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Abstract—Subproblem dual finite element magnetostatic and
magnetodynamic formulations are developed and compared for
correcting the inaccuracies near edges and corners of thin
shell models, that replace thin volume regions by surfaces. The
surface-to-volume correction problem is defined as one of the
multiple subproblems applied to a complete problem, considering
successive additions of inductors and magnetic or conducting
regions, some of these being thin regions. Each SP requires a
proper adapted mesh of its regions, which facilitates meshing
and increases computational efficiency.

I. Introduction

As proposed in [1], [2], thin shell (TS) finite element (FE)
models are used to avoid meshing thin regions (TRs) and
lighten the mesh of their surrounds. For that, the volume
TRs are replaced by surfaces with interface conditions (ICs)
linked to 1-D analytical distributions along their thickness
that however neglect end and curvature effects. This leads
to inaccuracies of field distributions and associated losses
near edges and corners, that increase with the thickness. To
overcome these disadvantages, a subproblem method (SPM)
based on magnetic flux density formulations, proposing a
surface-to-volume local correction, has been proposed in [3].

The SPM for TS correction is herein extended to a dual
approach for both magnetic field and magnetic flux density for-
mulations, with generalized mesh projections of solutions be-
tween the SPs. Also, the SPM naturally allows parameterized
analyses of the TR characteristics: permeability, conductivity
and thickness. In the proposed SP strategy, a reduced problem
(SP q) with only inductors is first solved on a simplified mesh
without thin and volume regions. Its solution gives surface
sources (SSs) as ICs for added TS regions (SP p), and volume
sources (VSs) for possible added volume regions (SP k). The
TS solution is then corrected by a volume correction via SSs
and VSs that suppress the TS representation and add the
volume model.

II. Thin Shell Correction in the SubprobemMethod

A. Canonical magnetodynamic or static problem

A canonical magnetodynamic or static problem i, to be
solved at step i of the SPM, is defined in a domain Ωi,
with boundary ∂Ωi = Γi = Γh,i ∪ Γb,i. Material relations and
boundary conditions (BCs) are [3]

hi = µ−1
i bi + hs,i , ji = σiei + js,i (1a-b)

n× hi|Γh,i = j f ,i , n× ei|Γe,i = k f ,i (2a-b)

where hi is the magnetic field, bi is the magnetic flux density,
ei is the electric field, ji is the electric current density, µi is the
magnetic permeability, σi is the electric conductivity and n is
the unit normal exterior to Ωi. The notation [·]γi = ·|γ+

i
− ·|γ−i

refers to the discontinuity of a quantity through an interface γi

(with sides γ+
i and γ−i ) in Ωi, defining ICs. The fields hs,i and

js,i in (1 a) and (1 b) are VSs that can be used for expressing
changes of a material property in a volume region, from µp

and σp for SP p to µk and σk for SP k [3], i.e.

hs,k = (µ−1
k − µ

−1
p )bp , js,k = (σ−1

k − σ
−1
p )ep (3)

with µp = µ0, µk = µr,volume, σp = 0 and σk = σvolume. The
fields j f ,i and k f ,i in (2 a) and (2 b) are SSs. They define
possible SSs that account for particular phenomena occuring
in the idealized TR between γ+

i and γ−i [3]. This is the case
when some field traces in SP p are forced to be discontinuous
(e.g. in TS model), whereas their continuity must be recovered
via a SP k, which is done via a SS in SP k fixing the opposite
of the trace discontinuity solution of SP p.

B. SSs via ICs for subproblems

The constraints for the SPs are defined via SSs and VSs.
The TS problem [2] is defined in SP p (Fig. 1, right) following
the already computed inductor source field from SP q (Fig. 1,
left). Thus, SSs for SP p are to be defined via BCs and ICs
(Fig. 1, right) of impedance type BCs (IBC) given by the
TS model [2] associated with contributions from SP q. The

Figure 1: Interface condition between SP q and SP p.

b-formulation uses a magnetic vector potential ai (such that
curl ai = bi), split as a = ai,c + ai,d [2]. The h-formulation uses
a similar splitting for the magnetic field, hi = hi,c + hi,d. The
fields ai,c, hi,c and ai,d, hi,d are continuous and discontinous
respectively through the TS. There is no TR in SP q (Fig. 1,
left), but to get a relative constraint between SP q and SP



p via the corresponding ICs with γt = γ±t = γ±q = γ±p and
nt = −n for the TS, one has to imagine that a TR appears
in SP q, and therefore there is no such discontinuitiy in SP
q, i.e. [n× hq]γq = n× hq|γ+

q−n× hq|γ−q = 0 for b-formulation
and n× eq|γ+

q−n× eq|γ−q = 0 for h-formulation. In addition, one
has TS-ICs in both formulations [2]

[n×(hq + hq)]γp = [n×hq]γp +[n×hp]γp =µpβp ∂t(2ac + ad) (4)
[n×(eq + eq)]γp = [n×eq]γp +[n×ep]γp =µpβp ∂t(2hc + hd) (5)

with βp given in [2]. The resulting FE formulations are then
written for SPs q, p and k, which will be developed in the full
paper.

bq, SP q jp, SP p jk, SP k

Figure 2: TEAM problem 21 (1/4th of the geometry): magnetic
flux density bq (in a cut plane) generated by a stranded
inductor (left), eddy current density jp on TS model (middle)
and its volume correction jk (right) (thickness d = 10 mm).

III. Application Example

A 3-D test problem is based on TEAM problem 21 (model
B, coil and plate, Fig. 2). An SP scheme considering three
procedures is developed. A first FE SP q with the stranded
inductors alone is solved on a simplified mesh without any
TR (Fig. 2, left). Then a SP p is solved with the added TR
via a TS FE model (Fig. 2, middle). At last, a SP k replaces
the TS FEs with the actual volume FEs (Fig. 2, right). The TS
error on jp locally reaches 83% (Fig. 2, middle), with f = 50
Hz, µ = 200 and σ = 6.484 MS/m (skin depth δ = 6.15 mm).
The inccuracies on the Joule power loss densities of TS SP p
are pointed out by the importance of the correction SP k (Fig.
3, top). Significant error on TS SP p along the horizontal half
inner width (y-direction) reach 85% near the plate ends (Fig.
3, top), with δ = 2.1 mm and thickness d = 7.5 mm. For d
= 1.5 mm, it is reduced to below 10%. In particular, accurate
local corrections with volume correction SP k are checked to
be close to the solution of the complete problem, with errors
lower than 0.1% (Fig. 3, bottom).

Table I shows the Joule losses in the plate with an approxi-
mate BC for SP k. The exterior boundary of SP k is first chosen
at a distance Dbound = 200d from the TR, with thickness d =

10 mm. The inaccuracies on Joule losses for TS SP p reach
76.4%, or 1.2% for volume correction SP k, with f = 50 Hz,
µ = 100 and σ = 6.484 MS/m in both cases. The proposed
SP strategy allows to locally focus on the mesh of volume
correction SP k and its neighborhood. It is shown that even if
Dbound is reduced to 2d, the error on SP k is 1.53%, which is
still very accurate. For d = 2 mm, the errors on Joule losses
for SP p are reduced to 6.09%, or 0.05% for SP k.
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Figure 3: Power loss density with TS and volume solutions
(top); errors on the power loss density between volume cor-
rection SP k and complete problem (bottom), along horizontal
half inner width (y-direction), with effects of d ( f = 50 Hz,
µr = 200, σ = 6.484 MS/m).

The SPM allows to correct the inaccuracies proper to the
TS model. Accurate eddy current and power loss densities are
obtained, especially along the edges and corners of the TRs,
also for significant thicknesses. The refined mesh for volume
correction can be reduced to a close neighborhood of the TR.

Table I: Joule losses in the plate with approximate BCs ( f =

50 Hz, µ = 100, σ = 6.484 MS/m), with b−formulation.

d = 10 mm (thickness of the plate) Errors %
Dbound Thin shell Volume Reference Between Pthin Bet Pvol

Pthin (W) Pvol (W) Pre f (W) and Pre f and Pre f

200d 0.0114 0.0477 0.0483 76.4 1.2

20d 0.0114 0.0476 0.0483 76.4 1.35
2d 0.0114 0.0475 0.0483 76.4 1.53

d = 1 mm (thickness of the plate)
200d 0.0108 0.0115 0.0115 6.09 0.00

2d 0.0108 0.011506 0.0115 6.09 0.05
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