lemma 6.6 that there exists

t ′ 2 > 0 such that l(σ t ′ 2 (b)) ≥ l(b) + 1.
The arguments used precedingly clearly apply to show that p ′ satisfies this same property, i.e. there exists t 2 > 0, which will be fine for any path p ′ as above, such that l(σ t 2 (p ′ )) ≥ l(p ′ ) + 1 (t 2 is possibly slightly greater than t ′ 2 ). Therefore, l(σ t 2 (p)) ≥ l(p) + 1. If l(p) ≥ jM , then p contains at least j distinct subpaths as the subpath p ′ above. Therefore, in this case l(σ t 2 (p)) ≥ l(p) + j. This completes the proof of corollary 6.7. ♦ Proof of proposition 6.4: By corollary 6.7, there exist t 2 > 0 and M > 1 such that, if p is any properly embedded path carried by W with l(p)

= jM + r, r ≤ M -1, then l(σ t 2 (p)) ≥ l(p)+j. That is l(σ t 2 (p)) ≥ l(p)(1+ 1 M )-r M . Let us observe that -r M ≥ 1 M -1. Let λ ′ = 1 + 1 M and C ′ = 1 M -1 (C ′ is negative). From which precedes, by definition of a semi-flow, l(σ nt 2 (p)) ≥ l(p)(λ ′ n + C ′ l(p) (λ ′ n-1 + λ ′ n-2 + • • • + 1)). Since l(p) ≥ M and C ′ < 0, l(σ nt 2 (p)) ≥ l(p)(λ ′ n + C ′ M (λ ′ n-1 + λ ′ n-2 + • • • + 1)). Since λ ′ n-1 + λ ′ n-2 + • • • + 1 = 1-λ ′n 1-λ ′ , λ ′ n + C ′ M (λ ′ n-1 +λ ′ n-2 +• • •+1) = λ ′ n (1-C ′ M (1-λ ′ ) )+ C ′ M (1-λ ′ ) . By definition, C ′ M (1-λ ′ ) = 1-1 M .
Thus

C ′ M (1-λ ′ ) > 0 and 1 -C ′ M (1-λ ′ ) > 0. This implies l(σ nt 2 (p)) ≥ (1 -C ′ M (1-λ ′ )
)λ ′ n l(p) for any properly embedded path p carried by W with l(p) ≥ M , where λ ′ > 1 by definition. This completes the proof of proposition 6.4. ♦

Hyperbolic flows

We show below that, when one is given a special dynamic branched surface W , which is a spine of some 3-manifold M W , then an efficient semi-flow on W will define a hyperbolic flow on M W . We refer the reader to [START_REF] Shub | Global stability of dynamical systems[END_REF], [START_REF] Christy | Intransitive Anosov flows on 3-manifolds[END_REF][START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF] or [START_REF] Mosher | Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3manifolds[END_REF][START_REF] Mosher | Dynamical systems and the homology norm of a 3-manifold I[END_REF][START_REF] Mosher | Dynamical systems and the homology norm of a 3-manifold II[END_REF] among many others for basic definitions of hyperbolic dynamic. We show in this section how our criterion of existence of cross-sections on special dynamic branched surfaces gives a criterion of existence of cross-sections to the hyperbolic attractors associated to these branched surfaces (theorem 7.3). Proposition 7.1 Let W be a special dynamic branched surface which is the spine of some 3-manifold M W . Then any efficient semi-flow on W is semi-conjugated to some hyperbolic flow on M W . This proposition relies mainly on "classical" stuff, essentially found in the work of Christy. The difference with the usual setting is the following one: Whereas, usually, branched surfaces appear as the quotient of hyperbolic attractors, here one is given a particular kind of branched surface and one to prove that they allow to reconstruct such attractors. This is why we need proposition 6.4 at the end of the proof of proposition 7.1.

Proof of proposition 7.1: By definition of a special dynamic branched surface, a differentiable structure is defined at each point of the 2-complex. One can always choose an embedding i W : W → M W which preserves this differentiable structure, and such that there is a retraction r W : M W → i W (W ) as given by definition 2.1. Let us observe that, once chosen a maximal atlas (φ i , U i ) for M W , one obtains a collection of local embeddings

p i = φ i • i W in R 3 of overlapping open sets V i = i -1 W (U i ∩ i W (W )
) which cover W . This defines a cyclic ordering on the germs of 2-cells at each point x ∈ W . If C is any circuit of W , its lift under r -1 W in the boundary of M W contains an embedded closed curve. It is formed by the extremities of the arms of the triods r -1 W (x), x ∈ C, which lie between, according to the above cyclic ordering, the two germs of 2-cells which are on the locally 2-sheeted side of x. One collapses each such arm to its extremity in ∂M W , so that the above embedded closed curve becomes a set of tangency points of the fibers of a new retraction, denoted by r s W , of M W onto W . By construction, all the fibers r s W -1 (x), x ∈ W , are intervals which are transverse at their endpoints to ∂M W , and which admit exactly one interior point of tangency with ∂M W if x is in the singular graph of W , but is not a crossing of W , and exactly two such points of tangency if x is a crossing of W . As in proposition 2.3, once chosen an efficient semi-flow (σ t ) t∈R + on W , the retraction r s W defined above allows to construct a non-singular flow (φ t ) t∈R + which is semi-conjugated to (σ t ) t∈R + by r s W . In order to prove that (φ t ) t∈R + can be chosen to be a hyperbolic flow, one has to show that one can define, at each point of the interior of M W , three independent directions, one tangent to (φ t ) t∈R + , and the two others such that the flow is contracting along one and dilating along the other. One easily defines a combinatorial metric on the fibers of the retraction r s W such that the flow (φ t ) t∈R + will be contracting along these fibers. It suffices to assign to each fiber a length of 1. Since by construction (φ t ) t∈R + flows from the locally 2-sheeted side to the locally 1-sheeted side in a lift under r s W -1 of a neighborhood in W of the singular graph, the image of two fibers, each of length 1, is contained in a fiber, also of length 1. The conclusion is straightforward. Let us now observe that one can choose (φ t ) t∈R + to leave invariant a codim 1-foliation F u transverse to the fibers of the retraction r s W . Indeed, one has a natural horizontal foliation P C i × [-1, 1] of each polygonal box r s W -1 (C i ), where P C i is a polygon and C i is any 2-component of W identified with P C i × {0}. The glueing of these polygonal boxes to obtain M W induces a glueing between the horizontal leaves P C i × {t} of these boxes, which defines a codim 1-foliation F u of M W transverse to the fibers of r s W . A small pertubation in a neighborhood of ∂M W allows to make this foliation transverse to the boundary of the manifold. One easily shows that the flow (φ t ) t∈R + can be chosen to leave invariant this foliation (beware however that this is no more true for the general class of dynamical 2-complexes). One defined in section 6 a combinatorial length on the paths properly embedded in W (see definition 6.1). One then proved that any such path carried by W which is sufficiently long is dilated by any efficient semi-flow (see proposition 6.4). One easily checks that the paths carried by W are exactly the paths which lift under r s W -1 to paths embedded in some leaf of F u . Moreover, the cell-decomposition of W lifts under r s W -1 to a cell decomposition of the leaves of F u . One so obtains a combinatorial metric on these leaves such that any path in a leaf of combinatorial length greater than some constant M > 1 and which projects under r s W to a properly embedded path is dilated by the flow induced by (φ t ) t∈R + on the leaf. This gives us a third direction at each point of M W -∂M W along which (φ t ) t∈R + is dilating for the chosen metric. From which precedes, one constructs a metric on M W such that (φ t ) t∈R + is as anounced. This completes the proof of proposition 7.1. ♦ Definition 7.2 A positive cocycle of a flat dynamical 2-complex is a non-negative cocycle which is positive on all the embedded positive loops of the singular graph.

Theorem 7.3 Let W be a special dynamic branched surface which is the spine of some 3-manifold M W . If (φ t ) t∈R + denotes any hyperbolic flow as given by proposition 7.1, then the flow (φ t ) t∈R + admits a cross-section if and only if there exists a positive cocycle u ∈ C 1 (W ; Z). Any such cocycle defines a cross-section to (φ t ) t∈R + .

Proof of theorem 7.3: Any cross-section to (φ t ) t∈R + defines a cohomology-class in H 1 (M W ; Z), and thus of H 1 (W ; Z). By definition, for any periodic orbit O of the efficient semi-flow on W semi-conjugated by r s W to (φ t ) t∈R + , there is a periodic orbit O ′ of (φ t ) t∈R + with r s W (O ′ ) = O. In particular, O ′ is homotopic to O. From proposition 4.1 and corollary 1.17, any cross-section to (φ t ) t∈R + then defines a nice non-negative cocycle of C 1 (W ; Z). The following lemma implies that it defines in fact a positive cocycle: Lemma 7.4 Any nice non-negative cocycle of a special dynamic branched surface W which is the spine of some 3-manifold M W is a positive cocycle.

Proof of lemma 7.4: If not, then we prove in [START_REF] Gautero | Foliations of 2-complexes[END_REF] that u defines a transversely oriented foliation of the branched surface in compact graphs all homotopically equivalent. Except for a finite number, the graphs which are the leaves of this foliation are transverse to the singular graph S of W . If there are N circuits C 1 , • • • , C N of W with u(C i ) = 0, then each of these circuits C i is contained in a graph Γ i of the foliation, which is otherwise transverse to S -C i . In the case where W is the spine of a 3-manifold M W , this foliation in compact graphs lifts, under the retraction r s W -1 , to a transversely oriented foliation of M W in compact surfaces such that a finite number of leaves S

1 = r s W -1 (Γ 1 ), • • • , S N = r s W -1 (Γ N )
have a circle of tangencies T i with the boundary. These are the circles in the lift under r s W -1 of the circuits C i which are the sets of points of tangency of the fibers of the retraction r s W with ∂M W (see proof of proposition 7.1). On both sides of a surface S i , in an ǫ-neighborhood, ǫ > 0 small, there are two properly embedded surfaces S - i , S + i with the same Euler characteristic than S i and such that S - i intersects the locally 2-sheeted side of C i whereas S + i intersects its locally 1-sheeted side (we consider the branched surface embedded in the manifold). In the ǫ-neighborhood in ∂M W of the circle T i ∈ S i ∩ ∂M W , there are one or two boundary-loops of the surface S - i . The other boundary-loops of S - i are in bijection with the boundary loops of S i . For all the preceding observations, we refer the reader to figure 13.

S S i i -T i

Figure 13: Change of homeomorphism-type when passing through a circuit Moreover, the surfaces S i and S + i clearly have the same number of boundary-components. This implies that this number decreases when passing from S - i to S + i . But the existence of the foliation implies that one eventually returns to the same surface S - i . Which cannot happen because, each time that one passes by some S j , the number of boundarycomponents decreases and one easily checks that it never increases. One so obtains a contradiction and proves that there are no circuit of W in the kernel of u, i.e. u is a positive cocycle. ♦ Since a positive cocycle is in particular a nice non-negative cocycle, the reverse implication, and the end, of theorem 7.3 comes from theorem 5.2 and proposition 2.6. ♦ Remark 7.5 The fact that a nice non-negative cocycle which defines a cross-section to (φ t ) t∈R + is a positive cocycle can be deduced, as we say in the introduction, from the work of Christy who shows that the circuits lift to periodic orbits of the hyperbolic attractor.

Example: A hyperbolic attractor without any cross-section collapsing to a special dynamic branched surface Before looking at this example, let us observe that Christy, in [START_REF] Christy | Branched surfaces and attractors I: Dynamic branched surfaces[END_REF], gives many examples of hyperbolic attractors with or without cross-sections. However, those without section are more complicated in the sense that they have annular 2-components.

In figures 14 and 15, we give the singular graph S and the disc components of a special dynamic branched surface W . Using the embeddability criterion of [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF] for instance (see also [START_REF] Christy | Immersing branched surfaces in dimension three[END_REF]), one checks that W is the spine of an orientable compact 3-manifold M W . Let us recall how to do this. One chooses an embedding in R 3 of a neighborhood of each crossing. Each such local embedding defines a cyclic ordering on the germs of 2-components around the germs of edges of S at the corresponding crossing. Therefore, for each edge e of S, one so defined a cyclic ordering on the germs of 2-cells at e, both in a neighborhood of the initial crossing i(e) and of the terminal crossing t(e). Since there are only three germs of 2-components incident to each edge, these two cyclic orderings either agree or disagree. This allows to assign to each edge a weight of 0, in the case they agree, or +1, in the case they disagree. From [START_REF] Benedetti | PETRONIO 'A finite graphic calculus for 3-manifolds[END_REF], W is the spine of some compact 3-manifold M W , unique up to homeomorphism, if and only if the sum of these weights along the boundary loop of each disc component is even. The manifold M W is then orientable if and only if the sum of the weights along each loop of the singular graph is even. Local embeddings in R 3 of a neighborhood of each crossing of W are shown in figure 14. For these choices, all the weights are null. From proposition 7.1, for any efficient semi-flow (σ t ) t∈R + on W , one gets a hyperbolic flow on M W . From theorem 7.3, this hyperbolic flow admits a cross-section S u if and only if there exists a nice non-negative cocycle u ∈ C 1 (W ; Z). Searching for the non-negative integer cocycles amounts to search for the non-negative integer solutions of the linear system with integer coefficients M δ 1 W X = 0, where

M δ 1 W =          1 0 0 0 1 -1 -1 -1 -2 0 0 0 -1 1 0 1 -1 0 0 0 0 -1 -1 -1 0 0 0 0 0 -1 1 0 0 1 -1 0 0 1 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 -1 -1 -1 -1 -1 -1 -1 0 -1 1 1 0 1         
is the matrix of the first co-boundary operator. The j th coefficient of the i th is the signed number of times the edge e j of the singular graph S appears in the boundary of the i th disc component (numbered from left to right and from top to bottom when looking at figure 15). The coordinate x j of a vector-solution X = (x 0 , x 1 , • • • , x 11 ), if any, gives the value of the corresponding cocycle on the edge e j . This is the algebraic intersection-number with the edge e j of the r-embedded graph Γ u = r W (S u ), which is a cross-section to the semi-flow (σ t ) t∈R + semi-conjugated by r W to the chosen hyperbolic flow. Equivalently, this is the number of vertices of Γ u along e j . Using the program Mapple, one checks that there are no non-negative solutions to the system M δ 1 W X = 0. Thus, there are no non-negative cocycles, and so no cross-sections to any of the hyperbolic flows constructed from M W . A presentation of the fundamental group of M W is obtained by choosing a maximal tree in the singular graph S, the edges in its complement being then in bijection with the generators of π 1 (M W ). We give below such a presentation, the chosen maximal tree being the one formed by the edges e 0 , e 1 , e 4 , e 5 , e Let us finally observe that M W has only one boundary-component. This is noticed by checking that W has only one circuit, that each boundary-component contains at least one curve which projects to a circuit and that there is exactly one such curve in the lift of each circuit. Let us recall that, in the orientable case, all the boundary-components are tori. We show in this Appendix how to construct boundary-tangent flows from semi-flows on dynamical 2-spines of 3-manifolds. We then give a necessary and sufficient criterion of existence of cross-sections to these flows.

Let K be a flat dynamical 2-spine of some 3-manifold M K . There is a covering of K by a finite union of overlapping open neighborhoods N (x i ), i = 1, • • • , k, such that each N (x i ) lifts, under r -1 M K , to four disjoint discs D j i in ∂M K if x i is a crossing of K, to three disjoint discs D j i if x i is a singular point distinct from a crossing and to two disjoint discs D j i if

x i is a non-singular point of K. The collection of all these discs D j i cover ∂M K . Each D j i projects, under r M K , to a disc in K, and any combinatorial semi-flow on K restricts to a singular flow on such a disc r M K (D j i ) (see figure 16). This leads to the following lemma:

Lemma 8.1 Let K be a flat dynamical 2-spine of some 3-manifold M K . Any combinatorial semi-flow on K lifts, under r -1 M K , to a singular flow on ∂M K .

Figure 16: Desingularizing a boundary-flow Figure 16 illustrates the different possible models of disc r M K (D j i ). The first disc represents a neighborhood of a non singular point, and the semi-flow restricts to a non singular flow on this disc with two points of tangency with the boundary. The other discs are overlapping discs in the neighborhood of a point interior to an edge e of the singular graph. The thick line in the figure represents the interval which is a neighborhood in e of the point considered. In the last two discs of the first line, the semi-flow restricts to a non singular flow. In a neighborhood of a singular point interior to an edge of the singular graph, there always is exactly one such disc. In the discs of the second line, the semi-flow gives rise to a singular flow, whose singularities are along a segment contained in the interval coming from the edge of the singular graph. The singularities of the flow on ∂M K given by lemma 8.1 belong to a trivalent graph Γ in ∂M K , formed by the union of the extremities of the triods and 4-ods pre-images under r -1 M K of the singular points in K. These singularities form a union of possibly disjoint intervals contained in this graph Γ. From a singular flow on ∂M K as given by lemma 8.1, one gets a non-singular flow on ∂M K by desingularizing as indicated by figure 16. One blows up an interval I in the above graph Γ to a rectangle I × [-1, 1], with I identified to I × {0}. The singular flow defined above from the semi-flow on K is then modified as illustrated in the last line of figure 16. The intervals of singularities become orbits segments for the non-singular flow defined, which are locally attracting. A non-singular flow on ∂M K obtained in this way from the singular flow given by lemma 8.1 will be called below a ∂-flow. Remark 8.2 In the case of a special dynamic branched surface W , the graph Γ in ∂M W formed by the union of the endpoints of the fibers of the retraction r W contains a union of disjointly embedded loops, exactly one for each circuit of W , which project to these circuits under r W . They are the set of points of tangency with ∂M W of the fibers of the retraction r s W defined in the proof of proposition 7.1. By definition of a ∂-flow, they are periodic orbits of such a flow on ∂M W .

Let K be a flat dynamical 2-spine of a 3-manifold M K . One considers a non-singular flow (φ t ) t∈R + on M K as given by proposition 2.3. One glues a 3-dimensional piece ∂M K × [0, 1] to M K by identifying ∂M K × {0} to ∂M K by the identity-map. One homotopes the flow (φ t ) t∈R + along the fibers x × [0, 1], x ∈ ∂M K × {0}, so that the flow obtained on M K Id ∂M K × [0, 1] is tangent to the boundary ∂M K × {1}, and defines in restriction to this boundary a singular flow as given by lemma 8.1. As explained precedingly, one now pertubs this new flow in a neighborhood of the boundary ∂M K × {1} so that the flow (ψ t ) t∈R eventually constructed defines, in restriction to this boundary, a ∂-flow. Since the manifold on which this flow is defined is clearly homeomorphic to M K , we will speak of it as a flow on M K .

If K is a flat dynamical 2-spine of some 3-manifold M K , then we will call ∂-tangent flow on M K a non-singular flow (ψ t ) t∈R as constructed above.

Theorem 8.3 Let K be a flat dynamical 2-spine of a 3-manifold M K . If (ψ t ) t∈R is a ∂-tangent flow on M K , then (ψ t ) t∈R admits a cross-section if and only if there exists a positive cocycle u ∈ C 1 (K; Z). Any such positive cocycle defines a cross-section S u = r -1 M K (Γ u ) to (ψ t ) t∈R .

One proves in [START_REF] Gautero | Dynamical 2-complexes[END_REF] that a positive cocycle u defines a cross-section Γ u to any chosen combinatorial semi-flow on a flat dynamical 2-complex. By construction of a ∂-tangent flow, one easily proves that the surface S u = r -1 M K (Γ u ) given by lemma 2.7 is a cross-section to (ψ t ) t∈R , if the chosen combinatorial semi-flow is the one used for the construction of (ψ t ) t∈R . Conversely, let us assume that some ∂-tangent flow (ψ t ) t∈R admits a cross-section S. Then, isotoping S along (ψ t ) t∈R , one obtains a non-singular foliation of M K by properly embedded surfaces S t , transverse to ∂M K and all homeomorphic to S. The union of a finite number of these surfaces intersects transversely and positively the positive loops in the image of the singular graph of K under the chosen embedding of K in M K . Therefore, each surface intersects transversely and positively any positive loop of the singular graph. This implies that it defines a positive cohomology-class of H 1 (M K ; Z), and thus of H 1 (K; Z). Corollary 1.17 implies that any such cohomology-class is represented by a positive cocycle. ♦ Remark 8.4 In the case of a special dynamic branched surface W , a ∂-tangent flow is a pseudo-Anosov flow. By definition, from remark 8.2, it admits a periodic orbit in ∂M W in the lift under r -1 W of any circuit of W . These periodic orbits are the singular periodic orbits of the flow.
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 1 Figure 1: Non-singular and singular points in flat 2-complexes
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 12214 Figure 2: 2-components in a dynamical 2-complex
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 4 Figure 4: Thickening of flat 2-complexes A flat dynamical 2-complex which is the spine of some compact 3-manifold will be called a flat dynamical 2-spine. Remark 2.2 At the difference of the standard spines of Casler or the special spines of Matveev, we admit 2-components which are not 2-cells. Thus two non-homeomorphic (n + 1)-manifolds can admit homeomorphic flat 2-spines. Proposition 2.3 below treats the problem of reconstructing a non-singular flow on the manifold M K from a combinatorial semi-flow on a dynamical 2-spine K.
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 5 Figure 5: An efficient semi-flow in a neighborhood of a crossing

  Lemma 3.5 ([3]) If D is any 2-component of a special dynamic branched surface W , then: 1. Each ∂-positive path of D (see lemma 1.
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 6 Figure 6: A 2-component of a special dynamic branched surface
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 7 Figure 7: Coding train-track
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 42 Let l be any positive loop in the singular graph S of a special dynamic branched surface W . The flat pieces of l are the maximal (in the sense of the inclusion) flat subpaths of l, i.e. if c 0 , • • • , c k are the corners of l, the flat pieces of l are the connected components

Lemma 4 . 3

 43 Any flat path p in the singular graph S of a special dynamic branched surface W which connects two of the crossings of W admits a unique decomposition p = p 1 • • • p k , k ≥ 1, such that:
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 18 Figure 8: Loops with corners I
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 9 Figure 9: Loops with corners II

Figure 10 :

 10 Figure 10: An impossible circuit
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 1166 Figure 11: Local dilatation of a properly embedded carried path

  6 : π 1 (M W ) =< e 2 , e 3 , e 7 , e 8 , e 9 , e 10 , e 11 ; w 1 = 1, w 2 = 1, w 3 = 1, w 4 = 1, w 5 = 1, w 6 = 1 > where w 1 = e 8 e 7 e 8 , w 2 = e -1 3 e 9 e 10 e 11 , w 3 = e -1 9 e 10 , w 4 = e -1 3 e 2 2 , w 5 = e -1 11 e 10 e 7 , w 6 = e -1 3 e -1 2 e -1 7 e 11 e 8 e 9 .
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 1415 Figure 14: The singular graph of an embedded special dynamic branched surface without any non-negative cocycle