
HAL Id: hal-00807048
https://hal.science/hal-00807048v1

Submitted on 2 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-Level Modeling of Energy in TLM for Early
Validation of Power and Thermal Management

Tayeb Bouhadiba, Matthieu Moy, Florence Maraninchi

To cite this version:
Tayeb Bouhadiba, Matthieu Moy, Florence Maraninchi. System-Level Modeling of Energy in TLM
for Early Validation of Power and Thermal Management. Design, Automation, and Test in Europe
(DATE), Mar 2013, Grenoble, France. pp.1609. �hal-00807048�

https://hal.science/hal-00807048v1
https://hal.archives-ouvertes.fr

System-Level Modeling of Energy in TLM for Early

Validation of Power and Thermal Management

Tayeb Bouhadiba

CNRS

Tayeb.Bouhadiba@imag.fr

Matthieu Moy

Grenoble INP

Matthieu.Moy@imag.fr

Florence Maraninchi

Grenoble INP

Florence.Maraninchi@imag.fr

Verimag (UMR CNRS 5104)

Grenoble, F-38041, France

Abstract—Modern systems-on-a-chip are equipped with power
architectures, allowing to control the consumption of individual
components or subsystems. These mechanisms are controlled by
a power-management policy often implemented in the embedded
software, with hardware support. Today’s circuits have an impor-
tant static power consumption, whose low-power design require
techniques like DVFS or power-gating. A correct and efficient
management of these mechanisms is therefore becoming non-
trivial. Validating the effect of the power management policy
needs to be done very early in the design cycle, as part of
the architecture exploration activity. High-level models of the
hardware must be annotated with consumption information.
Temperature must also be taken into account since leakage
current increases exponentially with it.

Existing annotation techniques applied to loosely-timed or
temporally-decoupled models would create bad simulation ar-
tifacts on the temperature profile (e.g. unrealistic peaks). This
paper addresses the instrumentation of a timed transaction-
level model of the hardware with information on the power
consumption of the individual components. It can cope not
only with power-state models, but also with Joule-per-bit traffic
models, and avoids simulation artifacts when used in a function-
al/power/temperature co-simulation.

I. INTRODUCTION

A. Power Consumption and Temperature

Power consumption, usually expressed as the sum of dy-
namic power and static power, influences system temperature,
which in turn, exponentially affects static power [1]. This
interdependency makes it unavoidable to consider temperature
when dealing with power.

Solutions for reducing power (and hence temperature) ex-
ist. For instance, Clock gating and dynamic frequency scaling
are used to reduce dynamic power in an almost transparent way
for the software. Because of the growing integration density
of transistors (which increases static power), novel platforms
offer solutions like power gating to reduce static power. The
power architecture of such platforms consists in a set of power
domains grouping components, and a power controller acting
on power switches and voltage controls of the power domains.

Actions of the power controller are defined by a power-
management policy, often implemented in the embedded soft-
ware. The policy relies on physical (e.g., temperature, battery

This paper has been partially supported by the French ANR project HELP
(ANR-09-SEGI-006).

level) or logical (e.g., FIFO size) sensors to decide on the
power configuration to apply. Validating the effect of the power
management policy needs to be done very early in the design
cycle, as part of the architecture exploration activity; hence the
need for early system-level models of power consumption.

B. High-Level Models and Simulation

System-level modeling of energy consumption has be-
come a very active field of research during the past ten
years. We deal with models where actual software runs on
a simulated hardware, before the RTL or gate models are
available (simulating the software on such models is far
too slow anyway). Transaction-Level Modeling (TLM) has
been proposed to provide early-available abstract models that
simulate fast. Methodologies based on SystemC [2] and the
TLM library are now well accepted in the industry. TLM
comes in several flavors, depending mainly on the precision
of timing information. There has been a lot of work on the
choice of the timing precision (or granularity) and its effect
on the faithfulness of the models (e.g. [3]).

C. Early Validation of Power/Thermal Management

We deal with systems where the power management policy
is sensitive to system temperature. For early validation of
such a power management policy we rely on the cosimulation
of timed SystemC-TLM models instrumented with power
information, and a temperature solver (e.g., ATMI [4] or
HotSpot [5]). The power/temperature solving can also be done
with the industrial tool Aceplorer [6] using its cosimulation
interface. The cosimulation mechanism is out of the scope of
the paper. We focus on the power instrumentation of timed
TLM models. We assume these models are appropriate for
a functional analysis of the system, and that the information
on the power consumption of individual components is given.
For components like the CPU or the hardware accelerators,
this information will be available as power-state models [7],
[8]. For components like the bus, the available information
will be a consumption in Joules per bit transmitted (called
traffic model in the sequel). Even if this information is very
accurate, the choice of the timing granularity (in order to gain
simulation speed) has a strong impact on the estimation of
power consumption and hence on temperature evolution.

Figure 1 illustrates the type of simulations we would
like to obtain or avoid. The system under study alternates

P
o
w

er
(W

at
t)

0
1
2
3
4
5

(b) - Coarse-grained (naive approach)

1
2

0

2
1

Time (second)

(c) - Coarse-grained (spread power)

power
temperature

30

25

25

30

35

40

30

25

(a) - fine-grained/Accurate

T
em

p
er

at
u

re
(0

C
)

Fig. 1. Impact of timing granularity

short periods (e.g. one clock cycle) of high consumption
with periods of low consumption. The temperature increases
during the periods of high consumption, and decreases dur-
ing the periods of low consumption, because of dissipation
phenomena. The solid line represents energy consumption,
and the dashed line represents the temperature, as given
by a thermal model. Fig 1-(a) corresponds to a fine-grain
model (e.g. cycle-accurate). The curves accurately describe
the behavior of the chip. Fig 1-(b) corresponds to a coarse-
grain model, where the functional behavior is simulated by
executing large chunks of code instantaneously, interleaved
with long periods of simulated time (this is a particular case
of temporal decoupling [2]). If the energy consumption is
naively related to the functional behavior, it will be considered
to happen “at the same time”, thus producing a consumption
peak, and an associated temperature peak, which are totally
unrealistic. Moreover, if the power/thermal management policy
implemented in the embedded software is meant to avoid
peaks, the special behavior dedicated to this will be triggered
when playing the software on the model, but not on the real
circuit. A non-realistic power/thermal estimation will result in
a non-realistic functional behavior.

The contribution of this paper is a power instrumentation
method for TLM models with a focus on traffic models. Our
approach produces the traces of Fig 1-(c), without the need
for cycle-accurate models. The idea is to spread the power
consumption associated with a given functionality, on the
whole simulated period that simulates the time it takes. We
apply our approach on a representative SoC, and we compare
fine-grained models results with coarse-grained ones.

The rest of the paper is organized as follows: Section II
discusses related work. Sections III introduces power model-
ing, and IV describes our contribution; Section V presents a
small but representative case-study; Section VI describes the
experimental setup and the results obtained for the case-study;
Section VII concludes.

II. RELATED WORK

A. Formal System-Level Models

In [7], we can find an early use of power-state models
for the components of a chip at a very abstract level (e.g. no
notion of temperature). A representation of the system with

Binary-Decision-Diagrams, and model-checking exploration
techniques are proposed. A similar modeling approach is that
of [8]. These models can be extended with hybrid automata
that also allow model-checking approaches [9].

In [10], a system-level analytical model (as opposed to
operational, or state-based, as the two previous ones) is
proposed, to capture the consumption and thermal behavior of
a chip. It is based on the notion of a Power Variability Curve,
which fits in the general framework of real-time calculus. The
software is modeled as a set of tasks. Power consumption
is considered to be a function of the executing task. This
means that the consumption of hardware blocks other than
processors is not considered. [10] computes guaranteed bounds
on temperature peaks; the software has to be modeled, and
the hardware architecture is not yet detailed; the method is
intended to be used at a very early stage of the design.

Our solution is based on the same intrinsic principles as [7],
[9], [8], augmented with the potential feedback of temperature
on the functionality of the chip. We include all hardware
components, and we can run the actual software. At this level
of details, building a state model of the whole system and
exploring it with model-checking is out of reach (or at least
so costly that it can not serve as part of the architecture
exploration activity).

B. Simulation System-Level Models

The approach in [11], [12] propose to model a system-on-
a-chip in SystemC/TLM, running the actual software on top
of a simulated hardware. The objective is to validate a power-
management policy. Our proposal can be seen as a continuation
of this work, providing: (i) higher-level abstractions (we can
simulate much faster because we are not bound to using
cycle-accurate models); (ii) the coupling with a temperature
model and simulator; (iii) a more general methodology to build
power models in SystemC/TLM. Current version of [12] allows
logging energy per transaction, which is not sufficient for tem-
perature analysis. The energy must be spread on appropriate
time intervals to obtain power profiles from which realistic
temperature curves may be computed (see Section I-C).

The work described in [13] is a system-level simulation
method including the functionality and power consumption.
The paper also describes in details how to get the parameters
of the power-model, with measures. A complete case-study
from Intel is described, and the simulation results compared
to measures on the real chip. How to apply the same method
to another case-study is not detailed, and there is no mention
of temperature effects. Moreover, the paper does not detail
the level of abstraction chosen for the simulation, especially
on timing aspects, although it does mention transactions.
Our proposal is meant to be more generic, and to allow
the observation of power/temperature/functional effects, which
happen with a power and thermal management policy.

III. SYSTEM-LEVEL POWER MODELING IN TLM

A realistic system-level model of energy consumption nec-
essarily includes information on: 1) the energy consumption
of the individual components, which depends on their current
activity; 2) the power management policy, which observes the
behavior of the system with physical (e.g., temperature) or

logical (e.g., filling of a hardware FIFO) “sensors”, and decides
what to do regarding the electrical state of the components
(clock, power, frequency); 3) the temperature model of the
chip, relating the consumption and the temperature. In this
section, we first describe the functional modeling practices our
approach applies to, then we describe power instrumentation.

A. Modeling Function and Time in TLM

The intrinsic behavior of the SystemC discrete-event sim-
ulation engine is such that the simulation produces a sequence
of simulation instants t0 = 0, t1, t2, We will also use the
term simulation intervals to refer to the successive adjacent
intervals [t0, t1], [t1, t2], ...

At high level of abstraction (loosely timed), a rela-
tively large piece of code can be executed instantaneously
(e.g. processing an image or a macro-block). To model
time that should have elapsed during this action, one usu-
ally use a single wait(∆t) statement following it: an
atomic execution of a SystemC process would have the
form ∆t=compute_function(); wait(∆t);, where
compute_function() simulates a piece of behavior of
the hardware and ∆t is the time it would take to perform this
behavior on the real circuit. TLM-2’s temporal decoupling [2]
produces this effect, but coarse-granularity models do not
necessarily use a local clock to compute ∆t. For instance,
compute_function() may be be the reference sequential
C for a video codec, while the hardware implementation would
be a highly parallel hardware accelerator. Playing the SystemC
model at a finer grain than what it is built for would be
meaningless w.r.t. the real system.

B. Existing Work: Power-State Models

For a component whose energy consumption may vary in
time, a power-state model [7] identifies a finite set of discrete
states, each of them corresponding to a set of parameters from
which a constant consumption value can be computed. In itself,
a power state model of a component gives no information on
why and when the component is in a given state. For instance,
if we represent the DVFS operating points of a processor by a
power-state model, then we also have to describe the part of the
chip behavior that operates the DVFS command, thus changing
the power state. By observing how long the component is in
each of its power states, one can obtain the total consumption
of a given scenario.

Power-state models of hardware components can be ob-
tained by means of physical measures on the circuit. The value
attached to a state can be given in Watts (Joules per second),
or sometimes in Amperes, to keep the model unchanged even
when the voltage changes.

Components like the CPU have two independent power-
state models: their electrical state (power, frequency, clock);
and their activity state related to the internal functionality (an
image-processing hardware block can be either decoding an
image, or just reading one); components like the bus and the
memory will have a traffic model, and sometimes a power-state
model for their electrical state.

Instrumenting a SystemC program with power-state infor-
mation can be done by inserting appropriate function calls

in the code (e.g. set_state("activity", "Wait");

when the activity transitions to the state Wait). Part of the
information needed for this instrumentation can be extracted
from a UPF (Unified Power Format, IEEE 1801) specification.

IV. JOULE-PER-BIT AND TRAFFIC MODELS

The functioning mode of a bus depends entirely on how
it is solicited by the components connected to it, how the
communications overlap or are sequentialized, etc. At the
transaction-level of abstraction, we do not have sufficient
information to drive an activity power-state of the bus. So we
use an estimation of power consumption in the bus based on a
Joule-per-bit abstraction [14]. Similarly, the power consump-
tion of memory components depends on a lot of parameters
not observable at the transaction-level modeling (e.g., access
patterns, control logic, etc.). In the sequel, traffic models are
described for the BUS components, but the same holds for
memory components.

The Joule-per-bit abstraction is quite common for charac-
terizing the consumption of a communication medium, in a
wide variety of domains (from sensor networks to systems-
on-a-chip). The energy consumed per bit transmitted can be
obtained by performing measures on an implementation of the
bus.

Any functional model can be instrumented in order to count
the bits transmitted, hence providing an estimation of the total
energy consumed during a scenario (if we ignore the feedback
effects on temperature). As we explained in the introduction,
if we want to detect peaks, and/or care about temperature, we
need to produce realistic consumption profiles over time. This
means that instrumenting the TLM model with a Joule-per-bit
model of the bus is a bit more complex than just counting the
bits transmitted for the whole scenario.

We can observe all the components connected to the bus,
and count how many bits they send, and in which periods of
time. For the bus, we gather all these contributions. The traffic
model of the bus associates a transmission frequency Fi, given
in bits per second, with each simulation interval [ti, ti+1] as
defined in Section III-A above. Equivalently, we can consider
the number of transactions Ti in [ti, ti+1], and Fi = Ti/(ti+1−

ti). The energy (in Joules) is Ei = Ti × s× γ where γ is the
cost of transmitting one bit, and s is the number of bits of a
transaction; the power consumption (in Watts) is Ei/(ti+1 −

ti) = Ti × s× γ/(ti+1 − ti) = Fi × s× γ.

A. Implementation in SystemC

The memories and the bus have a traffic model. Computing
the transmission frequency in each global simulation interval
is not trivial; the number of transactions on the bus is due
to the contributions of all the components connected to it;
these numbers have to be summed, and associated with the
appropriate simulation interval.

Consider m components C1, C2, ..., Cm connected to
a bus. We explained in section III-A that the timed
models are built with the behavior of each component
being modeled by SystemC code of the form: ∆t =

compute_function(); wait(∆t);. Instrumenting for
the traffic means that the computation of the functional effect

Ck

tk +∆tktk

System

2 31

Cℓ

tℓ +∆tℓtℓ
(Tk, ∆tk)

(Tℓ, ∆tℓ)

Fig. 2. Several components contributing to the traffic on the same bus

also delivers the number T of transactions produced: (∆t, T)
= compute_function(); wait(∆t);

Consider Figure 2. If such a piece of code, for a com-
ponent Ck, is executed at the simulation instant tk, we get a
contribution of Tk transactions during an interval [tk, tk+∆tk].
For another component Cℓ connected to the bus, whose code
is executed at the simulation instant tℓ, we might get a
contribution of Tℓ transactions during the interval [tℓ, tℓ+∆tℓ].

All the instants belong to the set of global simulation
instants, and we should be able to associate a number of
transactions with each global simulation interval of the system
(denoted by 1, 2, 3 on the figure). We first transform the
numbers of transactions into frequencies: Fk = Tk/∆tk and
Fℓ = Tℓ/∆tℓ. Then we see that in the simulation interval
1, only Ck is contributing, hence we have the frequency of
transactions Fk, or a number of transactions Fk × (tℓ − tk);
during the simulation interval 2, both components contribute,
so the frequency is Fk + Fℓ and the number of transitions is
(Fk +Fℓ)× (tk +∆tk − tℓ); during the simulation interval 3,
only Cℓ is contributing, hence a frequency Fℓ and a number
of transactions Fℓ × (tℓ +∆tℓ − (tk +∆tk)).

In the SystemC implementation, each component that has a
traffic model embodies data structures to map SystemC threads
to transaction counts and frequencies. Transaction counts are
updated each time a transaction is observed. We add wrapper
functions of SystemC wait on time primitive in order to be
notified each time a thread calls the wait on time primitive.
Then each traffic model converts the transaction count of
the concerned process to its transaction frequency, knowing
the duration given by the wrapper function. Another wrapper
function (of the sc start() primitive) is required to notify the end
of the simulation instant ti, and to report the next instant ti+1;
components then update their traffic model according to the
sum of the transaction frequencies of all threads during the
interval [ti, ti+1].

V. CASE STUDY

To illustrate our approach we use a small, but representative
SoC including a Microblaze soft core. It is based on a real
FPGA system, designed with Xilinx EDK. We augmented it
with power and temperature features (that the original system
does not include because of the limitations of FPGAs).

Figure 3 is the hardware architecture of the chip as modeled
with SystemC/TLM. It is made of an ISS (Instruction Set
Simulator), two memories I MEM and D MEM, a TIMER, an
interrupt controller INTC, and a VGA controller VGAC, which
reads images from D MEM. At the end of a transfer, the VGAC

signals an interrupt. A temperature sensor T SENS exposes the

temperature to the software with a read-only register. It may
also be programmed with two values Thigh and Tlow to send
interrupts when the temperature measured equals or exceeds
Thigh (resp., equals or falls below Tlow).

Components are grouped into three power domains. pd1

comprises most of the components and is set to voltage 5 V.
pd2 comprises the VGAC which may be switched on and off
(voltage values 5 V and 0 V). Finally pd3 comprises the CPU to
which we may apply Dynamic Voltage and Frequency scaling.
The operating points are (5 V, 50 MHz) and (3 V, 20 MHz).
A power controller PW CTL manages power domains and fre-
quencies. It has software-programmable registers to determine
the power configurations to be applied.

I MEMPW CTL

D MEM

CPU VGAC

INTC

(5 V)(5 V, 50 MHz)

pd3

(5 V) - (0 V)
pd2 pd1(3 V, 20 MHz)

TIMER T SENS

Fig. 3. TL-Model of the hardware architecture of the case study

A. The Embedded Software

Figure 4 is a sketch of the software. It computes a new
image to be displayed by the VGAC, at each timer interrupt.
The software implements a simple power management policy,
sensitive to system temperature. The sensor is programmed
with two temperature values. If the temperature reaches Thigh

(resp., Tlow) the software programs the power controller to
switch off (resp. on) the VGAC, slow down (resp. speed up)
the timer, and scale down (resp. up) processor voltage and
frequency. The hysteresis mechanism implemented by these
two thresholds is meant to avoid shaking.

1 i n t main () {
2 i n i t a l l () ; /∗ hardware components ∗ /

3 whi le (1) {
4 i f (s e n s i t s i g n a l e d) / / s e n s o r i n t e r r u p t ?

5 u p d a t e p o w e r c o n f i g a n d t i m e r p e r i o d () ;

6 i f (must compute image) / / t i m e r i n t e r r u p t ?

7 compute image () ;

8 w a i t i n t e r r u p t () ; / / l e t CPU s l e e p u n t i l n e x t IRQ

9 }
10 }
11 / / / / / / / / I n t e r r u p t S e r v i c e R o u t i n e s / / / / / / / /

12 /∗ r e q u e s t t o compute a new image ∗ /

13 void t i m e r i s r () { must compute image = 1 ; }
14 /∗ program vgac w i t h new image a d d r e s s ∗ /

15 void v g a c i s r () { program image add () ; }
16 /∗ r e q u e s t t o han d l e s e n s o r i n t e r r u p t ∗ /

17 void s e n s i s r () { s e n s i t s i g n a l e d = 1 ; }

Fig. 4. Sketch of the embedded software

B. SystemC/TLM and Thermal Solver Cosimulation

We use the temperature solver ATMI [4] to compute
the temperature at the sensor place according to the power

consumption of the components. Our method, based on a
cosimulation technique, is able to set the sensor temperature
at each instant, and to produce interrupts (if any) at the correct
date. Cosimulation details are out of the scope of this paper.

C. Granularity of the Model: Example of the CPU

Our approach is meant to be applicable on models timed
with a coarse granularity. To validate our approach (see Sec-
tion VI), we need to be able to compare coarse granularity
results with finer ones. We illustrate this on the CPU model
(i.e., the ISS). The embedded software is run unchanged on
the model whatever the granularity.

The ISS can be used at several granularities: (i) one
instruction at a time (called instruction-accurate in the fol-
lowing), and then a synchronization point; this is the slowest,
and can be done in a transparent way for the software; (ii)
several instructions between two synchronization points. In
the latter case, the ISS maintains a counter of instructions.
After executing a sequence of n instructions in a row, the
ISS produces a wait statement, with a duration computed as
a function of n and the current frequency of the processor.
Either the number n of instructions to be executed in a row
is predefined and this is again transparent for the software, or
the software is instrumented with purge statements at logical
points. purge is interpreted by the ISS as a special instruction
that produces the wait statement, with n the number of
instructions executed since the last purge. Executing several
instructions in a row in the ISS, with no synchronization point,
speeds up the simulation. Placing purge statements is a way
to control the faithfulness of the model.

Notice that the particular case of the ISS makes it possible
to choose the time granularity freely, but an execution at a fine
granularity is not always possible without rewriting the model
for components other than CPUs.

VI. EXPERIMENTAL RESULTS

All the experiments use variants of the case-study of
Section V, and are meant to observe and validate the power
model structure of Section III and the traffic analysis principles
of Section IV. We assume that the physical data summa-
rized by power-state models and traffic models have been
validated beforehand, and we only discuss the influence of
timing granularities on the simulation speed and the accuracy
of the system-level model we built on top of these data.
The instruction-accurate version is therefore considered as the
reference. The experiments check that the coarse-grain models
(that are available at earlier stages of the design flow) produce
a good approximation of this reference.

A. Spreading power consumption over simulation intervals

Figure 5 illustrates the effect of a naive coarse-grain
model (with temporal decoupling using purge statements as
explained above), as mentioned in the introduction (Figure 1).
The three curves represent the temperature evolution for our
case-study where power-management has been turned off. The
dashed curve (1) corresponds to a coarse-grain simulation,
and is obtained when the power consumption is considered
to happen at the beginning of the simulation intervals. The
two other curves correspond to: (2) the instruction-accurate

simulation (i.e. with a time step of 20 ns); and (3) a coarse-
grain simulation with the principles of section IV implemented
to spread power consumption due to traffic on appropriate
simulation intervals. We observe that the curve (1) departs from
the other ones significantly, showing unrealistic peaks.

 30

 31

 32

 33

 34

 35

 36

 37

 0 0.05 0.1 0.15 0.2 0.25 0.3

simulated time (s)

(naive approch)
(1) Coarse-grained

(3) Coarse-grained (Spread power)

(2) Instruction-accurate simulation

T
em

p
er

at
u
re

(0
C

)

Fig. 5. Spreading power consumption over simulation intervals

B. Validating power management policies

Figure 6 illustrates the typical use of our system-level
models: the validation of a power- and thermal-management
policy. The top of the figure shows power consumption for
the coarse-grain simulation only (the power consumption for
instruction-accurate simulations is unreadable at this scale,
because it changes far too often). The bottom of the figure
shows the temperature evolution for the instruction-accurate
and coarse-grain simulations, and the interrupts that trigger
the power-management actions. We can see that the two curves
almost coincide and that the interrupts occur at the same time.

2

4

6

8

10

12

14

power consumption
Overall

30

30.5

31

31.5

32

32.5

33

33.5

0 0.05 0.1 0.15 0.2 0.25 0.3

Instruction
accurate

(Inst. accurate)

Coarse grained

Interrupts
(Coarse)T

em
p
er

at
u
re

(0
C

)
P

o
w

er
(W

at
t)

Interrupts

Simulated time (s)

Fig. 6. Power and thermal simulation for the case study of section V

C. Granularity of the functional models

Figure 7 illustrates another experience with power con-
sumption and temperature of the D RAM component. The
functional behavior of the SoC is such that the memory
receives a lot of traffic in the first half of the simulation period
represented, and nothing in the second half. Fig. 7-(a) is the
instruction-accurate simulation, on which the effect of this two-
phase behavior is clearly visible: the temperature increases be-
cause of high power consumption, and then decreases slowly.
Both Fig. 7-(b) and Fig. 7-(c) are obtained with a coarse-grain
simulation, but we can see that only (c) reproduces the profile
of (a). The difference is the following: in (b), the simulation
is made in one big step (because there is no simulation instant
in the middle), and the power consumption is spread over the
whole interval; in (c), the simulation is split into two simulation

intervals. What happens is that in (b) the functional and timed
model itself is too coarse. If the memory receives traffic in
two well-differentiated patterns, it is probably because one
of the components has two distinct running modes that have
been ignored in the model. It means that the modeling of a
component (like the software) can benefit from an explicit
distinction between running modes, even if the impact is not
on the activity model of component itself, but on the traffic
model of another component.

D RAM power consumption

0.157 0.164... 0.159 0.162 0.160 ...

32.1

32.02

32.1

32.02

32.02

32.1

0.5

1

1.5

2

0.5

1

1.5

2

0.157

0.5

1

1.5

2

0.1640.1600.157

(b) One big step simulation

(c) Two big steps simulation

P
o
w

er
(W

at
t)

0.164

0

0

0

(a) Instruction-accurate simulation

Simulated time (Seconds)

T
em

p
er

at
u
re

(0
C

)

D RAM Temperature

Fig. 7. The effect of coarse granularity on memory power consumption

D. Simulation speed

Figure 8 illustrates simulation speeds for the case study
and the overhead of its power instrumentation. For coarse-
grained models we are interested in (those based on logical
synchronization points and explicit purge statements), we
think that the instrumentation overhead is acceptable (25%).
The fine-grained models (i.e., 1 instruction at a time, first
line) are used only as a reference for validating the accuracy
of the coarse-grain models. Unsurprisingly, at this level the
instrumentation overhead would not be acceptable (1104%).

SC/TLM SC/TLM+Power overhead

1-inst. 271.43s 3265.58s +1103%

100-inst. 111.75s 169.74s +52%

Coarse-grain 109.02s 136.17s +25%

Fig. 8. Execution times and power instrumentation overheads for simulating
10s of the system at three distinct levels of granularity.

VII. CONCLUSION

We have shown how to start from a functional and timed
system-level model of a system-on-chip, and augment it with
information on the power-consumption of the individual com-
ponents, which comes into two forms: power-state models, and
traffic models. We showed how to compute traffic models care-
fully, so as to avoid bad effects of temporal decoupling on the
faithfulness of the power consumption profile, without losing

the simulation speed of temporal decoupling. Our models are
coupled with a temperature simulator, which allows to observe
the behavior of a power-management policy, including those
that have a feedback effect on the functionality.

We implemented the described techniques as a set of
libraries for power instrumentation, traffic analysis and model
cosimulation, together with wrapper functions of SystemC
primitives to notify end of instants and report wait durations.
The implementation also includes non-trivial mechanisms to
manage interrupts properly (considering the interrupt handler’s
non-functional effect at the right simulation time, aborting
computation and canceling its non-functional behavior).

Further work will investigate other issues related to model
granularity, e.g. when the functional model has a granularity
finer than the thermal solver, or when the temporal decoupling
annotations would allow a better precision than the raw Sys-
temC time.

REFERENCES

[1] Y. Liu, R. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in
Proceedings of the conference on Design, automation and test in

Europe. EDA Consortium, 2007, pp. 1526–1531.

[2] IEEE 1666 Standard: SystemC Language Reference Manual, Open
SystemC Initiative, 2011. [Online]. Available: http://www.accellera.org/

[3] J. Cornet, F. Maraninchi, and L. Maillet-Contoz, “A method for the
efficient development of timed and untimed transaction-level models of
systems-on-chip,” in Proceedings of, ser. DATE ’08. New York, NY,
USA: ACM, 2008, pp. 9–14.

[4] P. Michaud and Y. Sazeides, “ATMI: analytical model of temperature in
microprocessors,” Third Annual Workshop on Modeling, Benchmarking

and Simulation (MoBS), 2007.

[5] W. Huang, S. Member, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, M. R. Stan, S. Member, and S. Member, “Hotspot: A
compact thermal modeling method for CMOS VLSI systems,” IEEE

Transactions on VLSI Systems, vol. 14, pp. 501–513, 2006.

[6] S. Kaiser, I. Materic, and R. Saade, “Esl solutions for low power
design,” in Proceedings of the International Conference on Computer-

Aided Design. IEEE Press, 2010, pp. 340–343.

[7] L. Benini, R. Hodgson, and P. Siegel, “System-level power estimation
and optimization,” in Proceedings of the 1998 international symposium

on Low power electronics and design, ser. ISLPED ’98. New York,
NY, USA: ACM, 1998, pp. 173–178.

[8] R. A. Bergamaschi and Y. W. Jiang, “State-based power analysis for
systems-on-chip,” in Proceedings of the 40th annual Design Automation

Conference, ser. DAC ’03. New York, NY, USA: ACM, 2003, pp. 638–
641. [Online]. Available: http://doi.acm.org/10.1145/775832.775992

[9] D. Das, P. P. Chakrabarti, and R. Kumar, “Thermal analysis of multi-
processor SoC applications by simulation and verification,” ACM Trans.

Des. Autom. Electron. Syst., vol. 15, pp. 15:1–15:52, March 2010.

[10] P. Kumar and L. Thiele, “System-level power and timing variability
characterization to compute thermal guarantees,” in CODES+ISSS 2011.
Taipei, Taiwan: ACM, 2011, pp. 179–188.

[11] H. Lebreton and P. Vivet, “Power modeling in SystemC at transaction
level, application to a DVFS architecture,” in Symposium on VLSI.

ISVLSI’08. IEEE, 2008, pp. 463–466.

[12] M. Yasin, C. Koch-Hofer, P. Vivet, and D. Greaves, “TLM power 3.0
(CBG) user manual,” koo.corpus.cam.ac.uk/tlm-power3, 2012.

[13] A. Varma, E. Debes, I. Kozintsev, P. Klein, and B. L. Jacob, “Accurate
and fast system-level power modeling: An xscale-based case study,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, 2008.

[14] P. Sotiriadis, A. Chandrakasan, and V. Tarokh, “Maximum achievable
energy reduction using coding with applications to deep sub-micron
buses,” in Circuits and Systems, 2002. ISCAS 2002. IEEE International

Symposium on, vol. 1. IEEE, 2002, pp. I–85.

