Françoise Pene 
email: francoise.pene@univ-brest.fr
  
Franc ¸oise 
  
P Ène 
  
SELF-INTERSECTIONS OF TRAJECTORIES OF LORENTZ PROCESS

Keywords: April 2, 2013. 2010 Mathematics Subject Classification. 60F99, 37D50 Sinai billiard, Lorentz process, self intersection

published or not. The documents may come    

Self-intersections of trajectories of Lorentz process

Introduction

The Lorentz process describes the evolution of a point particle moving at unit speed in a domain Q with elastic reflection on ∂Q. We consider here a planar Lorentz process in a Z 2 -periodic domain Q ⊆ R 2 with strictly convex obstacles U i,ℓ constructed as follows. We choose a finite number of convex open sets O 1 , ..., O I ⊂ R 2 with C 3 -smooth boundary and with non null curvature. We repeat these sets Z 2 -periodically by defining U i,ℓ = O i + ℓ for every (i, ℓ) ∈ {1, ..., I} × Z 2 . We suppose that the closures of the U i,ℓ are pairwise disjoint. Now we define the domain Q := R 2 \ I i=1 ℓ∈Z 2 U i,ℓ . We assume that the horizon is finite, which means that every line meets the boundary of Q (i.e. there is no infinite free flight). We consider a point particle moving in Q with unit speed and with respect to the Descartes reflection law at its reflection times (reflected angle=incident angle). We call configuration of a particle at some time the couple constituted by its position and its speed. The Lorentz process in the domain Q is the flow (Y t ) t on Q × S 1 such that Y t maps the configuration at time 0 to the configuration at time t. We assume that the initial distribution P is uniform on (Q ∩ [0, 1] 2 ) × S 1 . The study of the Lorentz process is strongly related to the corresponding Sinai billiard ( M , μ, T ). Recall that this billiard is the probability dynamical system describing the dynamics of the Lorentz process modulo Z 2 and at reflection times. Ergodic properties of this dynamical system have been studied namely by Sinai in [START_REF] Ya | Dynamical systems with elastic reflections[END_REF] (for its ergodicity), Bunimovich and Sinai [START_REF] Bunimovich | Markov partitions for dispersed billiards[END_REF][START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF], Bunimovich, Chernov and Sinai [START_REF] Bunimovich | Markov partitions for two-dimensional hyperbolic billiards[END_REF][START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF] (for central limit theorems), Young [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF] (for exponential rate of decorrelation). Other limit theorems for the Sinai billiard and its applications to the Lorentz process have been investigated in many papers, let us mention namely [START_REF] Conze | Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications[END_REF][START_REF] Pène | Applications des proprits stochastiques de billards dispersifs[END_REF][START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF] for its ergodicity and [START_REF] Dolgopyat | Recurrence properties of Lorentz gas[END_REF] for some other properties.

We are interested here in the study of the following quantity, called number of selfintersections of the trajectory of the Lorentz Process:

V t := #{(r, s) ∈ [0; t] 2 : π Q (Y r ) = π Q (Y s )},
where π Q denotes the canonical projection from Q × S 1 to Q (i.e. π Q (q, v) = q). This quantity V t corresponds to the number of couples of times (r, s) before time t such that the particle was at the same position in the plane at both times r and s. We also define V n as the number of self-intersections up to the nth reflection time. The studies of V t and of V n are naturally linked.

Self-intersections of random walks have been studied by many authors (see [START_REF] Chen | Random walk intersections. Large deviations and related topics[END_REF] and references therein). Motivated by the study of planar random walks in random sceneries, Bolthausen [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] established an exact estimate for the expectation of the number of self-intersections of planar recurrent random walks. He also stated an upper bound for its variance. This last estimate was sufficient for his purpose but not optimal. A precise estimate for this variance has recently been stated by Deligiannidis and Utev [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF].

In view of planar Lorentz process in random scenery, another notion of self-intersections of Lorentz process arises: the number of self-intersections of the Lorentz process seen on obstacles, i.e. the number Vn of couples of times (r, s) (before the n-th reflection) such that the particle hit the same obstacle at both times r and s. This quantity has been studied in [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF][START_REF] Pène | An asymptotic estimate of the variance of the self-intersections of a planar periodic Lorentz process[END_REF]. In the present work, our approach has some common points with [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF][START_REF] Pène | An asymptotic estimate of the variance of the self-intersections of a planar periodic Lorentz process[END_REF] but the study of V n (and thus of V t ) is much more delicate than the study of Vn (see section 2 for some explanations).

Let us define (I k , S k ) in {1, ..., I} × Z 2 as the index of the obstacle hit at the k-th reflection time ((I 0 , S 0 ) being the index of the obstacle at time 0 or at the last reflection time before 0). The asymptotic behaviour of (S n ) n plays some role here. In particular, our proofs use a decorrelation result and some precised local limit theorems for (S n ) n . As a consequence, the constants appearing in our statements are expressed in terms of the asymptotic (positive) variance matrix Σ 2 of (k -1/2 S k ) k≥1 (with respect to μ).

Theorem 1. We have

E μ[V n ] = cn log n + O(n), with c := 2E μ[τ ]/(π √ det Σ 2 i |∂O i |), ( 1 
)
where τ is the free flight length until the next reflection time.

Theorem 2. We have

E(V t ) = 2t log t π √ det Σ 2 i |∂O i | + O(t) as t goes to infinity. ( 2 
)
Let us indicate that these results are generalized in Corollaries 15 and 17 to a wider class of initial probability measures.

Theorem 3. We have Var μ(V n ) ∼ c ′ n 2 with c ′ := c 2 1 + 2J - π 2 6 and J := [0,1] 3 (1 -(u + v + w))1 {u+v+w≤1} du dv dw uv + uw + vw .
Corollary 4. The following convergences hold almost everywhere (with respect to μ and to the Lebesgue measure on Q × S 1 respectively):

lim n→+∞ V n n log n = c and lim t→+∞ V t t log t = 2 π √ det Σ 2 i |∂O i | .
The paper is organized as follows. In Section 1, we introduce the billiard systems, some notations and local limit theorems with remainder terms. In Section 2, we prove Theorem 1. In Section 3, we establish a decorrelation result in view of our proof of Theorem 3 in Section 4. In Section 5, we use Theorems 1 and 3 to prove Theorem 2 and some generalization of Theorems 1 and 2 to a class of probability measures. Finally we prove Corollary 4 in Section 6.

Lorentz process and billiard systems

We denote by •, • the usual scalar product on R 2 and by | • | the supremum norm on R 2 .

1.1. planar billiard system. For any q ∈ ∂Q, we write n q for the unit normal vector to ∂Q at q directed into Q. We consider the set M of couples position-unit speed (q, v) corresponding to a reflected vector on ∂Q:

M := {(q, v) ∈ (∂Q) × S 1 : n q , v ≥ 0}.
For every i ∈ {1, ..., I}, we fix some q i ∈ ∂O i . A couple (q, v) ∈ M is parametrized by (i, ℓ, r, ϕ)

∈ I i ′ =1 {i ′ } × Z 2 ∪ R |∂O i ′ |Z × -π 2 , π 2 if
• qℓ is the point of ∂O i with curvilinear absciss r for the trigonometric orientation (starting from q i ) • ϕ is the angular measure of ( n q , v).

We consider the transformation T mapping a reflected vector to the reflected vector corresponding to the next collision time. T preserves the (infinite) measure µ with density cos(ϕ) with respect to the measure drdϕ on M . This infinite measure dynamical system (M, µ, T ) is called planar billiard system. We endow M with a metric d equal to max(|rr ′ |, |ϕϕ ′ |) on any obstacle ∂U i,ℓ . We define the map τ : M → [0, +∞[ by τ (q, v) := min{s > 0 : q + s v ∈ ∂Q}, which corresponds to the length of the free flight of a particle starting from q with initial speed v. Due to our assumptions, we have min τ > 0 and max τ < ∞.

We define R 0 as the set of (q, v) ∈ M with v tangent to ∂Q at q (this set corresponds to {ϕ = 0}). For any integers k ≤ ℓ, we write R k,ℓ = ℓ m=k T m (R 0 ) and ξ ℓ k for the set of connected components of M \ R -ℓ,-k . Due to the hyperbolic properties of T , it is easy to see that (see for example [START_REF] Pène | Back to balls in billiards[END_REF]Lemma A.1])

∃c 0 > 0, ∃δ ∈ (0, 1), ∀k ≥ 1, ∀C ∈ ξ k -k , diam(C) ≤ c 0 δ k . (3) 
We recall that T is discontinuous but 1 2 -Hölder continuous on each connected component of M \ R -1,0 . 1.2. Lorentz process. To avoid ambiguity, at collision times, we only consider reflected vectors. The set of configurations is then

M := ((Q \ ∂Q) × S 1 ) ∪ M ⊆ Q × S 1 .
The Lorentz process is the flow (Y t ) t defined on M such that, for every (q, v) ∈ M, Y t (q, v) = (q t , v t ) is the couple position-speed at time t of a particle that was at position q with speed v at time 0. This flow preserves the measure ν on M, where ν is the product of the Lebesgue measure on Q and of the uniform measure on S 1 . This flow is naturally identified with the suspension flow ( Ỹt ) t over (M, µ, T ) with roof function τ . Indeed, we recall that ( Ỹt ) t is defined by Ỹt (x, s) = (x, s + t) on the set M := {(x, s) ∈ M × [0, +∞[ : s ≤ τ (x)}, with the identifications (x, τ (x)) ≡ (T (x), 0). The flow ( Ỹt ) t preserves the measure ν on M given by dν(x, s) = dµ(x)ds. Now, we define ∆ : M → M by ∆((q, v), s) = (q + s v, v) if s < τ (q, v).

We have

Y t = ∆ • Ỹt • ∆ -1 and ∆ * (ν) = ν. (4) 
1.3. Billiard system with finite measure. We define M as the set of (q, v) ∈ M such that q ∈ I i=1 ∂O i . A point of M is now parametrized by (i, r, ϕ). We consider the transformation T : M → M , corresponding to T modulo Z 2 . More precisely, if T (q, v) = (q ′ , v ′ ), then T (q, v) = (q", v) with q" ∈ (q ′ + Z 2 ) ∩ ∪ I i=1 ∂O i . This transformation T preserves the probability measure μ of density cos(ϕ)/(2 i |∂O i |) with respect to drdϕ.

We call toral billiard system the probability dynamical system ( M , μ, T ).

It is easy to see that (M, µ, T ) corresponds to the cylindrical extension of ( M , μ, T ) by Ψ : M → Z 2 given by Ψ = (S 1 ) | M (with S n defined in the introduction). Indeed

∀((q, v), ℓ) ∈ M × Z 2 , T (q + ℓ, v) = (q ′ + ℓ + Ψ(q, v), v ′ ) if (q ′ , v ′ ) = T (q, v).
More generally we have

∀((q, v), ℓ) ∈ M ×Z 2 , ∀n ≥ 1, T n (q +ℓ, v) = (q n +ℓ+ n-1 k=0 Ψ( T k (q, v)), v n ) if (q n , v n ) = T n (q, v).
(5) Observe that n-1 k=0 Ψ• T k = S n on M . We recall the following local limit theorem with remainder term. We set β :=

1 2π √ det Σ 2 . Proposition 5 (Proposition 4.1 of [18]). Let p > 1. There exists c > 0 such that, for any k ≥ 1, if A ⊆ M is a union of components of ξ k -k and B ⊆ M is a union of components ξ ∞ -k , then for any n > 2k and N ∈ Z 2 μ(A ∩ {S n = N } ∩ T -n (B)) - βe - 1 2(n-2k) (Σ 2 ) -1 N,N n -2k μ(A)μ(B) ≤ ck μ(B) 1 p (n -2k) 3 2 
.

Note that, if we suppose n ≥ 3k, we can replace the conclusion of this result by

μ(A ∩ {S n = N } ∩ T -n (B)) - βe -1 2n (Σ 2 ) -1 N,N n μ(A)μ(B) ≤ ck μ(B) 1 p n 3 2 . ( 6 
)
Remark 6. Observe that, since the billiard system ( M , μ, T )

is time reversible, if A ⊆ M is a union of components of ξ k -∞ and B ⊆ M is a union of components ξ k -k , if n > 3k then we have μ(A ∩ {S n = N } ∩ T -n (B)) - βe -1 2n (Σ 2 ) -1 N,N n μ(A)μ(B) ≤ ck μ(A) 1 p n 3 2 . (7) 
Estimates ( 6) and (7) will be enough most of the time but not every time. We will also use the following refinements of the local limit theorem.

Proposition 7 (Proposition 4 of [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF]). Let any real number p > 1. There exist a 0 > 0 and

K 1 > 0 such that, for any integers k ≥ 0, n ≥ 1, any measurable set A ⊆ M union of elements of ξ k 0 , any measurable set B ⊆ M union of elements of ξ +∞ 0 , for any N ∈ Z 2 , we have μ(A ∩ {S n+k -S k = N } ∩ T -(n+k) B) - β μ(A)μ(B) n e -1 2n (Σ 2 ) -1 N,N ≤ K 1 μ(B) + μ(A)μ(B) 1 p n 3 2 |N | √ n + |N | 3 n 3 2 e -a 0 n |N | 2 + μ(B) 1 p n 2 .
We generalize this result as follows.

Proposition 8. Let any real number p > 1. There exist C > 0, a 0 > 0 and

K 1 > 0 such that, for any integers k ≥ 0, n ≥ 1 such that n ≥ 4k, any measurable set A ⊆ M union of elements of ξ k -k , any measurable set B ⊆ M union of elements of ξ +∞ -k , for any N ∈ Z 2 , we have μ(A ∩ {S n = N } ∩ T -n B) - β μ(A)μ(B) n e -1 2n (Σ 2 ) -1 N,N ≤ K 1 k μ(B) + μ(A)μ(B) 1 p n 3 2 |N | √ n + |N | 3 n 3 2 e -a 0 n (max(|N |-2k,0)) 2 + k μ(B) 1 p n 2 . Proof. Observe that T -k A is a union of elements of ξ 2k 0 and that T -k B is a union of elements of ξ +∞ 0 . We have μ(A ∩ {S n = N } ∩ T -n B) = μ( T -k A ∩ {S n+k -S k = N } ∩ T -(n+k) B) = x ′ ,y ′ μ(A x ′ ; S n -S 2k = N -x ′ -y ′ ; T -n B y ′ ), with A x ′ := T -k A ∩ {S 2k -S k = x ′ } and B y ′ := T -k B ∩ {S k = y ′ } and where the sum is taken over x ′ , y ′ ∈ Z 2 such that |x ′ | ≤ k S 1 ∞ and |y ′ | ≤ k S 1 ∞ ; Applying Proposition 7 with (A x ′ , B y ′
) and using the fact that n -2k ≥ n/2, we obtain the result.

Remark 9. Observe again that, by time reversibility, if

A is a union of elements of ξ k -∞ , if B is a union of components of ξ k -k and if n ≥ 4k, then μ(A ∩ {S n = N } ∩ T -n B) - β μ(A)μ(B) n e -1 2n (Σ 2 ) -1 N,N ≤ K 1 k μ(A) + μ(B)μ(A) 1 p n 3 2 |N | √ n + |N | 3 n 3 2 e -a 0 n (max(|N |-2k,0)) 2 + k μ(A) 1 p n 2 .

Proof of Theorem 1

Observe that the trajectory of the particle (starting from M ) up to the n-th reflection is

n-1 j=0 [π Q • T j , π Q • T j+1 ]. So we have μ-almost surely V n = n-1 k,j=0 1 E k,j = n + 2 n-1 k=1 n-1-k j=0 1 E j,j+k , with E j,k := {[π Q • T j , π Q • T j+1 ] ∩ [π Q • T k , π Q • T k+1 ] = ∅}. Hence μ(V n ) = n + 2 n k=1 (n -k)μ(E 0,k ). ( 8 
)
Proposition 10. There exists η > 0 such that μ(E 0,n ) = c/(2n) + O(n -1-η ), with c defined in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF].

Proof of Theorem 1. It follows directly from [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF] and from Proposition 10. Indeed

n k=1 n -k k = n( n k=1 k -1 ) -n = n log(n) + O(n) and n k=1 n -k k 1+η = n( n k=1 k -1-η ) - n k=1 k -η = O(n).
Before going into the proof of Proposition 10, let us see the common points between Vn and V n and let us also explain why the study of V n requires more subtle estimates than the study of Vn . Recall that Vn = n k,j=1

1 (I k ,S k )=(I j ,S j ) . So E μ[ Vn ] = n + 2 n-1 k=1 (n -k)μ( Ê0,k ), with Ê0,k = I i=1 {I 0 = i, S k = 0, I k = i}.
This expression may appear similar to [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks[END_REF], but E 0,k is more complicate than Ê0,k . Indeed, in M , we have

E 0,k = x∈ M({x} ∩ T -k (V (x) )) = N ∈Z 2 x∈ M({x} ∩ {S k = N } ∩ T -k ( M ∩ (V (x) -N ))), due to (5) with V (x) := {y ∈ M : [π Q (y), π Q • T (y)] ∩ [π Q (x), π Q • T (x)] = ∅} and with A -N = {(q -N, v) : (q, v) ∈ A}.
The union on N is not a problem (it is a finite union since the horizon is finite), the main problem is that the union on x is not finite. Indeed the set V (x) depends on x (and not only on the obstacle containing x).

Lemma 11. We have μ(

V (x) + Z 2 ) = 2τ (x) i |∂O i | .
Proof. We use the fact that the measure cos ϕ drdϕ is preserved by billiard maps. So, adding the virtual obstacle

[π Q (x), π Q (T (x))], we obtain that µ(V (x) ) is equal to the measure of the set of vectors based on [π Q (x), π Q • T (x)] for the measure | cos ϕ| drdϕ, which is equal to 4τ (x) (since τ (x) is the length of [π Q (x), π Q (T (x))]).
Proof of Proposition 10. There exists C > 0 such that, for any ε > 0, any integer n ≥ 1, any x 0 ∈ M , any connected component C of B(x 0 , ε) \ R -1,0 and any x ∈ C, we have

(C ∩ E 0,n )△(C ∩ T -n V (x) ) ⊆ C ∩ T -n D C , with D C := π -1 Q π Q (C) ∪ (π -1 Q π Q (T (C)) ∪ T -1 (π -1 Q π Q (C)) ∪ T -1 (π -1 Q π Q (T (C))) ⊆ E x,ε and E x,ε := π -1 Q π Q (B(x, ε) ∪ B(T (x), C √ ε)) ∪ T -1 (π -1 Q π Q (B(x, ε) ∪ B(T (x), C √ ε))), since T is 1 2 -Hölder continuous on each connected component of M \ R -1,0 . Take (ε, k) such that ε 2 = n -1 10 = δ k (with δ of (3)). For any connected component C of B(x 0 , ε) \ R -1,0 , we choose (in a measurable way) a point x = x C ∈ C and define Ẽn,C := C ∩ T -n Ṽ (x) , with C := Z∈ξ k -k :Z∩C =∅ Z and Ṽ (x) := Z∈ξ k -k :Z∩V (x) =∅ Z. (9) 
We have

|μ(C ∩ E 0,n ) -μ( Ẽn,C )| ≤ μ( Dn,C ), with Dn,C := C ∩ T -n DC , with DC := Z∈ξ k -k :Z∩D C =∅ Z. ( 10 
) Observe that π Q ( x∈ M V (x) ) is contained in I i=1 |ℓ|≤ S 1 ∞ (∂O i + ℓ). Therefore, due to (5) Ẽn,C = |ℓ|≤ S 1 ∞ ( C ∩ {S n = ℓ} ∩ T -n ( M ∩ ( Ṽ (x) -ℓ))) (11) 
and

Dn,C = |ℓ|≤ S 1 ∞ ( C ∩ {S n = ℓ} ∩ T -n ( M ∩ ( DC -ℓ))). (12) 
Let p ∈ (1, 2). Due to ( 7) and (3), we conclude that there exist C, C0 , C1 > 0 such that, for any ε > 0, any integer n ≥ 1, any x 0 ∈ M , any connected component C of B(x 0 , ε) \ R -1,0 and any x ∈ C, we have

|μ(C ∩ E 0,n ) -μ( Ẽn,C )| ≤ μ( Dn,C ) ≤ C ε 2 δ k n + kε 2 p n 3 2 ≤ C0 ε 2 δ k n and μ(C ∩ E 0,n ) = ±μ( Dn,C ) + μ( Ẽn,C ) = ±c ε 2 δ k n + kε 2 p n 3 2 + 2β μ(C)μ(V (x) )(1 ± δ k 2 ) n = ±2cn -23 20 + 2β μ(C)τ (x) n i |∂O i | .
Let m ≥ 1. We consider a μ-essential partition of M in rectangles (P

(i,j,ℓ) m
) i∈{1,...,I},j,ℓ∈{0,...,m-1} given by

P (i,j,ℓ) m := (i, r, ϕ) : r ∈ j|∂O i | m ; (j + 1)|∂O i | m , ϕ ∈ - π 2 + ℓπ m ; - π 2 + (ℓ + 1)π m .
We write P m for the union on (i, j, ℓ) of the partition of 20 and k such that δ k = n -1/10 . We obtain 20 ), using the fact that τ is 1/2-Hölder continuous on each connected component of M \ R -1,0 .

P (i,j,ℓ) m \ R -1,0 in connected components. Taking ε -1 = m = n 1/
μ(E 0,n ) = C∈Pm μ(C ∩ E 0,n ) = ±n -21 20 + C∈Pm 2βE μ[τ 1 C ] n i |∂O i | = 2βE μ[τ ] n i |∂O i | + O(n - 21 

A decorrelation result

Let us recall some facts on the towers constructed by Young [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF]. These towers are two dynamical systems ( M , μ, T ) and ( M , μ, T ) such that ( M , μ, T ) is an extension of ( M , μ, T ) and ( M , μ, T ). This means that there exist two measurable maps π : M → M and π : M → M such that: π • T = T • π, π • T = T • π, μ = (π) * μ and μ = (π) * μ. Young defines a separation time ŝ on M such that if ŝ(x, y) ≥ n, we have ŝ(x, y) = n + ŝ( T n x, T n y) and ππ -1 ({x}), ππ -1 ({y}) are contained in the same atom of ξ n 0 . For any β 0 ∈ (0, 1) and any ε 0 ≥ 0, Young defines a Banach space (V β 0 ,ε 0 , • (β 0 ,ε 0 ) ) containing 1 M . Let p be fixed and set q := p/(p -1). It is possible to find β 0 ∈ (0, 1) and ε 0 > 0 such that

• L q (μ) ≤ C 0 • (β 0 ,ε 0 ) , for some C 0 > 0. ( 13 
)
From now on, we write (V, • ) = (V β 0 ,ε 0 , • (β 0 ,ε 0 ) ) for this choice of (β 0 , ε 0 ). Lemma 10 of [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF] states that gh ≤ g (β 0 ,0) h .

We recall that, due to Young's construction, if f is constant on each element of ξ N 0 , then there exists a measurable f defined on M such that

f • π = f • π with f (β 0 ,0) ≤ f ∞ (1 + 2β -N 0 ). ( 15 
)
Let P be the transfer operator on L q of f → f • T seen as an operator on L p . Young proved the quasicompacity of this operator P on V. As in [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF], we consider here an adaptation of the construction of Young's towers such that 1 is the only dominating eigenvalue of P on V and has multiplicity one. Hence, there exist K 0 > 0 and a > 0 such that

∀n ≥ 1, P n (•) -E μ[•] ≤ K 0 e -an . (16) 
Thanks to this property, Young established an exponential rate of decorrelation. Let us consider Ψ : M → Z 2 the cell-shift function. Recall that, on M ,

S n = n-1 k=0 Ψ • T k . Since Ψ is constant on each element of ξ 1 0 , there exists Ψ : M → Z 2 such that Ψ • π = Ψ • π and the coordinates of Ψ are in V (β 0 ,0) with norm less than 3β -1 0 Ψ ∞ . For any u ∈ R 2 , we define P u (f ) = P (e i u, Ψ f ). Observe that ∀k ≥ 1, P k u (f ) = P k (e i u, Ŝk f ) and P k u (f • T k × g) = f P k u (g), (17) 
with Ŝn := n-1 k=0 Ψ• T k . In [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF], Szász and Varjú applied the classical Nagaev-Guivarc'h method [START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF][START_REF] Nagaev | More exact statement of limit theorems for homogeneous Markov chains[END_REF][START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF] to this context. This method plays a crucial role in the proof of Proposition 12 and gives in particular the following inequalities (see [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF] and Lemma 12 of [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF])

K 1 := sup u∈[-π,π 2 ] P k u < ∞, (18) 
∃K > 0, ∀k ≥ 1, ∀h ∈ V, (2π) -2 [-π,π] 2 P k u (h) du ≤ K h k . (19) 
The following result generalizes Proposition 3 of [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF].

Proposition 12. For any p > 1, there exist C > 0 and b > 0 such that for any nonnegative integers k, n, r, m, any

N 1 , N 2 ∈ Z 2 , any A 1 , A 2 , A 3 ⊆ M union of components of ξ k -k , and any B ⊆ M union of component of ξ ∞ -k , we have Cov μ(1 A 1 ∩{Sn=N 1 }∩ T -n A 2 , 1 A 3 ∩{Sr=N 2 }∩ T -r B • T n+m ) ≤ C min(1, e -am+bk ) nr .
Proof. First, we assume that 2k < min(n, r) and m > 6k. Let us write

C n,m,r := Cov μ(1 A 1 ∩{Sn=N 1 }∩ T -n A 2 , 1 A 3 ∩{Sr=N 2 }∩ T -r B • T n+m ). Observe that T -k A i is a union of components of ξ 2k 0 and that T -k B is a union of components of ξ ∞ 0 . Let Âi := ππ -1 T -k A i and B := ππ -1 T -k B. These sets are measurable and satisfy π-1 T -k A i = π-1 Âi and π-1 T -k B = π-1 B. So C n,m,r = Cov μ(1 Â1 1 Ŝn=N1 • T k 1 Â2 • T n , (1 Â3 1 Ŝr=N2 • T k 1 B • T r ) • T n+m ) = 1 (2π) 4 ([-π;π] 2 ) 2 e -i u,N 1 e -i t,N 2 ×Cov μ(1 Â1 e i u, Ŝn • T k 1 Â2 • T n , (1 Â3 e i t, Ŝr • T k 1 B • T r ) • T n+m ) dudt.
Now, due to [START_REF] Pène | An asymptotic estimate of the variance of the self-intersections of a planar periodic Lorentz process[END_REF], the covariance appearing in this last integral can be rewritten

E μ[P k t (1 B P r-k t (P k (1 Â3 P m-k (g u -E μ[g u ]))))],
with

g u := P k u (1 Â2 P n-k u (P k (1 Â1 ))). Since P t L 1 (μ) ≤ 1, we obtain |C n,m,r | ≤ (2π) -4 ([-π,π] 2 ) 2 E μ[|1 B P r-k t (P k (1 Â3 P m-k (g u -E μ[g u ])))|] dtdu ≤ (2π) -4 ([-π,π] 2 ) 2 C 0 μ(B) 1 p P r-k t (P k (1 Â3 P m-k (g u -E μ[g u ])
)) dtdu by ( 13)

≤ (2π) -2 [-π,π] 2 μ(B) 1 p KC 0 r -k K 1 (3β -2k 0 ) P m-k (g u -E μ[g u ])
)) du by (19)(18)(14)( 15)

≤ (2π) -2 μ(B) 1 p KC 0 r -k K 1 (3β -2k 0 ) [-π,π] 2
K 0 e -a(m-k) g u du by ( 16)

≤ (2π) -2 μ(B) 1 p KC 0 r -k K 1 (3β -2k 0 )K 0 e -a(m-k) [-π,π] 2 P k u (1 Â2 P n-k u (P k (1 Â1 ))) du ≤ μ(B) 1 p K 2 C 0 (r -k)(n -k) (3K 1 β -2k 0 ) 3 K 0 e -a(m-k) by (18)(19)(14) (15) 
≤ Ĉ0 e -am+b 0 k nr ,

for some b 0 > 0. We still assume that m > 6k. When n ≤ 2k and r > 2k, we observe that

A 1 ∩ {S n = N 1 }∩ T -n A 2 is
a union of components of ξ 3k -k , using the same argument we obtain an upper bound in Ĉ0 e -am+3b 0 k /r which is less than Ĉ1 e -am+4b 0 k /(nr) for some Ĉ1 > 0. Treating analogously the cases (r ≤ 2k; 2k < n) and (n ≤ 2k; r ≤ 2k), we obtain the following bound

|C n,m,r | ≤ Ĉe -am+bk
nr , for some Ĉ > 0 and some b ≥ 6a > 0.

Assume now that am ≤ bk (this is true if m ≤ 6k). Then, due to the fact that

| Cov μ(f, g)| ≤ |E μ[f g]| + |E μ[f ]E μ[g]|, we have |C n,m,r | ≤ μ(S n = N 1 ; S r • T n+m = N 2 ) + μ(S n = N 1 )μ(S r = N 2 ) ≤ | Cov μ(1 Sn=N 1 , 1 Sr=N 2 • T n+m )| + 2μ(S n = N 1 )μ(S r = N 2 ) ≤ Ĉ2 nr ,
using estimation [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF] with k = 0 and the local limit theorem for S n (see [START_REF] Szász | Local limit theorem for the Lorentz process and its recurrence in the plane[END_REF] or (6)).

Estimate of the variance of V n

Recall that Σ 2 is invertible. In particular, there exists ã0 such that (Σ 2 ) -1 x, x ≥ 2ã 0 |x| 2 for every x ∈ R 2 . Comparing

x∈Z 2 : |x|≤am e -(Σ 2 ) -1 x,x 2m with |u|≤am e -(Σ 2 ) -1 u,u 2m du,
we obtain the following useful formula sup

||S 1 ||∞≤a≤3||S 1 ||∞ x∈Z 2 : |x|≤am e -(Σ 2 ) -1 x,x 2m -2πm √ det Σ 2 = O( √ m). ( 21 
)
Proof of Proposition 3. As in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF], the proof of Proposition 3 is based on the following formula

Var(V n ) = 4 1≤k 1 <ℓ 1 ≤n 1≤k 2 <ℓ 2 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 = 8A 1 + 8A 2 + 8A 3 + 4A 4 , with D k 1 ,ℓ 1 ,k 2 ,ℓ 2 := μ(E k 1 ,ℓ 1 ∩ E k 2 ,ℓ 2 ) -μ(E k 1 ,ℓ 1 )μ(E k 2 ,ℓ 2 )
and

A 1 := 1≤k 1 <ℓ 1 ≤k 2 <ℓ 2 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 , A 2 := 1≤k 1 ≤k 2 <ℓ 1 ≤ℓ 2 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 , A 3 := 1≤k 1 <k 2 <ℓ 2 <ℓ 1 ≤n D k 1 ,ℓ 1 ,k 2 ,ℓ 2 , A 4 := 1≤k 1 <ℓ≤n [μ(E k 1 ,ℓ ) -(μ(E k 1 ,ℓ )) 2 ].
We use the notations and ideas of the proof of Proposition 10. Let p ∈ (1, 2). We take m, k such that m 2 = δ -k = n 1/100 . We have

μ(E k 1 ,ℓ 1 ∩ E k 2 ,ℓ 2 ) = C,C ′ ∈Pm μ(C ∩ E 0,ℓ 1 -k 1 ∩ T -(k 2 -k 1 ) (C ′ ∩ E 0,ℓ 2 -k 2 )).
As in the proof of Proposition 10, we approximate C ∩ E 0,r by Ẽr,C . See ( 9) and [START_REF] Dvoretzky | Some problems on random walk in space[END_REF] for the definition of Ẽr,C and of Dr,C . We recall that (C ∩ E 0,r )△ Ẽr,C ⊆ Dr,C and that, according to [START_REF] Conze | Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications[END_REF], if r ≥ 3k, we have (for p > 1 large enough)

μ( Ẽr,C ) = O m -2 r + km -2/p r 3 2 = O(m -2 r -1 ) = O(r -1 n -1 100 ) (22) and μ( Dr,C ) ≤ m -2 δ k r + km -2/p r 3 2 = O(m -2 r -1 δ k ) = O(r -1 n -2 100 ). ( 23 
) • Control of A 1 . We have | Cov μ(1 C∩E 0,r , 1 C ′ ∩E 0,s • T r+ℓ ) -Cov μ(1 Ẽr,C , 1 Ẽs,C ′ • T r+ℓ )| ≤ ≤ | Cov μ(1 Ẽr,C ∪ Dr,C , 1 Ds,C ′ • T r+ℓ ))| + | Cov μ(1 Dr,C , 1 Ẽs,C ′ ∪ Ds,C ′ • T r+ℓ )| + 2μ( Ẽr,C ∪ Dr,C )μ( Ds,C ′ ) + 2μ( Dr,C )μ( Ẽs,C ′ ∪ Ds,C ′ ).
Now, due to [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF], [START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF], applying Proposition 12 (together with ( 22) and ( 23)), we obtain

C C ′ | Cov μ(1 C∩E 0,r , 1 C ′ ∩E 0,s • T r+ℓ )| ≤ m 4 C min(1, e -aℓ+bk ) rs + Cn -1 100 rs ,
and so (considering separately the sums over ℓ such that aℓ ≥ 2bk and aℓ < 2bk )

A 1 = k 1 ≥1,r>0,ℓ≥1,s>0:k 1 +r+ℓ+s≤n Cov μ(1 E 0,r , 1 E 0,s • T r+ℓ ) = O(n 2-1 100 log 2 n). (24) 
• Control of A 2 . Notice that

A 2 = k 1 +r+ℓ+s≤n Cov μ(E 0,r+ℓ , E r,r+ℓ+s )
(where the sum is also taken over

k 1 ≥ 1, r ≥ 0, ℓ ≥ 1, s ≥ 0). According to Proposition 10, we have μ(E 0,r ) = c 2r + O(r -1-η ) with η > 0. A direct computation (see Lemma 13) gives k 1 +r+ℓ+s≤n 1 (r+ℓ)(ℓ+s) ∼ π 2 12 n 2 . Hence k 1 +r+ℓ+s≤n μ(E 0,r+ℓ )μ(E 0,ℓ+s ) ∼ π 2 12 c 2 4 n 2 . ( 25 
)
Now, let us prove that

k 1 +r+ℓ+s≤n μ(E 0,r+ℓ ∩ E r,r+ℓ+s ) ∼ J c 2 4 n 2 . ( 26 
)
From which we conclude that

A 2 ∼ J - π 2 12 c 2 4 n 2 . ( 27 
)
We have to estimate C

(2) r,ℓ,s := μ(E 0,r+ℓ ∩ E r,r+ℓ+s ). Given C, C ′ ∈ P m , we consider the set

E (2) r,ℓ,s,C,C ′ := E 0,r+ℓ ∩ E r,r+ℓ+s ∩ C ∩ T -r C ′ which we approximate by Ẽ(2) r,ℓ,s,C,C ′ := Ẽr+ℓ,C ∩ T -r
Ẽℓ+s,C ′ . We notice that

E (2) r,ℓ,s,C,C ′ △ Ẽ(2) r,ℓ,s,C,C ′ ⊆ ( Dr+ℓ,C ∩ T -r ( Dℓ+s,C ′ ∪ Ẽℓ+s,C ′ )) ∪ (( Ẽr+ℓ,C ∪ Dr+ℓ,C ) ∩ T -r Dℓ+s,C ′ ). ( 28 
)
Observe that μ( Ẽ(2) r,ℓ,s,C,C ′ ) is equal to the following sum x G r,ℓ,s,C,C ′ ,x (where x means the sum over the x ∈ Z 2 such that |x| ≤ min(r, 29) and where C, C′ , Ṽ and Ṽ ′ are the ξ k -k -measurable sets such that Ẽr+ℓ,C = C ∩ T -r-ℓ Ṽ and Ẽℓ+s,C = C′ ∩ T -ℓ-s Ṽ ′ (see ( 9)). Due to (28), we have

ℓ + 1, s + 2) S 1 ∞ ) with G r,ℓ,s,C,C ′ ,x := |N |,|N | ′ ≤ S 1 ∞ μ( C ∩ {S r = x} ∩ T -r ( C′ ∩ {S ℓ = N -x}∩ ∩ T -ℓ ( M ∩ ( Ṽ -N ) ∩ {S s = x + N ′ -N } ∩ T -s ( M ∩ ( Ṽ ′ -N ′ )))), (
μ(E (2) r,ℓ,s,C,C ′ △ Ẽ(2) r,ℓ,s,C,C ′ ) ≤ x (S 1,x + S 2,x ), ( 30 
)
where S 

r,ℓ,s,F △ Ẽ(2) r,ℓ,s,C,C ′ ), we will apply ( 6) three successive times to each summand appearing in (29) and in (30).

We start with the study of (29). According to [START_REF] Chen | Random walk intersections. Large deviations and related topics[END_REF] and since |N |, |N ′ | ≤ S 1 ∞ , when r, ℓ, s ≥ 3k, the quantity given by ( 29) is equal to

μ( C)μ(⊙) √ det Σ 2 2πr e -(Σ 2 ) -1 x,x 2r + e 1 , (31) 
with

μ(⊙) = μ( C′ )μ(⊗) √ det Σ 2 2πℓ e -(Σ 2 ) -1 x,x 2ℓ + e 2 , (32) μ 
(⊗) = μ( Ṽ )μ( Ṽ ′ ) √ det Σ 2 2πs e -(Σ 2 ) -1 x,x 2s + e 3 , (33) 
the error terms being estimated by

|e 1 | ≤ K1 k μ(⊙) 1 p r 3 2 , |e 2 | ≤ K1 k μ(⊗) 1 p ℓ 3 2
and

|e 3 | ≤ K1 ks -3 2 ,
for some K1 > 1. So the contribution to A 2 of the three dominating terms in (31), ( 32) and ( 33) is (where + means the sum restricted to k 1 ≥ 1, min(r, s, ℓ) ≥ 3k):

+ k 1 +r+ℓ+s≤n x C,C ′ μ( C)μ( C′ )μ( Ṽ )μ( Ṽ ′ ) (det Σ 2 ) 3 2 (2π) 3 rℓs e -1 2 (Σ 2 ) -1 x,x ( 1 r + 1 ℓ + 1 s ) . = C,C ′ 4E μ[τ 1 C ]E μ[τ 1 C ′ ](1 + o(1)) (det Σ 2 ) 3 2 (2π) 3 ( i |∂O i |) 2 + k 1 +r+ℓ+s≤n x e -1 2 (Σ 2 ) -1 x,x ( 1 r + 1 ℓ + 1 s )
rℓs .

Since 1/ min(r, ℓ, s) ≤ 1 r + 1 ℓ + 1 s ≤ 3/ min(r, ℓ, s), due to (21), we have

+ k 1 +r+ℓ+s≤n x e -1 2 (Σ 2 ) -1 x,x ( 1 r + 1 ℓ + 1 s ) 2π √ det Σ 2 rℓs = + k 1 +r+ℓ+s≤n   1 rℓ + rs + sℓ + O min(r, ℓ, s) rℓs   = O(n 3 2 ) + + k 1 +r+ℓ+s≤n 1 rℓ + rs + sℓ = o(n 2 ) + k 1 +r+ℓ+s≤n 1 rℓ + rs + sℓ ,
(where the last sum is taken over k 1 , r, ℓ, s ≥ 1) since

n k 1 ,r,s=1 3k 
ℓ=1 1 rℓ + rs + sℓ ≤ O(n log n) n r,s=1 1 rs = O(n log 3 n) = o(n 2 ).
Now, according to Lemma 14, we have

k 1 +r+ℓ+s≤n 1 rℓ + rs + sℓ ∼ n 2 J.
We finally obtain that the contribution to A 2 of (29) coming from the dominating terms of ( 31), ( 32) and ( 33) is

∼ J c 2 4 n 2 . ( 34 
)
Now, we prove that the other contributions are in o(n 2 ).

-Using the fact that |x| ≤ 2 min(r, ℓ, s) S 1 ∞ , we get that the contribution to A 2 of the term coming from the composition of the three error terms (e 1 , e 2 , e 3 ) is bounded by

m 4 k 1 +r+ℓ+s≤n x K3 1 k 3 r 3 2 ℓ 3 2p s 3 2p 2 ≤ 16( S 1 ∞ + 1) 4 K3 1 n 2 100 nk 3 r+ℓ+s≤n min(r 2 , ℓ 2 , s 2 ) r 3 2 ℓ 3 2p s 3 2p 2 . ≤ O   n 102 100 log 3 n r,ℓ,s≤n r 2 3 ℓ 2 3 s 2 3 r 3 2 ℓ 3 2p s 3 2p 2   = O(n 102 100 +5-9 2p 2 ) = o(n 2 ),
if we take p > 1 small enough.

-Analogously, the contribution to A 2 of the composition of one dominating term and of two error terms of (31), (32) and ( 33) is less (up to a multiplicative constant) than

n 2 100 k 2 k 1 +r+ℓ+s≤n 1 r 1 p 2 ℓ 3 2 s 3 2p x e -ã 2 0 |x| 2 rp 2 ≤ O   n 102 100 k 2 r,ℓ,s≤n min(r, ℓ 2 , s 2 ) r 1 p 2 ℓ 3 2 s 3 2p   ≤ O   n 102 100 k 2 r,ℓ,s≤n r 1 2 (ℓ 2 ) 1 4 (s 2 ) 1 4 r 1 p 2 ℓ 3 2 s 3 2p   = O(n 102 100 + 3 2 -1 p 2 + 3 2 -3 2p log 3 n) = o(n 2 ),
if we take p > 1 small enough.

-Now, the contribution to A 2 of the composition of two dominating terms and of one error term of (31), ( 33) and ( 33) is less (up to a multiplicative constant) than On the one hand, we have x e -a 2 0 |x| 2 r+ℓ rℓ ≤ min(r, ℓ) (using the fact that rℓ/(r+ℓ) ≤ min(r, ℓ)). On the other hand, this sum is in O(s 2 ). Therefore the quantity we are looking at is less than

O   n 102 100 k 2 r,ℓ,s≤n min(r, ℓ, s 2 ) r 1 p ℓ 1 p s 3 2   = O   n 102 100 k 2 r,ℓ,s≤n r 3 8 ℓ 3 8 (s 2 ) 1 4 r 1 p ℓ 1 p s 3 2   = O n 102 100 +2+ 3 4 -2 p log 3 n = o(n 2 ), if p > 1 is small enough. -If r ≤ 4k or ℓ ≤ 4k or s ≤ 4k, then x is a sum over |x| ≤ 4k S 1 ∞ and one of the following sets is ξ 5k -5k -measurable: C ∩ {S r = x} ∩ T -r C′ or C′ ∩ {S ℓ = N -x} ∩ T -ℓ ( M ∩ ( Ṽ -N )) or M ∩ ( Ṽ -N ) ∩ {S s = x + N ′ -N } ∩ T -s ( M ∩ ( Ṽ ′ -N ′ )).
We then apply (6) accordingly and take in account the fact that the sum on r or k or ℓ must be taken on {1, ..., 4k}. This leads to a term in o(n 2 ).

-Finally, the estimate of (30) follows the same lines as the estimate of (29). We obtain an analogous estimation multiplied by δ k . This ensures that the contribution of (30

) to A 2 is in o(n 2 ). • Control of A 3 . We have A 3 = k 1 +r+ℓ+s≤n Cov μ(1 E 0,r+ℓ+s , 1 E 0,ℓ • T r ).
This part is the most delicate. Indeed the terms k 1 +r+ℓ+s≤n μ(E 0,r+ℓ+s )μ(E 0,ℓ ) and

k 1 +r+ℓ+s≤n μ(E 0,r+ℓ+s ∩ E r,r+ℓ )
are in n 2 log n. But we will prove that their difference is in n 2 . More precisely, we show that

A 3 ∼ c 2 8 n 2 . (35) 
First, according to Proposition 10, we have

k 1 +r+ℓ+s≤n μ(E 0,r+ℓ+s )μ(E 0,ℓ ) = k 1 +r+ℓ+s≤n c + O((r + ℓ + s) -η ) 2(r + ℓ + s) μ(E 0,ℓ ) = o(n 2 ) + C k 1 +r+ℓ+s≤n cμ(E 0,ℓ ∩ C) 2(r + ℓ + s) = o(n 2 ) + C k 1 +r+ℓ+s≤n cμ( Ẽℓ,C ) + O(n -2 100 /ℓ) 2(r + ℓ + s) = o(n 2 ) + C k 1 +r+ℓ+s≤n cμ( Ẽℓ,C ) 2(r + ℓ + s) . (36) 
Indeed, setting q = ℓ + r and t = ℓ + r + s, we have

C k 1 +r+ℓ+s≤n n -2 100 ℓ(r + ℓ + s) ≤ n 1-1 100 n t=1 1 t t q=1 q ℓ=1 1 ℓ = O(n 2-1 100 log n) = o(n 2 ).
Now, let us estimate k 1 +r+ℓ+s≤n μ(E 0,r+ℓ+s ∩ E r,r+ℓ ) in terms of μ( Ẽℓ,C ). For any C, C ′ ∈ P m , we approximate once again

C ′ ∩ E 0,r+ℓ+s ∩ T -r C ∩ E r,r+ℓ by Ẽr+ℓ+s,C ′ ∩ T -r Ẽℓ,C , (37) 
the measure of which is x H r,ℓ,s,C,C ′ ,x (with x being taken on the set of x ∈ Z 2 such that |x| ≤ min(r, s + 2) S 1 ∞ ) and with

H r,ℓ,s,C,C ′ ,x := |N |,|N ′ |≤L μ( C′ ∩ {S r = x} ∩ T -r ( C ∩ {S ℓ = N }∩ ∩ T -ℓ ( M ∩ ( Ṽ -N ) ∩ {S s = N ′ -x -N } ∩ T -s ( M ∩ ( Ṽ ′ -N ′ ))))). ( 38 
)
Now, applying ( 6) and ( 7) (when min(r, s) ≥ 3k), we obtain that this quantity is equal to μ( C′ )μ(♦)

√ det Σ 2 2πr e -(Σ 2 ) -1 x,x 2r + e ′ 1 , (39) with μ 
(♦) = μ( Ẽℓ,C )μ( Ṽ ′ ) √ det Σ 2 2πs e -(Σ 2 ) -1 x,x 2s + e ′ 2 , (40) 
the error terms being estimated by

|e ′ 1 | ≤ K1 k μ(♦) 1 p r 3 2 and |e ′ 2 | ≤ K1 k μ( Ẽℓ,C ) 1 p s 3 2
.

We obtain that the contribution to A 3 of the dominating terms of (36), (39) and ( 40) is (where * stands for the sum over k 1 ≥ 1, ℓ ≥ 1 and min(r, s) ≥ 3k)

C,C ′ * k 1 +r+ℓ+s≤n   μ( C′ )μ( Ṽ ′ )μ( Ẽℓ,C ) x e -(Σ 2 ) -1 x,x 2 
r+s rs det Σ 2 (2π) 2 rs - cμ( C′ )μ( Ẽℓ,C ) 2(r + ℓ + s)   = * k 1 +r+ℓ+s≤n C μ( Ẽℓ,C ) c 2   (1 + O(n -1 200 )) x e -(Σ 2 ) -1 x,x 2 
r+s rs √ det Σ 2 2πrs - 1 r + ℓ + s   = o(n 2 ) + * k 1 +r+ℓ+s≤n c 2 4ℓ   x e -(Σ 2 ) -1 x,x 2 r+s rs √ det Σ 2 2πrs - 1 r + ℓ + s   = o(n 2 ) + * k 1 +r+ℓ+s≤n c 2 4ℓ 1 r + s - 1 r + ℓ + s due to (21) = o(n 2 ) + c 2 4 * k 1 +r+ℓ+s≤n 1 (r + s)(r + ℓ + s) = o(n 2 ) + c 2 4 k 1 ,r,ℓ,s≥1 : k 1 +r+ℓ+s≤n 1 (r + s)(r + ℓ + s) ∼ c 2 4 n 2 [0,1] 4 1 {t+u+v+w<1} dt du dv dw (u + w)(u + v + w) = c 2 8 n 2 .
For the third line, we used the fact that C μ( Ẽℓ,C ) = c 2ℓ + O(ℓ -1-η ). For the last line, we used the Lebesgue dominated convergence theorem and the following equalities obtained by a change of variable (r = u + w, s = u + v + w) and by integrating in t, u, r and finally in s:

[0,1] 4 1 {t+u+v+w<1} dt du dv dw (u + w)(u + v + w) = [0,1] 4
1 {u<r<s,t+s<1} dt du dr ds rs = 0≤u≤r≤s≤1 (1s) du dr ds rs

= 1 0 (1 -s) ds = 1 2 .
Now, it remains to show that the contribution to A 3 of all the other terms is in o(n 2 ).

-According to ( 22), ( 39) and ( 40), the contribution of the term coming from the composition of the two error terms e ′ 1 and e ′ 2 is in

C,C ′ k 1 +r+ℓ+s≤n x k 2 μ( Ẽℓ,C ) 1 p 2 r 3 2 s 3 2p = 4 C,C ′ k 1 +r+ℓ+s≤n k 2 n -1 100p 2 ℓ 1 p 2 r 3 2 s 3 2p min(r 2 , s 2 ) (41) = 4 C,C ′ k 1 +r+ℓ+s≤n k 2 n -1 100p 2 ℓ 1 p 2 r 3 2 s 3 2p rs = O(n 1+ 1 100 (2-1 p 2 )+ 1 2 +1-1 p 2 +2-3 2p log 2 n),
which is not enough to conclude. Hence, we use the estimate of e ′ 2 given by Remark 9 for x ≥ 3k. On the one hand, the last term in the RHS of the formula given in Remark 9 brings (41) with s 3 2p replaced by ks 2 p , which gives o(n 2 ) for p > 1 small enough. On the other hand, the first term in the RHS of the formula of Proposition 8 gives still s 3 2p , but with min(r 2 , s) ≤ s 1 2 r instead of min(r 2 , s 2 ) ≤ rs. This ensures that this term is in o(n 2 ).

-The contribution of the term coming from the composition of the error term e ′ 1 of (39) and of the dominating term of (40) is in

C,C ′ k 1 +r+ℓ+s≤n x k r 3 2 μ( Ẽℓ,C )μ( Ṽ ′ )e -ã 0 |x| 2 s s 1 p = O   n 2 100 log n k 1 +r+ℓ+s≤n min(s, r 2 ) r 3 2 ℓ 1 p s 1 p   = O   n 1+ 2 100 log n r+ℓ+s≤n √ rs 3 4 r 3 2 ℓ 1 p s 1 p   = O (log n) 2 n 1+ 2 100 +1-1 p + 7 4 -1 p = o(n 2 ),
if p > 1 is small enough (using the fact that x e -ã 0 |x| 2 ps = O(min(s, r 2 ))). -Now, the contribution of the term coming from the composition of the the dominating term of (39) and of the error term e ′ 2 term of (40) is in

C,C ′ k 1 +r+ℓ+s≤n x μ( C′ ) r e -(Σ 2 ) -1 x,x 2r k μ( Ẽℓ,C ) 1 p s 3 2 = = n 1 100 log n k 1 +r+ℓ+s≤n min(r, s 2 ) rℓ 1 p s 3 2 = n 1 100 log n k 1 +r+ℓ+s≤n r 3 4 (s 2 ) 1 4 rℓ 1 p s 3 2 = n 1+ 1 100 + 3 4 +1-1 p log 2 n = o(n 2 ),
if p > 1 is small enough. -For the control of the sum over (k 1 , r, s, ℓ) such that min(r, s) < 3k, we proceed as we did for A 2 . -It remains to estimate

C,C ′ k 1 +r+ℓ+s≤n (μ( Dr+ℓ+s,C ′ ∩ T -r ( Ẽℓ,C ∪ Dℓ,C )) + μ(( Ẽr+ℓ+s,C ′ ∪ Dr+ℓ+s,C ′ ) ∩ T -r
Dℓ,C ).

The dominating terms obtained by ( 6) are estimated as the dominating terms of (39) and(40). They bring a contribution to A 3 in

δ k k 1 +r+ℓ+s≤n 1 (r + s)ℓ ≤ δ k n 2 log n = o(n 2 ).
The fact that the other terms are in o(n 2 ) follows as for the study of (37).

• Control of A 4 . We have A 4 ≤ 1≤k 1 <ℓ≤n P(E k 1 ,ℓ ) = O(n log n) = o(n 2 ).

Finally we have Var

μ(V n ) ∼ 8(A 2 + A 3 ).
Lemma 13. We have

k 1 ≥1,r≥0,ℓ≥1,s≥0:k 1 +r+ℓ+s≤n 1 (r + ℓ)(ℓ + s) ∼ π 2 12 n 2 .
Proof. Comparing the sum with an integral (by the Lebesgue dominated convergence theorem) and making the change of variables r = min(u + v, u + w) and s = max(u + v, u + w), we obtain

r+ℓ+s≤n 1 (r + ℓ)(ℓ + s) ∼ n {u,v,w>0 : u+v+w≤1} du dv dw (u + v)(u + w) ∼ 2n 1 0 1+u 2 u 1 r 1-r+u r ds s dr du ∼ 2n 1 0 1+u 2 u 1 r log 1 + u r -1 dr du. But 1+u 2 u 1 r log 1 + u r -1 dr = 1+ 1 u 2 log(w -1) w dw = Re Li 2 (2) -Li 2 1 - 1 u ,
with Li 2 the dilogarithm function. Indeed, we recall that for z

≥ 1, Li 2 (z) = π 2 6 - z 1 log(t-1) t dt - iπ log z. Recall that Re(Li 2 (2)) = π 2 4 . Using an explicit primitive of u → Li 2 (1 + 1 u ) (such as zLi 2 (1 -z -1 ) + Li 2 (-z) + (log z -iπ) log(z + 1)), we find that Re 1 0 Li 2 1 -1 u du = π 2 6 . Hence r+ℓ+s≤n 1 (r+ℓ)(ℓ+s) ∼ 2nπ 2 ((1/4) -(1/6)) = π 2 n/6 and so k 1 +r+ℓ+s≤n 1 (r + ℓ)(ℓ + s) = n-1 k 1 =1 r+ℓ+s≤n-k 1 1 (r + ℓ)(ℓ + s) = n-1 k 1 =1 r+ℓ+s≤k 1 1 (r + ℓ)(ℓ + s) ∼ π 2 n 2 12 .
Lemma 14. We have

k 1 ,r,ℓ,s≥1:k 1 +r+ℓ+s≤n 1 rℓ + rs + sℓ ∼ n 2 J, with 
J := [0,1] 3 (1 -(u + v + w))1 {u+v+w≤1} du dv dw uv + uw + vw .
Proof. We have

k 1 +r+ℓ+s≤n 1 rℓ + rs + sℓ = r+ℓ+s≤n n -(r + ℓ + s) rℓ + rs + sℓ = n 2 [0,1] 3 f ⌈nu⌉ n , ⌈nv⌉ n , ⌈nw⌉ n dudvdw ∼ n 2 [0,1] 3 f (u, v, w) dudvdw = n 2 J, with f (u, v, w) := 1-u-v-w uv+uw+vw 1 {u+v+w≤1}
, due to the Lebesgue dominated convergence theorem.

Proof of Theorem 2

Corollary 15. Let P be a probability measure on M with density h with respect to μ. Assume that h is in L 2 (μ). Then

E P [V n ] = cn log n + O(n).
Proof of Corollary 15. We have

|E P [V n ] -E μ[V n ]| = E μ[(V n -E μ[V n ])h] ≤ Var μ(V n ) h 2 = O(n) h 2 = O(n),
according to Theorem 3. We conclude thanks to Theorem 1.

For any t > 0, we define n t on M by n t := max{m ≥ 0 : m-1 k=0 τ • T k ≤ t} the number of reflections before time t.

Corollary 16. Let h be a probability density with respect to μ belonging to L p (μ) for some p > 2.

We have Corollary 17. Let H be a probability density with respect to ν on M such that h : (q, v) → ℓ∈Z 2 τ (q, v) 0 H(q + ℓ + s v, v) ds belongs to L p (μ) for some p > 2. Then E Hν [V t ] = ct log t/E μ[τ ] + O(t), as t goes to infinity. Proof of Theorem 2. For every (q, v) ∈ M , every ℓ ∈ Z 2 and every s ∈ [0, τ (q, v)), we have V t (q + ℓ + s v, v) = O(n t ) + V nt(q, v) (q, v) = O(t) + V nt(q, v) (q, v). So, due to (4), we have

E hμ [V nt ] = ct log t/E μ[τ ] + O(t
1 E k,j   2       1 2 ≤ Km t m 2 (εt) m 1 2 -1 p h p Var μ(V ⌊ t min τ ⌋ ) + (E μ[V ⌊ t min τ ⌋ ])
E Hν [V t ] = O(t) + E hµ | M [V nt ] = E 2h i |∂O i |μ [V nt ] = ct log t/E μ[τ ] + O(t),
according to Corollary 16.

Proof of Theorem 2. We apply directly Corollary 17 with H(q, v) = 1 q∈[0,1] 2 and h(q, v) = τ (q, v).

Almost sure convergence

In this section we prove Corollary 4 by a classical argument (see [START_REF] Dvoretzky | Some problems on random walk in space[END_REF] for example). Let γ ∈ (0, 1/2). According to Theorems 1 and 3, we have

Var μ(V n )/(E μ[V n ]) 2 = O(log -2 n).
Due to the Bienaymé-Chebychev inequality and to the Borel Cantelli lemma, this implies the μalmost sure convergence of (V exp n 

2 ) = 1, we conclude the μ-almost sure convergence of (V n /(n log n)) n to c.

For any t > 0, we write n t for the number of reflection times before time t. Recall that (t/n t ) t converges μ-almost surely to E μ[τ ] as t goes to infinity. Hence we have, μ-almost surely,

V nt t log t ∼ V nt E μ[τ ]n t log n t ∼ c E μ[τ ]
, as t → +∞.

Since V nt (q + ℓ, v) = V nt (q, v) for every (q, v) ∈ M and every ℓ ∈ Z 2 . We also have, µ-almost everywhere,

Vn t t log t ∼ c Eμ[τ ]
. Recall now that ∀(q, v) ∈ M, ∀s ∈ [0, τ (q, v)), V t (q + s v, v) -V nt(q, v) (q, v) ≤ 2n t ≤ 2 t min τ .

Hence, due to (4), we obtain

ν V t t log t → c E μ[τ ] ≤ (max τ )µ V nt t log t → c E μ[τ ] = 0.

2

 2 

2 , 1 p

 21 Ct log t = O t log tε -mt -m with m := m(p -2)/2p (due to (42), to Theorem 3 and to Theorem 1). Take ε = t -(1/p)-( m/2) m+1 . We obtain E hμ [D] = O(εt 1+ log t) = o(t), by taking m large enough since p > 2.

2 .

 2 Since lim n→+∞ (n + 1)

  ), as t goes to infinity. Proof. To simplify notations, we write τ := E μ[τ ]. Observe that n t ≤ t/ min τ on M . We define Due to corollary 15, it is enough to prove that E hμ [D] = O(t). Recall that (see[START_REF] Pène | Rates of convergence in the CLT for two-dimensional dispersive billiards[END_REF]) ∀m ≥ 1, ∃ Km , sup Let ε > 0. Due to Proposition 10, for some C > 0, we haveE hμ D1 |nt-(t/τ )|≤εt ≤ 2 Moreover, for any m ≥ 1, we have E hμ D1 |nt-(t/τ )|>εt ≤ P(|n t -(t/τ )| > εt|)

							t>0	n t -	t τ	m m	≤ Km t	m 2 .	(42)
					⌊ t min τ ⌋-1	τ +εt⌋-1 ⌊ t	E μ[h1 E k,j ]
					k=0	j=⌊ t τ -εt⌋-1
			≤ 2	k=0 ⌊ t min τ ⌋-1	j=⌊ t τ -εt⌋ ⌊ t τ +εt⌋	h p (μ(E k,j )) 1-1 p
			≤ 2 h p	  ⌈2εt⌉ + 2	j=0 ⌈2εt⌉	r=1 ⌊ t min τ ⌋	Cr	1 p -1	  = O(εt	1+ 1 p ).
									1 2 -1 p h p	 Eμ 	  	  ⌊ t min τ ⌋-1
									k,j=0
	D :=	nt-1 k,j=0	1 E k,j -	⌊t/τ ⌋-1 k,j=0	1 E k,j ≤ 2	k=0 ⌊t/ min τ ⌋-1	max(nt,⌊t/τ ⌋)-1

j=min(nt,⌊t/τ ⌋) 1 E k,j .
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