
HAL Id: hal-00807078
https://hal.science/hal-00807078v1

Submitted on 2 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Perfect Conductor and Impedance Boundary Condition
Corrections via a Finite Element Subproblem Method

Patrick Dular, Victor Péron, Ronan Perrussel, Laurent Krähenbühl,
Christophe Geuzaine

To cite this version:
Patrick Dular, Victor Péron, Ronan Perrussel, Laurent Krähenbühl, Christophe Geuzaine. Perfect
Conductor and Impedance Boundary Condition Corrections via a Finite Element Subproblem Method.
Compumag 2013, Jun 2013, Budapest, Hungary. pp.866. �hal-00807078�

https://hal.science/hal-00807078v1
https://hal.archives-ouvertes.fr


Perfect Conductor and Impedance Boundary Condition 
Corrections via a Finite Element Subproblem Method 

Patrick Dular1,2, Victor Péron3, Ronan Perrussel4, Laurent Krähenbühl5, Christophe Geuzaine1 
1 University of Liège, Dept. of Electrical Engineering and Computer Science, ACE, B-4000 Liège, Belgium 

2 F.R.S.-FNRS, Fonds de la Recherche Scientifique, Belgium 
3 Université de Pau et des Pays de l'Adour, MAGIQUE3D (CNRS UMR5142-INRIA Bordeaux-Sud-Ouest), F-64013 Pau, France 

4 Université de Toulouse, LAPLACE (CNRS UMR5213), F-31400 Toulouse, France 
5 Université de Lyon, Ampère (CNRS UMR5005), École Centrale de Lyon, F-69134 Écully Cedex, France 

Abstract⎯  A finite element subproblem method is developed 
to correct the inaccuracies proper to perfect conductor and im-
pedance boundary condition models, in particular near edges 
and corners of conductors, for a large range of conductivities and 
frequencies. Local corrections, supported by fine local meshes, 
can be obtained from each model to a more accurate one, allow-
ing efficient extensions of their domains of validity. 

I. INTRODUCTION 
Magnetodynamic finite element (FE) modeling of conduc-

tors can be tackled at various levels of precision, e.g. consider-
ing them via perfect conductor or impedance boundary condi-
tions (BCs). Avoiding to mesh their interior allows to lighten 
the computational efforts, which is interesting for the prelimi-
nary stage of a design. Perfect conductor BCs are suitable for 
high conductivities or frequencies, i.e. for low skin depths [1]. 
For larger skin depths, impedance BCs (IBCs) lead to a better 
accuracy. Such conditions are nevertheless generally based on 
analytical solutions of ideal problems and are therefore only 
valid in practice far from any geometrical discontinuities, e.g., 
edges and corners. Local modifications of IBCs can be de-
fined (e.g. [2]). 

It is here proposed to perform successive FE refinements 
via a subproblem (SP) method (SPM) [3] to correct the mod-
els with approximate BCs. Accurate skin and proximity ef-
fects, i.e. distributions of fields and current densities, are to be 
obtained for accurate force and Joule loss density distributions 
as well as for accurate interactions with neighboring regions. 
Sequences of SP corrections are developed for the magnetic 
vector potential FE magnetodynamic formulation. Each model 
can be included in the SP sequence and corrected by the other 
models of higher accuracy, with the advantage of using a dif-
ferent mesh at each step. The developed technique will be il-
lustrated and validated on application examples. 

II. COUPLED SUBPROBLEMS 

A. Sequence of subproblems 
To allow a natural progression from simple to more elabo-

rate models, a complete problem is split into a series of SPs 
that define a sequence of changes, with the complete solution 
being replaced by the sum of the SP solutions [3]. Each SP is 
defined in its particular domain, generally distinct from the 
complete one and usually overlapping those of the other SPs. 
At the discrete level, this aims to decrease the problem com-
plexity and to allow distinct meshes with suitable refinements 
and possible domain overlapping. The successive sources are 

obtained by means of Galerkin projections between the mesh-
es. These have to be properly discretized to assure the con-
formity of all the sequenced FE weak formulations. 

B. Canonical form of magnetodynamic subproblems 
A canonical magnetodynamic problem p, to be solved at 

step p of the SPM, is defined in a domain Ωp, with boundary 
∂Ωp = Γp = Γh,p ∪ Γb,p. The eddy current conducting part of Ωp 
is denoted Ωc,p and the non-conducting one Ωc,pC, with 
Ωp = Ωc,p ∪ Ωc,pC. Stranded inductors belong to Ωs ⊂ Ωc,pC. 
Magnetic field hp and electric current density jp are related to 
magnetic flux density bp and electric field ep, respectively, 
through the material relations  
 hp = µp–1 bp + hs,p ,  jp = σp ep + js,p ,  (1a-b) 

where µp is the magnetic permeability, σp is the electric con-
ductivity, and hs,p and js,p are volume sources (VSs) defined 
by  
 hs,p = (µp–1 – µq–1) bq ,   js,p = (σp – σq) eq , (2a-b) 

for changes from µq and σq for SP q to µp and σp for SP p in 
some regions [3]. Also, BCs have to be defined for surface 
sources (SSs), possibly expressed from previous solutions, i.e. 
 n × hp|Γh,p

 = jf,p ,  n ⋅ bp|Γb,p
 = ff,p ,  n × ep|Γe,p ⊂ Γb,p

 = kf,p ,  (3a-b-c) 

with n the unit normal exterior to Ω. Some paired portions of 
Γp can define double layers, with the thin region in between 
exterior to Ωp; in particular, this will be the case with the per-
fect conductor and impedance BCs. They are denoted γp+ and 
γp– and are geometrically defined as a single surface γp with 
interface conditions (ICs), fixing the discontinuities 
([ ⋅ ]γp

 = ⋅ |γp
+ – ⋅ |γp

–) 
[n × hp]γp

= [jf,p]γp
, [n ⋅ bp]γp

= [ff,p]γp
, [n × ep]γp

= [kf,p]γp
. (4a-b-c) 

With the magnetic vector potential ap and electric scalar po-
tential vp defined via bp = curl ap and ep = – ∂t ap – grad vp =  

– ∂t ap – up, and the resulting BC and IC 
 n × ap|Γb,p

 = af,p ,  [n × ap]γp
 = [af,p]γp

,   (5a-b) 

the ap weak formulation of the magnetodynamic problem is 
obtained from the weak form of the Ampère equation, i.e. [1] 

    (µ p
!1curlap ,curla ')"p + (hs,p ,curla ')"p !( js,p ,a ')"p  

    +(! p "t ap ,a ')#c,p +(! p up ,a ')"c,p +< n!hp ,a ' >"h,p \# p  

    +< [n!hp ]" p ,a ' >" p =0 ,!a '" Fp
1(#p ),  (6) 



 
 
where Fp1(Ωp) is a curl-conform function space defined on 
Ωp, gauged in Ωc,pC, and containing the basis functions for ap 
as well as for the test function a' (at the discrete level, this 
space is defined by edge FEs) (test function v' has to be used 
as well); the gauge is based on the tree-co-tree technique); 
( · , · )Ω and < · , · >Γ denote a volume integral in Ω and a sur-
face integral on Γ, respectively, of the product of their field 
arguments.  

III. CONDUCTOR MODELING – VARIOUS APPROXIMATIONS 

A. Perfect conductor boundary condition (PCBC) 
A SP (p ≡ pc) is defined in Ωp by considering some conduc-

tors Ωc,p,i (i is the conductor index) as being perfect, i.e. of in-
finite conductivity (σp!" ) [1]. Its solution is thus independ-
ent of the conductivity and can serve as a reference solution 
for any conductivity further considered. This results in a zero 
skin depth and surface currents. The interior of Ωc,p,i, with ze-
ro fields inside, can thus be extracted from the studied domain 
Ωp in (6) and treated via BC (3b) fixing zero traces of bp and 
ep on their boundaries Γc,p,i = ∂Ωc,p,i, i.e. 
n ⋅ bp|Γc,p,i

= 0, n × ep|Γc,p,i
= 0 or n × ap|Γc,p,i

= n × grad up|Γc,p,i
,(7a-b-c) 

with up any surface scalar potential. A non-zero trace 
n × hp|∂Ωc,i

 will be part of the solution, thus giving a disconti-
nuity [n × hp]Γc,p,i

 = n × hp|Γc,p,i
. 

B. Impedance boundary condition (IBC) 
Some conductors can be extracted from Ωp by using IBCs 

on their boundaries Γc,p,i., which defines SP p ≡ ibc. The BCs 
to define relate the tangential traces of hp and ep via [2] 

 n × hp|Γc,p,i
= Zc,p,i–1 n × (n × ep)|Γc,p,i

 , (8) 

with Zc,p,i the surface impedance for conductor Ωc,p,i, i.e. 

    Zc,p,i = (σp δp)–1 (1 + j) ,  with ! p = 2 / ("# pµ p ) , (9a-b) 

with ω the angular frequency (ω = 2π f, with f the frequency) 
and j the imaginary unit (∂t ≡ j ω in the frequency domain). BC 
(8) is thus to be expressed in (6) in term of the primal un-
knowns with n × (n × ep)|Γc,p,i

= (n × (∂tap+up)) × n|Γc,p,i
. 

C. Modified impedance boundary condition (MIBC) 
A modified IBC can be defined in the vicinity of corners in 

2-D or edges in 3-D, as given by a reference problem [2]. If 
Γc,p,i has one corner singularity located at the origin X = 0, of 
angle β in Ωc,p,i, then the scaling X = x/δp gives a “profile” 
term Vα that is independent of δp and satisfies a reference 
problem described in details in [2], with a reference corner of 
the same opening β as in Ωc,p,i. The surface impedance close 
to the corner can be then approximated by 

 Zc,p,i ' !"#0
Zc,p,i V$(% / & p ) ('nV$ )(% / & p ) . (10) 

D. Corrections of BCs up to volume conductors 
Any SP p can be defined as a correction of a previous SP q, 

without involving the already considered sources (e.g. induc-
tors, previous VSs and SSs). For a change from a BC approx-
imation to another, SSs have to be defined. E.g., from a 
PCBC-SP q to an IBC-SP p, SS n × hq|Γc,p,i

 is to be subtracted 
from the right hand side of (8) for SP p. It is thus involved in a 

surface integral term in (6), to be weakly expressed from (6) 
for SP q, i.e. generally limited to 

 < n!hq ,a ' >"c,p,i = !(µq
!1curlaq ,curla ')"q . (11) 

A change from a PCBC-SP to an accurate volume model 
has been developed in [1] and is here included in an extended 
correction procedure, with intermediary IBC-SP or MIBC-SP 
corrections. A change from an IBC-SP q to a volume SP p can 
involve both SSs and VSs. Considering a zero solution in 
Ωc,p,i, and thus carrying all the fields in the double layer of its 
boundary, trace discontinuities of both hq and eq (aq) occur: 
their opposite values then define SSs for SP p in (4a), weakly 
expressed as (11), and (4c) (and (5b)), strongly expressed in 
function space Fp1(Ω). Also, a zero solution q in Ωc,p,i allows 
the VSs (2a-b) to be zero. VSs have thus to be only considered 
for further local changes of µp and σp, e.g. for nonlinear mag-
netic materials or temperature dependent conductivities. 

Fig. 1 shows some solutions and their corrections for 
PCBC, IBC and MIBC models, with clear increasing accura-
cy. Fig. 2 shows the corresponding surface impedances before 
correction. 

 
 

  
 

  
 

  
Fig. 1. Field lines near a conductor corner, from top to bottom: complete solu-
tion, left: PCBC, IBC, MIBC models, right: associated correction of each 
model; same scale for each figure pointing out the decrease of the required 
correction. 
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Fig. 2. Post-computed surface impedance along horizontal boundary (skin 
depth 4.5 mm). 
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