Homogenization Methods in Simulations of Transcutaneous Energy Transmitters
Daniela Wolter Ferreira, Ruth V. Sabariego, Luiz Lebensztajn, Laurent Krähenbühl, Florent Morel, Christian Vollaire

To cite this version:
Daniela Wolter Ferreira, Ruth V. Sabariego, Luiz Lebensztajn, Laurent Krähenbühl, Florent Morel, et al.. Homogenization Methods in Simulations of Transcutaneous Energy Transmitters. Compumag 2013, Jun 2013, Budapest, Hungary. pp.646. hal-00807074

HAL Id: hal-00807074
https://hal.science/hal-00807074
Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—Transcutaneous Energy Transmitters (TET) are usually devices composed of two pancake coils to transfer wireless energy through an inductive link from outside to inside the body of a patient. The simulation of the misalignment between the coils must be performed in 3-dimensions, e.g. with the body of a patient. The simulation of the misalignment wires through an inductive link from outside to inside kilohertz frequencies, the typical regular stranded TET coils, showing improvements, mainly at the frequency domain. Moreover, the meshing process of the non-homogeneous TET geometry is lightened. The results of this technique are compared with those obtained by considering regular stranded TET coils, showing improvements, mainly at high frequencies, the typical TET operating frequency range.

I. INTRODUCTION

Transcutaneous Energy Transmitters (TETs) are devices to transfer energy from outside the body to inside the body without the need of wires trespassing the skin. They use an inductive link between a primary coil, external to the body, and a secondary coil underneath the skin, similar to a coreless transformer [1]. In order to consider different distances and misalignments between the coils during the early design stages, Finite Element (FE) simulations could be performed. However, when solid massive conductors have to be detailed, a computationally expensive 3D FE model is required, mainly at high frequencies to accurately account for eddy current effects.

Considering that the TET design may involve a wide frequency range with different wire gauge, the skin and proximity effects cannot be ignored and the commonly used stranded model is not accurate anymore. Such a stranded approach ignores these effects and estimates the losses a posteriori by computing them individually through, e.g. analytical approaches [2], [3]. However, the eddy current effects may significantly alter the performance of the TET, thus their direct inclusion in the FE simulations is mandatory, proving the need of dedicated homogenization methods. In the frequency domain, they usually amount to the use of complex frequency-dependent reluctivity and resistance values, the expression of which is obtained either analytically [4], or using an elementary FEM [5]. Several authors have presented homogenization methods in the frequency [5], [6] and time domain [7], [8], to study a multi-turn typical winding inductor with homogenized geometry.

In this paper, a homogenization method is applied to study the single layer coils from the TET with a 3D FE model in the frequency domain. Results are compared with both the stranded approach and experimental measurements, showing that the homogenization method is very reliable even for single layer pancake coils, where the geometry is not that homogeneous.

II. METHODOLOGY

In the frequency domain, skin and proximity effects can be characterized by adopting a complex permeability (or reluctivity). These two effects are decoupled in the following complementary cases: net current \(I = 0 \) when induction field \(B = 0 \) (skin effect); and \(B = 0 \) with \(I \neq 0 \) (proximity effect). Then, the associated losses are simply added. Hence, the important quantities for the method are the net current in the conductors, \(I \), and the two components of the average induction, \(\{ B_x, B_y \} \).

This method characterizes the general skin and proximity effect of the winding by a representative FE model consisting of a wire and air around it. Hence, two steps are necessary to simulate the system.

First, this representative FE model is simulated in three situations with \(\{ I, B_x, B_y \} \) equal to \(\{ 1,0,0 \} \), \(\{ 0,1,0 \} \) and \(\{ 0,0,1 \} \) at a wide frequency range. At each frequency, three elementary solutions are obtained and the complex power absorbed by the representative wire computed. The first case allows determining a complex impedance \(Z_{\text{skin}} \) due to skin effect, while the last two allow to compute a complex and frequency dependent reluctivity tensor \(\nu_{\text{prox}} \) that accounts for proximity effects [6].

In order to detail the way to obtain \(Z_{\text{skin}} \) and \(\nu_{\text{prox}} \), a unitless parameter \(X \), referred as reduced frequency is defined by

\[
X = f \delta = \sqrt{\frac{r}{\mu_0 \sigma \delta}} \quad (1)
\]

with \(r \) the radius of the conductor, \(\delta = \sqrt{2/(\sigma \omega)} \) the skin depth, \(f \) the frequency, \(\sigma \) the conductivity of the conductors and \(\mu_0 \) the free space permeability.

The complex impedance \(Z_{\text{skin}}(X) \) can then be calculated as:

\[
Z_{\text{skin}} = \frac{S_{\text{skin}}}{2 - \frac{1}{2} f^2} = p_f(X) R_{\text{DC}} + i q_f(X) \mu_0 \frac{\mu_0 - 1}{\delta \omega \lambda} \quad (2)
\]
In (2), $R_{DC} = \frac{l}{2(\sigma S)}$ is the direct current (DC) resistance of the conductor. The factor $\frac{1}{2(\sigma S)}$ is due to the imaginary part of (2), usually negligible, is in fact the DC inductance of a round conductor (internal field only). The dimensionless factors p_1 and q_1 depend on the winding type and the reduced frequency X. As evidenced in [6], the skin-effect losses and the coefficient are practically independent of the fill factor.

By imposing a zero net current and a unit average horizontal induction, a pure proximity-effect flux pattern is produced in the central cell. The same happens by imposing a unit average vertical induction. The tensor σ_{prox} is given by the corresponding complex reluctivity calculated at both situations (horizontal and vertical induction). In the case of round conductors and a symmetric representative cell, the tensor becomes a scalar and it reads:

$$v_{prox} = q_B X v_0 + i, p_B X \frac{\sigma \mu_0 r^2}{4}. \tag{4}$$

In (4), $\frac{\sigma \mu_0 r^2}{4}$ follows from the analytical expression for low-frequency proximity losses [4]. The dimensionless factors q_B and p_B for induction are calculated from the energy absorbed by the cell.

In this way, a group of curves is attained for the six dimensionless but frequency-dependent factors p_1 and q_1, and q_B and p_B (note that in the general case both x and y directions need to be considered). These curves allow to interpolate Z_{skin} and v_{prox} for the frequency considered in the complete TET device.

The complete TET geometry is then simulated without the fine discretization of the solid wires to include the skin depth. That means the windings are simulated as stranded conductors in which a uniform current density, with the number of conductors and the overall surface area, is adopted.

Further, at the terminal voltage of the winding in the electrical circuit equation, the DC resistance has to be replaced by a component with impedance Z_{skin} and v_{prox}, defined in the previous mentioned simulated curves.

III. RESULTS

In order to prove that this method works well for 3D FE simulations in a frequency domain, a TET configuration containing wire gauge of 0.8 mm was simulated in three different situations: aligned in 2D axisymmetric considering massive conductors; aligned in 3D considering stranded windings; and aligned in 3D considering the homogenization method.

Fig. 1 shows the impedance (real and imaginary) of the primary coil aligned at 5 mm from the secondary coil at no-load, comparing the three methods.

The 2D axisymmetric case is considered as reference, as it does not bring any approximation. Note that the results obtained from the simulation with stranded windings in 3D start diverging from the reference at few dozen of kilohertz. The simulation in 3D using the homogenization follows the reference tightly.

Thus, the homogenization method for 3D in frequency domain proves to work well even in situations where the coil has a planar geometry.

There are situations where the 2D simulations cannot be used, such as when the coils are misaligned. In this condition, this paper compares 3D simulations considering stranded windings and the homogenization method with physical measurements, showing that this method is still reliable.

IV. CONCLUSIONS

The use of homogenization methods in FE is shown as an excellent approximation to minimize the computational cost of a dense mesh in 3D FE simulations without losing important effects such as skin and proximity effects. In this way, a TET that must be simulated in 3D can be simulated with simple stranded windings associated with the homogenization technique to decrease the simulation time.

V. ACKNOWLEDGEMENTS

This work was supported by FAPESP under grants no. 2011/18341-3 and 2012/06254-1.

REFERENCES

