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Perfect Conductor and Impedance Boundary Condition Corrections via a Finite Element Subproblem Method

Abstract⎯ A finite element subproblem method is developed to correct the inaccuracies proper to perfect conductor and impedance boundary condition models, in particular near edges and corners of conductors, for a large range of conductivities and frequencies. Local corrections, supported by fine local meshes, can be obtained from each model to a more accurate one, allowing efficient extensions of their domains of validity.

I. INTRODUCTION

Magnetodynamic finite element (FE) modeling of conductors can be tackled at various levels of precision, e.g. considering them via perfect conductor or impedance boundary conditions (BCs). Avoiding to mesh their interior allows to lighten the computational efforts, which is interesting for the preliminary stage of a design. Perfect conductor BCs are suitable for high conductivities or frequencies, i.e. for low skin depths [START_REF] Dular | Subdomain Perturbation Finite-Element Method for Skin and Proximity Effects[END_REF]. For larger skin depths, impedance BCs (IBCs) lead to a better accuracy. Such conditions are nevertheless generally based on analytical solutions of ideal problems and are therefore only valid in practice far from any geometrical discontinuities, e.g., edges and corners. Local modifications of IBCs can be defined (e.g. [START_REF] Buret | Eddy Currents and Corner Singularities[END_REF]).

It is here proposed to perform successive FE refinements via a subproblem (SP) method (SPM) [START_REF] Dular | Finite Element Magnetic Models via a Coupling of Subproblems of Lower Dimensions[END_REF] to correct the models with approximate BCs. Accurate skin and proximity effects, i.e. distributions of fields and current densities, are to be obtained for accurate force and Joule loss density distributions as well as for accurate interactions with neighboring regions. Sequences of SP corrections are developed for the magnetic vector potential FE magnetodynamic formulation. Each model can be included in the SP sequence and corrected by the other models of higher accuracy, with the advantage of using a different mesh at each step. The developed technique will be illustrated and validated on application examples.

II. COUPLED SUBPROBLEMS

A. Sequence of subproblems

To allow a natural progression from simple to more elaborate models, a complete problem is split into a series of SPs that define a sequence of changes, with the complete solution being replaced by the sum of the SP solutions [START_REF] Dular | Finite Element Magnetic Models via a Coupling of Subproblems of Lower Dimensions[END_REF]. Each SP is defined in its particular domain, generally distinct from the complete one and usually overlapping those of the other SPs. At the discrete level, this aims to decrease the problem complexity and to allow distinct meshes with suitable refinements and possible domain overlapping. The successive sources are obtained by means of Galerkin projections between the meshes. These have to be properly discretized to assure the conformity of all the sequenced FE weak formulations.

B. Canonical form of magnetodynamic subproblems

A canonical magnetodynamic problem p, to be solved at step p of the SPM, is defined in a domain Ω p , with boundary

∂Ω p = Γ p = Γ h,p ∪ Γ b,p . The eddy current conducting part of Ω p is denoted Ω c,p and the non-conducting one Ω c,p C , with Ω p = Ω c,p ∪ Ω c,p C . Stranded inductors belong to Ω s ⊂ Ω c,p C
. Magnetic field h p and electric current density j p are related to magnetic flux density b p and electric field e p , respectively, through the material relations

h p = µ p -1 b p + h s,p , j p = σ p e p + j s,p , (1a-b) 
where µ p is the magnetic permeability, σ p is the electric conductivity, and h s,p and j s,p are volume sources (VSs) defined by

h s,p = (µ p -1 -µ q -1 ) b q , j s,p = (σ p -σ q ) e q , ( 2a-b) 
for changes from µ q and σ q for SP q to µ p and σ p for SP p in some regions [START_REF] Dular | Finite Element Magnetic Models via a Coupling of Subproblems of Lower Dimensions[END_REF]. Also, BCs have to be defined for surface sources (SSs), possibly expressed from previous solutions, i.e.

n × h p | Γ h,p = j f,p , n ⋅ b p | Γ b,p = f f,p , n × e p | Γ e,p ⊂ Γ b,p = k f,p , (3a-b-c)
with n the unit normal exterior to Ω. Some paired portions of Γ p can define double layers, with the thin region in between exterior to Ω p ; in particular, this will be the case with the perfect conductor and impedance BCs. They are denoted γ p + and γ p -and are geometrically defined as a single surface γ p with interface conditions (ICs), fixing the discontinuities

([ ⋅ ] γ p = ⋅ | γ p + -⋅ | γ p -) [n × h p ] γ p = [j f,p ] γ p , [n ⋅ b p ] γ p = [f f,p ] γ p , [n × e p ] γ p = [k f,p ] γ p . (4a-b-c)
With the magnetic vector potential a p and electric scalar potential v p defined via b p = curl a p and e p = -∂ t a p -grad v p = -∂ t a p -u p , and the resulting BC and IC

n × a p | Γ b,p = a f,p , [n × a p ] γ p = [a f,p ] γ p , (5a-b)
the a p weak formulation of the magnetodynamic problem is obtained from the weak form of the Ampère equation, i.e. [START_REF] Dular | Subdomain Perturbation Finite-Element Method for Skin and Proximity Effects[END_REF] (µ p !1 curl a p ,curl a ')

" p + (h s, p ,curl a ') " p !( j s, p ,a ') " p +(! p " t a p ,a ') # c, p +(! p u p ,a ') " c, p +< n! h p ,a ' > " h, p \# p +< [n! h p ] " p ,a ' > " p =0 , !a ' " F p 1 (# p ), (6) 
where F p 1 (Ω p ) is a curl-conform function space defined on Ω p , gauged in Ω c,p C , and containing the basis functions for a p as well as for the test function a' (at the discrete level, this space is defined by edge FEs) (test function v' has to be used as well); the gauge is based on the tree-co-tree technique); ( • , • ) Ω and < • , • > Γ denote a volume integral in Ω and a surface integral on Γ, respectively, of the product of their field arguments.

III. CONDUCTOR MODELING -VARIOUS APPROXIMATIONS

A. Perfect conductor boundary condition (PCBC)

A SP (p ≡ pc) is defined in Ω p by considering some conductors Ω c,p,i (i is the conductor index) as being perfect, i.e. of infinite conductivity (σ p !" ) [1]. Its solution is thus independ- ent of the conductivity and can serve as a reference solution for any conductivity further considered. This results in a zero skin depth and surface currents. The interior of Ω c,p,i , with zero fields inside, can thus be extracted from the studied domain Ω p in (6) and treated via BC (3b) fixing zero traces of b p and e p on their boundaries Γ c,p,i = ∂Ω c,p,i , i.e. p,i ,) with u p any surface scalar potential. A non-zero trace n × h p | ∂Ω c,i will be part of the solution, thus giving a discontinuity

n ⋅ b p | Γ c,p,i = 0, n × e p | Γ c,p,i = 0 or n × a p | Γ c,p,i = n × grad u p | Γ c,
[n × h p ] Γ c,p,i = n × h p | Γ c,p,i .

B. Impedance boundary condition (IBC)

Some conductors can be extracted from Ω p by using IBCs on their boundaries Γ c,p,i ., which defines SP p ≡ ibc. The BCs to define relate the tangential traces of h p and e p via [START_REF] Buret | Eddy Currents and Corner Singularities[END_REF] 

n × h p | Γ c,p,i = Z c,p,i -1 n × (n × e p )| Γ c,p,i , (8) 
with Z c,p,i the surface impedance for conductor Ω c,p,i , i.e. Z c,p,i = (σ p δ p ) -1 (1 + j) , with ! p = 2 / ("# p µ p ) , (9a-b)

with ω the angular frequency (ω = 2π f, with f the frequency) and j the imaginary unit (∂ t ≡ j ω in the frequency domain). BC (8) is thus to be expressed in (6) in term of the primal unknowns with n × (n

× e p )| Γ c,p,i = (n × (∂ t a p +u p )) × n| Γ c,p,i .

C. Modified impedance boundary condition (MIBC)

A modified IBC can be defined in the vicinity of corners in 2-D or edges in 3-D, as given by a reference problem [START_REF] Buret | Eddy Currents and Corner Singularities[END_REF]. If Γ c,p,i has one corner singularity located at the origin X = 0, of angle β in Ω c,p,i , then the scaling X = x/δ p gives a "profile" term V α that is independent of δ p and satisfies a reference problem described in details in [START_REF] Buret | Eddy Currents and Corner Singularities[END_REF], with a reference corner of the same opening β as in Ω c,p,i . The surface impedance close to the corner can be then approximated by

Z c, p,i ' ! "#0 Z c, p,i V $ (% / & p ) (' n V $ )(% / & p ) .
(10)

D. Corrections of BCs up to volume conductors

Any SP p can be defined as a correction of a previous SP q, without involving the already considered sources (e.g. inductors, previous VSs and SSs). For a change from a BC approximation to another, SSs have to be defined. E.g., from a PCBC-SP q to an IBC-SP p, SS n × h q | Γ c,p,i is to be subtracted from the right hand side of (8) for SP p. It is thus involved in a surface integral term in (6), to be weakly expressed from (6) for SP q, i.e. generally limited to < n! h q ,a ' > " c, p,i = !(µ q !1 curl a q ,curl a ') " q . (11)

A change from a PCBC-SP to an accurate volume model has been developed in [START_REF] Dular | Subdomain Perturbation Finite-Element Method for Skin and Proximity Effects[END_REF] and is here included in an extended correction procedure, with intermediary IBC-SP or MIBC-SP corrections. A change from an IBC-SP q to a volume SP p can involve both SSs and VSs. Considering a zero solution in Ω c,p,i , and thus carrying all the fields in the double layer of its boundary, trace discontinuities of both h q and e q (a q ) occur: their opposite values then define SSs for SP p in (4a), weakly expressed as (11), and (4c) (and (5b)), strongly expressed in function space F p 1 (Ω). Also, a zero solution q in Ω c,p,i allows the VSs (2a-b) to be zero. VSs have thus to be only considered for further local changes of µ p and σ p , e.g. for nonlinear magnetic materials or temperature dependent conductivities.

Fig. 1 shows some solutions and their corrections for PCBC, IBC and MIBC models, with clear increasing accuracy. Fig. 2 shows the corresponding surface impedances before correction. 
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 12 Fig. 1. Field lines near a conductor corner, from top to bottom: complete solution, left: PCBC, IBC, MIBC models, right: associated correction of each model; same scale for each figure pointing out the decrease of the required correction.