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REMARKS ON THE CAUCHY PROBLEM FOR THE

ONE-DIMENSIONAL QUADRATIC (FRACTIONAL) HEAT EQUATION

LUC MOLINET AND SLIM TAYACHI

Abstract. We prove that the Cauchy problem associated with the one dimensional

quadratic (fractional) heat equation: ut = D2α
x u ∓ u2, t ∈ (0, T ), x ∈ R or T, with

0 < α ≤ 1 is well-posed in Hs for s ≥ max(−α, 1/2 − 2α) except in the case α = 1/2

where it is shown to be well-posed for s > −1/2 and ill-posed for s = −1/2. As a

by-product we improve the known well-posedness results for the heat equation (α = 1)

by reaching the end-point Sobolev index s = −1. Finally, in the case 1/2 < α ≤ 1, we

also prove optimal results in the Besov spaces Bs,q2 .

Keywords: Nonlinear heat equation, Fractional heat equation, Ill-posedness, Well-

posedness, Sobolev spaces, Besov spaces.

2000 AMS Classification: 35K15, 35K55, 35K65, 35B40

1. Introduction and main results

The Cauchy problem for the quadratic fractional heat equation reads

(1.1) ut −D2α
x u = ∓u2,

(1.2) u(0, ·) = u0,

where u = u(t, x) ∈ R , α ∈]0, 1], t ∈ (0, T ), T > 0, x ∈ R or T and D2α
x is the Fourier

multiplier by |ξ|2α. In this paper, we consider actually the corresponding integral equation

which is given by

(1.3) u(t) = Sα(t)u0 ∓
∫ t

0
Sα(t− σ)

(
u2(σ)

)
dσ,

where Sα(t) is the linear fractional heat semi-group and are interested in local well-

posedness and ill-posedness results in the Besov spaces Bs,q
2 (K) with s ∈ R, q ∈ [1,∞[

and K = R or T.
1
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Let us recall that the Cauchy problem associated with the nonlinear heat equation in

Rn

(1.4) ut −∆u = ∓uk

has been studied in many papers (see for instance [3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 18, 19, 20,

21] and references therein). It is well-known that this equation is invariant by the space-

time dilation symmetry u(t, x) 7→ uλ(t, x) = λ
2

k−1u(λ2t, λx) and that the homogeneous

Sobolev space Ḣ
n
2
− 2
k−1 is invariant by the associated space dilation symmetry ϕ(x) 7→

λ
2

k−1ϕ(λx). The Cauchy problem (1.4) is known to be well-posed in Hs for s ≥ sc =
n
2 −

2
k−1 except in the case (n, k) = (1, 2). Indeed, in this case the well-posedness is only

known in Hs for s > −1 and in [9] it is proven that the flow-map cannot be of class C2

below H−1. Hence, this result is close to be optimal if one requires the smoothness of

the flow-map. Recently, it was proven in [8] that the associated solution-map : u0 7→ u

cannot be even continuous in Hs for s < −1. The first aim of this work is to push down

the well-posedness result to the end point H−1. The second step is to extend these type

of results for the one-dimensional quadratic fractional heat equation (1.1). Indeed we will

derive optimal results for the Cauchy problem (1.1) in the scale of the Besov spaces Bs,q
2

in the case 1
2 < α ≤ 1. In particular we will prove that the lowest reachable Sobolev index

is −α that is strictly bigger then the critical Sobolev index for dilation symmetry that is

1/2− 2α.

To reach the end-point index H−α we do not follow the classical method for parabolic

equations (cf. [4, 12, 21]) that does not seem to be applicable here. We rather rely on

an approach that was first introduced by Tataru [16] in the context of wave maps. Note

that we mainly follow [10] where this method has been adapted for dispersive-dissipative

equations. The fact that our equation is purely parabolic enables us to simplify the proof.

The optimality of our results follows from an approach first introduced by Bejenaru-Tao

[1] for a one-dimensional quadratic Schrödinger equation. This approach is based on a

high-to low frequency cascade argument.

Finally we consider the case 0 < α ≤ 1/2. By classical parabolic methods we obtain the

well-posedness in the Sobolev space 1 Hs(R), s ≥ 1/2− 2α, unless α = 1/2. On the other

hand, following a very nice result by Iwabuchi-Ogawa [8], we prove that (1.1) is ill-posed

in H−1/2(R) for α = 1/2. It is worth noticing that (1/2,−1/2) is the intersection of the

straight borderlines for well-posedness that are s = −α and s = 1/2− 2α.

1Recall that 1/2− 2α is the critical Sobolev index for dilation symmetry.
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Before stating our main result, let us give the precise definition of well-posedness we

will use in this paper.

Definition 1.1. We will say that the Cauchy problem (1.1)-(1.2) is (locally) well-posed in

some normed function space B if, for any initial data u0 ∈ B, there exist a radius R > 0, a

time T > 0 and a unique solution u to (1.3), belonging to some space-time function space

continuously embedded in C([0, T ];B), such that for any t ∈ [0, T ] the map u0 7→ u(t) is

continuous from the ball of B centered at u0 with radius R into B. A Cauchy problem will

be said to be ill-posed if it is not well-posed.

Theorem 1. Let K = R or T and α ∈]1/2, 1]. The Cauchy problem (1.1) is locally well-

posed in the Besov space Bs,q
2 (K) if and only if (s, q) ∈ R × [1,+∞[ satisfies s > −α or

s = −α and q ∈ [1, 2].

Remark 1.2. Our negative results can be stated more precisely in the following way : For

any couple (s, q) ∈ R × [1,+∞[ satisfying, s < −α or s = −α and q > 2, there exists

T > 0 such that the flow-map u0 7→ u(t) is not continuous at the origin from Bs,q
2 (K) into

D′(K) for any t ∈]0, T [.

This paper is organized as follows. In the next section we define our resolution spaces

in the case K = R. In Section 3 we derive the needed linear estimates on the free term

and the retarded Duhamel operator and in Section 4 we prove our well-posedness result.

Section 5 is devoted to the non-continuity results for the same range of α. In Section 6

we complete the well-posedness results by considering the case 0 < α ≤ 1/2. First, by

classical parabolic methods, we prove that we can reach the critical Sobolev index for

dilation symmetry that is 1/2 − 2α unless α = 1/2. Then, following [8], we prove that

(1.1) is ill-posed in H−1/2(R) for α = 1/2. Finally we explain the needed adaptations in

the periodic case K = T.

Throughout the paper, we will write f . g, whenever a constant C ≥ 1, only depending

on parameters and not on t or x, exists such that f ≤ Cg. We write f ∼ g if f . g, and

g . f. If C depends on parameters a, we write f .a g, instead.

2. Resolution Space

We use the following definition for the Fourier transform

F(f)(ξ) =

∫
R
f(x)e−ixξdx,

and the inverse Fourier transform is

F−1(f)(x) =
1

2π

∫
R
F(f)(ξ)eixξdξ,
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for f in S(R), the Schwartz space of rapidly decreasing smooth functions, and by duality

if f in S ′(R), the space of tempered distributions. We denote sometimes F(f) by f̂ . The

fractional power of the Laplacien can be defined by the Fourier transform: For α ∈ R,

F
(
(−∂2x)αf

)
(ξ) = |ξ|2αF(f)(ξ).

Let s be a real number. The Sobolev space Hs(R) is defined by

Hs(R) = {u ∈ S ′(R) |
∫
R
(1 + |ξ|2)s|F(u)(ξ)|2dξ <∞}

where F(u) is the Fourier transform of u. The norm on Hs(R) is defined by

||u||Hs(R) =
(∫

R
(1 + |ξ|2)s|F(u)(ξ)|2dξ

)1/2
.

We will need a Littlewood-Paley analysis. Let η ∈ C∞0 (R) be a non negative even function

such that supp η ⊂ [−2, 2] and η ≡ 1 on [−1, 1]. We define ϕ(ξ) = η(ξ/2) − η(ξ) and the

Fourier multipliers

F(∆ju)(ξ) = ϕ(2−jξ)Fu(ξ), j ≥ 0, and F(∆−1u)(ξ) = η(ξ)Fu(ξ) .

For any s ∈ R and q ≥ 1, the Besov space Bs,q
2 (R) is defined as the completion of S(R) for

the norm

‖u‖Bs,q2 (R) =
( ∑
j≥−1

2jsq||∆ju||qL2(R)

)1/q
.

For s ∈ R, s1 < s2, 1 ≤ q1 ≤ q2 and q ≥ 1 we have the following embeddings

Bs,q1
2 ↪→ Bs,q2

2 and Bs2,q
2 ↪→ Bs1,1

2 .

Moreover, It is well-known that the Hs(R)-norm is equivalent to the Bs,2
2 -norm so that

Hs(R) = Bs,2
2 (R).

Finally, for 1 ≤ p ≤ ∞ we consider the space-time space L̃p(R;Bs,q
2 ) equipped with the

norm

‖u‖
L̃ptB

s,q
2

=
[∑
j≥−1

2sjq‖∆ju(t)‖q
LptL

2
x

]1/q
.

We are now able to define our resolution space. For T > 0 fixed, we consider the space

Xs,q
α,T = L̃∞T B

s,q
2 ∩ L̃2

TB
s+α,q
2 equipped with the norm:

‖u‖Xs,q
α,T

=
[∑

j

sup
t∈]0,T [

2sjq‖∆ju(t)‖q
L2
x

]1/q
+
[∑

j

2j(s+α)q‖∆ju‖qL2
TL

2
x

]1/q
.

Let us also consider the space

Y s,q
α :=

{
u ∈ L̃1

(
R∗+;Bs+2α,q

2 (R)
)

and ∂tu ∈ L̃1
(
R∗+;Bs,q

2 (R)
)}
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equipped with the norm:

‖u‖Y s,qα
=
[∑

j

2(s+2α)jq‖∆ju‖qL1
tL

2
x

]1/q
+
[∑

j

2sjq‖∆jut‖qL1
tL

2
x

]1/q
For T > 0, the restriction space Y s,q

α,T of Y s,q
α is endowed with the usual norm

‖u‖Y s,qα,T
= inf

v∈Y
{‖v‖Y s,qα

, v ≡ u on ]0, T [ } .

For T > 0 our resolution space will be Es,qα,T = Xs,q
α,T + Y s,q

α,T endowed with the usual norm

for a sum space :

‖u‖Es,qα,T := inf
u=v+w

(‖v‖Xs,q
α,T

+ ‖w‖Y s,qα,T
).

3. Linear estimates

We first establish the following lemma.

Lemma 3.1. Let 0 < T ≤ 1 and ϕ ∈ Bs,q
2 . Then we have

(3.1) ‖Sα(t)ϕ‖Xs,q
α,T
. ‖ϕ‖Bs,q2

.

Proof. The standard smoothing effect of the (fractional) heat semi-group is not sufficient

here since we have

‖Sα(t)ϕ‖Bs+α,q2
. t−

1
2 ‖ϕ‖Bs,q2

and the right hand side of this inequality is not square integrable near t = 0. Integrating

by parts the linear fractional heat equation

(3.2) ∂tu−D2α
x u = 0

on ]0, t[×R, t > 0, against u and using that u(0) = ϕ, we obtain∫
R
u2(t, x) dx+

∫ t

0

∫
R
|Dα

xu(s, x)|2 dx ds =

∫
R
ϕ2(x) dx .

Using that for each j ∈ N, ∆jSα(t)Ds
xϕ satisfies the linear fractional heat equation (3.2)

with Ds
xϕ as initial datum, powering in q/2 and then summing in j ≥ 0, we get for any

T > 0,(∑
j≥0

2sjq‖∆jSα(t)ϕ‖q
L∞T L

2
x

)1/q
+
(∑
j≥0

2(s+α)jq‖∆jSα(t)ϕ‖q
L2
TL

2
x

)1/q
.
(∑
j≥0

2sjq‖∆jϕ‖qL2
x

)1/q
.

On the other hand, for j = −1 we write

‖∆−1Sα(t)ϕ‖L∞T L2
x

+ ‖∆−1Sα(t)ϕ‖L2
TL

2
x
≤ 2T 1/2‖∆−1Sα(t)ϕ‖L∞T L2

x
≤ 2T 1/2‖∆−1ϕ‖L2

x

and the result follows. �
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As a direct consequence we get the following estimate on the semi-group : Let 0 < T ≤ 1

and ϕ ∈ Bs,q
2 then it holds

(3.3) ‖Sα(t)ϕ‖Es,qα,T . ‖Sα(t)ϕ‖Xs,q
α,T
. ‖ϕ‖Bs,q2

.

Let us now define the operator Lα by

(3.4) Lα(f)(t, x) =

∫ t

0
Sα(t− t′)f(t′)dt′.

Then we have

Lemma 3.2. Let 0 < T ≤ 1 and f ∈ Es,qα,T . Then we have

(3.5) ‖Lα(f)‖Y s,qα,T
. (1 + T )‖f‖L̃1

TB
s,q
2
.

Proof. It suffices to prove the result for a time extension of Lα(f). More precisely, it

suffices to prove that

‖ηLα(f)‖Y s,qα,T
. ‖f‖L̃1

t>0B
s,q
2
,

for any f ∈ L̃1
t>0B

s,q
2 supported in time in [0, 1] and where η ∈ C∞0 (R) is defined in Section

2 . Let u be the solution of the Cauchy problem

∂tu−D2α
x u = f, u(0) = 0.

It is easy to check that u = Lα(f). Multiplying this equation by u and integrating by

parts, we get
1

2

d

dt

∫
R
u2 +

∫
R
(Dα

xu)2 =

∫
R
fu .

Applying this equality to localizing in frequencies equation and using Bernstein inequality

and the Cauchy-Schwarz one, we get for any j ∈ N,

1

2

d

dt

∫
R
u2j + 22αj

∫
R
u2j ≤

( ∫
R
f2j
)1/2( ∫

R
u2j
)1/2

.

Here uj = ∆ju, fj = ∆jf . If
( ∫

R u
2
j

)1/2 6= 0 we divide this last inequality by
( ∫

R u
2
j

)1/2
to obtain

d

dt

(( ∫
R
u2j
)1/2)

+ 22αj
( ∫

R
u2j
)1/2 ≤ ( ∫

R
f2j
)1/2

.

On the other hand, the smoothness and non negativity of t 7→ ‖uj(t)‖2L2
x

forces d
dt‖uj(t)‖

2
L2
x

=

0 as soon as ‖uj(t)‖L2
x

= 0. This ensures that the above differential inequality is actually

valid for all t > 0. Integrating this differential inequality in time we get for any j ∈ N,

(3.6) 22αj‖uj‖L1
tL

2
x
. ‖fj‖L1

tL
2
x
.
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Now, in the case j = −1, we get in the same way ‖∆−1u‖L2 . ‖∆−1f‖L1
tL

2
x
. Integrating

on [0, 2T ] this leads to ‖η∆−1u‖L1
tL

2
x
. T‖fj‖L1

tL
2
x
.

Finally, in view of the linear fractional heat equation, the triangle inequality leads to

(3.7) ‖∂t(ηuj)‖L1
tL

2
x
. ‖η∂tuj‖L1

tL
2
x

+ ‖uj‖L1
tL

2
x
. ‖fj‖L1

tL
2
x
.

Since u = Lα(f), summing in j ∈ N using Bernstein inequalities and recalling the expres-

sion of the norm in Y s,α, we conclude that

(3.8) ‖ηLα(f)‖Y s,qα,T
. ‖f‖L̃1

tB
s,q
x
.

�

Lemma 3.3. Let 0 < T ≤ 1 and u ∈ Y s,q
α,T . Then it holds

(3.9) ‖u‖Xs,q
α,T

= ‖u‖L̃∞T Bs,q2
+ ‖u‖L̃2

TB
s+α,q
2

. ‖u‖Y s,qα,T
.

In particular, Es,qα,T ↪→ Xs,q
α,T .

Proof. Again it suffices to prove this estimate for the non restriction spaces. Actually, by

localizing in space frequencies it suffices to prove that for any function u ∈ L1(R+;L2(R))

with ut ∈ L1(R+;L2(R)) it holds

(3.10) ‖u‖L∞t L2
x
. ‖ut‖L1

tL
2
x

and ‖u‖2L2
t>0L

2
x
. ‖u‖L1

t>0L
2
x
‖ut‖L1

t>0L
2
x
.

Indeed, applying (3.10) to the space frequency localization uj of u, Bernstein’s inequalities

lead to

2js‖uj‖L∞t L2
x
. 2js‖∂tuj‖L1

tL
2
x

and 2jq(s+α)‖uj‖qL2
t>0L

2
x
. 2jq(s+2α)/2‖uj‖q/2L1

t>0L
2
x
2jqs/2‖∂tuj‖q/2L1

t>0L
2
x
,

which yields the result by summing in j and applying Cauchy-Schwarz in j on the right-

hand member of the second inequalities.

Let us now prove (3.10). The first part is a direct consequence of the equality u(t) =

−
∫∞
t ut(s)ds and Minkowsky integral inequality. To prove the second part we notice that

u2(t) = −u(t)
∫∞
t ut(s)ds so that we can write∫ ∞

0

∫
R
u2(t, x) dx dt =

∫ ∞
0

∫
R
u(t, x)

∫ t

0
ut(s, x) ds dx dt

.
∫
R

∫ ∞
0
|u(t, x)| dt

∫ ∞
0
|ut(t, x)| dt dx

. ‖
∫ ∞
0
|u(t, ·)| dt‖L2

x
‖
∫ ∞
0
|ut(t, ·)| dt‖L2

x

. ‖u‖L1
t>0L

2
x
‖ut‖L1

t>0L
2
x
,

where we used Minkowsky integral inequality in the last step. �
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4. Well-posedness for 1/2 < α ≤ 1

According to Lemma 3.2 we easily get for 0 < T ≤ 1,

‖Lα(u2)‖Es,qα,T . ‖Lα(u2)‖Y s,qα,T
.

(∑
j

2jsq‖∆j(u
2)‖q

L1
TL

2
x

)1/q
.

(∑
j

2jq(s+1/2)‖∆j(u
2)‖q

L1
TL

1
x

)1/q
.(4.1)

Now, by para-product decomposition we have

‖∆j(u
2)‖L1

TL
1
x
. ‖u‖L2

T,x
‖∆ju‖L2

T,x
+

∑
|k−k′|≤3, k&j

‖∆ku‖L2
T,x
‖∆k′u‖L2

T,x
.

The contribution to (4.1) of the first term of the above right-hand side member can be

estimated by

‖u‖L2
T,x

(∑
j

2jq(s+1/2)‖∆ju‖qL2
TL

2
x

)1/q
= ‖u‖L2

T,x
‖u‖

L̃2
TB

s+1/2,q
2

which is acceptable as soon as α ≥ 1/2 and (s > −α or s = −α and 1 ≤ q ≤ 2 ). Indeed,

this last condition ensures that ‖u‖L2
T,x
. ‖u‖L̃2

TB
s+α,q
2

. For the second term, we notice

that for α > 1/2, we can estimate its contribution by

‖u‖
L̃2
TB

0,∞
2
‖u‖L̃2

TB
s+α,q
2

(∑
j

2jq(1/2−α)
)1/q

≤ C(α) ‖u‖
L̃2
TB

0,∞
2
‖u‖L̃2

TB
s+α,q
2

,

where C(α) > 0 only depends on α > 1/2.

In view of Lemma 3.3, this proves that for α > 1/2,

(4.2) ‖Lα(u2)‖Es,qα,T . ‖u‖L̃2
Tx
‖u‖L̃2

TB
s+α,q
2

. ‖u‖
E−α,2α,T

‖u‖Es,qα,T ,

where the implicit constants only depends on α. In the same way, for any α ∈]1/2, 1],

there exists Cα > 0 such that

‖Lα(uv)‖Es,αT . ‖u‖L̃2
Tx
‖v‖L̃2

TB
s+α,q
2

+ ‖v‖L̃2
Tx
‖u‖L̃2

TB
s+α,q
2

≤ Cα

(
‖u‖

E−α,2α,T
‖v‖Es,qα,T + ‖v‖

E−α,2α,T
‖u‖Es,qα,T

)
.(4.3)

Let us now fixed α ∈]1/2, 1]. (4.3) together with (3.3) lead to the existence of β > 0 such

that for all u0 ∈ B−α,22 (R) with

(4.4) ‖u0‖B−α,22 (R) ≤ β ,

the mapping

u 7→ Sα(·)u0 + Lα(u2)
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is a strict contraction in the ball of E−α,2α,1 centered at the origin of radius (2Cα)−1. Noticing

that Es,qα,1 ↪→ E−α,2α,1 as soon as

(4.5) (s ≥ −α and 1 ≤ q ≤ 2) or s > −α,

this ensures that the above mapping is also strictly contractive is a small ball of Es,qα,T as

soon as (4.5)-(4.4) are satisfied. Since Sα is a continuous semi-group in Bs,q
2 (R) and accord-

ing to Lemma 3.3, Es,qα,1 ↪→ L̃∞1 B
s,q
2 , this leads to the well-posedness result in Bs,q

2 (R) under

conditions (4.5) for initial data satisfying (4.4). The result for general initial data follows

by a simple dilation argument. Indeed, the equation (1.1) is invariant under the dilation

u(t, x) 7→ uλ(t, x) = λ2αu(λ2αt, λx) whereas ‖λ2αu0(λ·)‖B−α,22 (R) ≤ λα−1/2‖u0‖B−α,22 (R) →
0 as λ ↘ 0. Classical arguments then lead to the well-posedness result in Bs,q

2 (R) for

arbitrary large initial data with a minimal time of existence T ∼
(
1 + ‖u0‖B−α,22 (R)

)− 4α
2α−1 .

Note that, the well-posedness being obtained by a fixed point argument, as a by-product

we get that the solution-map : u0 7→ u is real analytic from Bs,q
2 (R) into C

(
[0, T ];Bs,q

2 (R)
)
.

5. Ill-posedness results for 1/2 < α ≤ 1.

In this section we prove discontinuity results on the flow map u0 7→ u(t) for any fixed

t > 0 less than some T > 0. To clarified the presentation we separate the case s < −α and

the case s = −α and q > 2.

5.1. The case s < −α. We take the counter example of [10] used for the KdV-Burgers

equation.

We define the sequence of initial data {φN}N≥1 ⊂ C∞(R) via its Fourier transform by

(5.6) φ̂N (ξ) = Nα
(
χIN (ξ) + χIN (−ξ)

)
,

where IN = [N,N + 2] and χIN is the characteristic function of the interval IN ,

χIN (ξ) =

1 if ξ ∈ IN ,

0 if ξ 6∈ IN .

That is

φN (x) =

Nα

π
sin(x)
x cos

[
(N + 1)x

]
if x 6= 0,

Nα

π if x = 0.

Clearly φN ∈ C0(R) :=
{
f ∈ C(R)| lim|x|→∞ f(x) = 0

}
.

For any (s, q) ∈ R × [1,+∞] we have ‖φN‖Bs,q2 (R) ∼ Nα+s and thus ‖φN‖B−α,q2 (R) ∼ 1

whereas φN → 0 in Bs,q
2 (R), for s < −α.
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Let us consider the following bilinear operator, closely related to second iteration of the

Picard scheme,

A2(t, h, h) = 2

∫ t

0
Sα(t− t′)[Sα(t′)h]2dt′,

where Sα is the semi-group of the linear heat equation. Let us denote by Fx the partial

Fourier transform with respect to x. Recall that

Fx
(
Sα(t)ϕ

)
(ξ) = e−t[ξ|

2αFx(ϕ)(ξ),∀ϕ ∈ S ′(R),

and Fx(fg) = Fx(f) ? Fx(g), where ? is the convolution product.

It follows that

Fx
(
A2(t, φN , φN )

)
(ξ) = 2

∫ t

0
e−(t−t

′)|ξ|2α
(∫

R
e−t

′|ξ1|2α φ̂N (ξ1)e
−t′|ξ−ξ1|2α φ̂N (ξ − ξ1)dξ1

)
dt′

= 2

∫
R
φ̂N (ξ1)φ̂N (ξ − ξ1)

(∫ t

0
e−(t−t

′)|ξ|2αe−[|ξ1|
2α+|ξ−ξ1|2α]t′dt′

)
dξ1

= 2

∫
R
φ̂N (ξ1)φ̂N (ξ − ξ1)

(e−[|ξ1|2α+|ξ−ξ1|2α]t − e−|ξ|2αt
Θα(ξ, ξ1)

)
dξ1,(5.7)

where

Θα(ξ, ξ1) = |ξ|2α − |ξ1|2α − |ξ − ξ1|2α .

Note that the integrand is nonnegative. In particular, Fx
(
A2(t, φN , φN )

)
(ξ) = |Fx

(
A2(t, φN , φN )

)
(ξ)|.

Let

KN
1 (ξ) =

{
ξ1 | (ξ − ξ1, ξ1) ∈ IN × IN or (ξ − ξ1, ξ1) ∈ I−N × I−N

}
and

KN
2 (ξ) =

{
ξ1 | (ξ − ξ1, ξ1) ∈ IN × I−N or (ξ − ξ1, ξ1) ∈ I−N × IN

}
For any |ξ| ≤ 1

2 , KN
1 (ξ) = ∅ and thus

Fx
(
A2(t, φN , φN )

)
(ξ) = 2

∫
KN

2 (ξ)
φ̂N (ξ1)φ̂N (ξ − ξ1)

(e−[|ξ1|2α+|ξ−ξ1|2α]t − e−|ξ|2αt
Θα(ξ, ξ1)

)
dξ1 .

On the other hand, for any (a, b) ∈ R+ × R− one has obviously,

|a|2α + |b|2α − |a+ b|2α ≥
(
|a| ∧ |b|

)2α
.

Moreover, it is easy to check that |KN
2 (ξ)| ≥ 1 and that in KN

2 (ξ) it holds N2α ≤
|Θα(ξ, ξ1)| ≤ 2(N + 2)2α Hence, fixing t ∈]0, 1[, it holds

Fx
(
A2(t, φN , φN )

)
(ξ) ≥ e−t/2N2α 1− e−N2αt

2(N + 2)2α
≥ 1

4
e−t/2, ∀ξ ∈ [−1/2, 1/2],
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for any N > 0 large enough. This ensures that for any fixed (s, q) ∈ R× [1,+∞] and any

fixed t ∈]0, 1[,

(5.8) ‖A2(t, φN , φN )‖Bs,q2
≥ 1

4
e−t/2

for N > 0 large enough. Taking s < −α this proves the discontinuity of the map u0 7→ u(t)

inBs,q
2 . To prove the discontinuity with value inD′(R), we proceed as follows. Let g ∈ S(R)

be such that ĝ is positive equal to 1 on [−1/4, 1/4] and supported in [−1/2, 1/2]. We obtain

for N > 0 large enough,

|
∫
R
A2(t, φN , φN )(x)g(x)dx| ≥ 1

8
e−t/4.

On the other hand the analytical well-posedness ensures that A2(t, φN , φN ) is bounded in

B−α,12 uniformly in N . Then, since D(R) is dense in S(R), there exists ϕ ∈ D(R) such that

(5.9)
∣∣∣∫

R
A2(t, φN , φN )(x)ϕ(x)dx

∣∣∣ ≥ 1

24
e−t/4.

This shows that A2(t, φN ;φN ) does not converge to 0 in D′(R) and proves the discon-

tinuity from Bs,q
2 (R), s < −α into D′(R).

We now turn to prove the discontinuity of the flow-map

u(t, ·) : Bs,q
2 (R) −→ Bs,q

2 (R)

h 7−→ u(t, h) = Sα(t)h+
∫ t
0 Sα(t− σ)

(
u2(σ)

)
dσ.

By the theorem of well posedness, there exist T > 0 and ε0 > 0 such that for any 0 < ε ≤ ε0,
‖h‖

B−α,12
≤ 1 and 0 ≤ t ≤ T,

u(t, εh) = εSα(t)h+

∞∑
k=2

εkAk(t, h
k),

where hk = (h, · · · , h), hk 7→ Ak(t, h
k) are k−linear continuous maps from (B−α,12 (R))k

into C([0, T ];B−α,12 (R)) and the series converges absolutely in C([0, T ];B−α,12 (R)).

Hence

u(t, εφN )− ε2A2(t, φN , φN ) = εSα(t)φN +

∞∑
k=3

εkAk(t, φ
k
N ).

Using the inequalities

‖Sα(t)φN‖Bs,12 (R) ≤ ‖φN‖Bs,12 (R) ≤ 2N s+α

and ∥∥∥ ∞∑
k=3

εkAk(t, φ
k
N )
∥∥∥
B−α,12 (R)

≤
( ε
ε0

)3∥∥∥ ∞∑
k=3

εk0Ak(t, φ
k
N )
∥∥∥
B−α,12 (R)

≤ Cε3,
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where C is a positive constant, we deduce that for s ≤ −α,

(5.10) sup
t∈[0,T ]

‖u(t, εφN )− ε2A2(t, φN , φN )‖
Bs,12 (R) ≤ Cε

3 + 2ε0N
s+α.

According to (5.8) this leads, for ε ≤ C−1e−t/4

25
, to

‖u(t, εφN )‖Bs,q2 (R) ≥ C0ε
2/2− 2ε0N

s+α.

By letting N → ∞ we obtain the discontinuity result since u(t, 0) = 0 and φN → 0 in

Bs,q
2 (R) for s < −α. The discontinuity of the flow-map from Bs,q

2 (R) into D′(R) follows in

the same way by combining (5.9) and (5.10).

5.2. The case s = −α and q > 2. This case is similar to the precedent except that we

have to change a little the sequence of initial data. Here we take the same sequence as in

the work of Iwabuchi and Ogawa [8]. For any N ≥ 10 we define

ψN = N−
1
2

∑
N≤j≤2N

φ2j .

where φ2j is defined in (5.6).

Noticing that ∆kφ2j = δk,jφ2j , we can easily check that

‖ψN‖B−α,q2
∼ N−

1
2
+ 1
q .

In particular, ‖ψN‖Bα,q2
→ 0 for any q > 2 whereas ‖ψN‖B−α,22

= ‖ψN‖H−α ∼ 1. Since the

equation is analytically well-posed in H−α(R), in view of the preceding case, it suffices to

prove that A2(ψN , ψN , t) does not tend to 0 inD′. By the localization, it holds φ2j?φ2j′ ≡ 0

on ]− 1/2, 1/2[ as soon as j 6= j′ ≥ 10 and the same reasons as above lead to

Fx
(
A2(t, ψN , ψN )

)
(ξ) = N−

1
2

∑
N≤j≤2N

∫
K2j

2 (ξ)
φ̂2j (ξ1)φ̂2j (ξ − ξ1)

(e−[|ξ1|2α+|ξ−ξ1|2α]t − e−|ξ|2αt
Θα(ξ, ξ1)

)
dξ1

≥ N−
1
2 e−t/2N

1
2N2α 1− e−N2αt

2(N + 2)2α
≥ 1

4
e−t/2, ∀ξ ∈ [−1/2, 1/2],

for any N > 0 large enough. This completes the proof of the ill-posedness results for

1/2 < α ≤ 1.

6. Further remarks

6.1. Wellposedness results in the case 0 < α ≤ 1/2. In this case we only consider

the well-posedness results in the Sobolev spaces Hs(R). We prove by standard parabolic

methods that one can reach the dilation critical Sobolev exponant sc = 1/2 − 2α except

in the case α = 1/2 where 1/2 − 2α = −α. See for instance [12], [4] or [21] for the same

kind of results in the case α = 1.
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Theorem 2. Let (α, s) ∈ R2 be such that α ∈ (0, 1/2] and s ≥ 1/2 − 2α with s > −α.

Then the Cauchy problem (1.1) is locally well-posed in Hs(R).

Proof. The proof is done using a fixed point argument on a suitable metric space. The

case s > 1/2 is trivial since Hs(R) is an algebra and the semi-group Sα is contractive on

Hs(R). One can thus simply perform a fixed point argument in C([0, T ];Hs(R)) on the

Duhamel formula for a suitable T > 0 related to ‖u0‖Hs(R). The case s = 1/2 is also

rather easy and is postponed at the end of the proof. So let us assume that

(6.1) 1/2− 2α ≤ s < 1/2 if 0 < α < 1/2 and − 1/2 < s < 1/2 if α = 1/2 ,

that is α, s belong to the set{
(α, s) ∈ R2 | 0 < α ≤ 1/2, s ≥ 1/2− 2α and s > −α

}
.

For s fixed as above we take 0 < s0 < 1/2 such that

0 < s0 − s < α and 2s0 −
1

2
< s .

This is obviously possible for α = 1/2 since s > −1/2, and for 0 < α < 1/2 since

s + 1/2 > s + α ≥ (1/2 − 2α) + α = 1/2 − α > 0. We first establish the existence and

uniqueness of a solution of (1.3) in

XM,T :=
{
u ∈ C

(
(0, T ], Hs0(R)

)
| ‖u‖XT := sup

t∈(0,T ]
t
s0−s
2α ‖u(t)‖Hs0 (R) ≤M

}
by proving that the mapping

Λu0(u)(t) = Sα(t)u0 ∓
∫ t

0
Sα(t− σ)

(
u2(σ)

)
dσ,

is a strict contraction in XM,T for suitable M > 0, T > 0.

From classical regularizing effects for the fractional heat equation it holds

(6.2) ‖Sα(t)f‖Hs2 (R) ≤ Ct−
s2−s1

2α ‖f‖Hs1 (R), ∀ s1 ≤ s2, ∀ f ∈ Hs1(R).

Applying (6.2) with (s1, s2) = (s, s0), yields

(6.3) t
s0−s
2α ‖Sα(t)u0‖Hs0 (R) . ‖u0‖Hs(R) .

Now, according to [11], since 0 < s0 < 1/2, it holds :

(6.4) ‖uv‖
H2s0−

1
2 (R)
≤ C‖u‖Hs0 (R)‖v‖Hs0 (R),
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where C is a positive constant. We thus obtain for any t > 0,

t
s0−s
2α

∥∥∥∫ t

0
Sα(t− t′)u2(t′) dt′

∥∥∥
Hs0 (R)

. t
s0−s
2α

∫ t

0

∥∥∥Sα(t− t′)u2(t′)
∥∥∥
Hs0 (R)

dt′

. t
s0−s
2α

∫ t

0
(t− t′)

s0−1/2
2α ‖u2(t′)‖H2s0−1/2(R) dt

′

. t
s0−s
2α

∫ t

0
(t− t′)

s0−1/2
2α ‖u(t′)‖2Hs0 (R) dt

′

. sup
τ∈]0,t[

(
τ
s0−s
2α ‖u(τ)‖Hs0 (R)

)2
t
s−(1/2−2α)

2α

∫ 1

0
(1− θ)

2s0−1
4α θ

s−s0
α dθ

. t
s−(1/2−2α)

2α ‖u‖2Xt(6.5)

where in the last step we used that 0 < s0 − s < α and that s0 > 1/2 − 2α since

s0 > s ≥ 1/2− 2α. In view of (6.5) we easily get for 0 < T < 1 and vi ∈ XT , i = 1, 2,

(6.6) ‖Λu0(vi)‖XT . ‖Sα(·)u0‖XT + T
s−(1/2−2α)

2α ‖vi‖2XT

and

(6.7) ‖Λu0(v1 − v2)‖XT . T
s−(1/2−2α)

2α (‖v1‖XT + ‖v2‖XT )‖v1 − v2‖XT .

Combining these estimates with (6.3) we infer that for s > 1/2 − 2α, Λu0 is a strict

contraction on XM,T with M ∼ ‖u0‖Hs(R) and T ∼ ‖u0‖
−2α

s−(1/2−2α)

Hs(R) if s > 1/2 − 2α. This

leads to the existence and uniqueness in XT for any u0 ∈ Hs(R). For s = 1/2 − 2α, Λu0
is also a strict contraction on XM,T with M ∼ ‖u0‖Hs(R) and T ∼ 1 but only under a

smallness assumption on ‖u0‖Hs(R). Hence, we get the existence in XT for any u0 ∈ Hs(R)

with small initial data. Now to prove that the solution u belongs to C([0, T ];Hs(R)) we

first notice that Sα(u0) ∈ C(R+;Hs(R)). Moreover , according to (6.2), we have

sup
t∈]0,T [

∥∥∥∫ t

0
Sα(t− t′)(u2 − v2)(t′) dt′

∥∥∥
Hs(R)

. sup
t∈]0,T [

∫ t

0

∥∥∥Sα(t− t′)(u2 − v2)(t′)
∥∥∥
Hs(R)

dt′

. sup
t∈]0,T [

∫ t

0
(t− t′)min(0,

(2s0−1/2)−s
2α

)‖u2 − v2‖H2s0−1/2(R) dt
′

. sup
t∈]0,T [

∫ t

0
(t− t′)min(0,

(2s0−1/2)−s
2α

)‖u− v‖Hs0 (R)‖u+ v‖Hs0 (R) dt
′

. ‖u+ v‖XT ‖u− v‖XT

Tmin(1+
s−s0
α

,
s−(1/2−2α)

2α
)

∫ 1

0
(1− θ)min(0,

(2s0−1/2)−s
2α

)θ
s−s0
α dθ

. Tmin(1+
s−s0
α

,
s−(1/2−2α)

2α
)‖u+ v‖XT ‖u− v‖XT(6.8)
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where in the last step we used that 0 < s0 − s < α and that 2s0−1/2−s
2α > −1 since

2s0 − s > s ≥ 1/2 − 2α. This ensures that starting with a continuous function v ∈
C
(
[0, T ];Hs(R)

)
∩XM,T , the sequence of function constructed by the Picard sheme that

converges to the solution in u ∈ XT is a Cauchy sequence in C
(
[0, T ];Hs(R)

)
and thus

u ∈ C
(
[0, T ];Hs(R)

)
. The continuous dependence with respect to initial data in Hs(R)

follows also easily from (6.8).

It remains to handle the case of arbitrary large initial data in Hsc(R) when s = sc =

1/2−2α. We first notice that, according to (6.6)-(6.7), Λu0 is a strict contraction in XM,T

as soon as M = 2‖Sα(·)u0‖XT is small enough. Then, fixing u0 ∈ Hsc(R), by the density

of Hs0(R) in Hsc(R) we infer that for any ε > 0 there exists u0,ε ∈ Hs0(R) such that

‖u0 − u0,ε‖Hsc (R) < ε. Since u0,ε ∈ Hs0(R) it holds ‖Sα(·)u0,ε‖XT ≤ T
s0−s
2α ‖u0,ε‖Hs0 (R).

This leads to

‖Sα(·)u0‖XT . T
s0−s
2α ‖u0,ε‖Hs0 (R) + ε .

Noticing that the right-hand side member of the above inequality can be made arbi-

trary small by choosing suitable ε > 0 and T > 0, this proves the local existence in

C
(
[0, T ];Hsc(R)

)
∩ XT for arbitrary large initial data in Hsc(R). Note that here T > 0

does not depend only on ‖u0‖Hsc (R) but on the Fourier profile of u0. The uniqueness holds

in {f ∈ XT / ‖f‖Xt → 0 as t↘ 0} . This completes the proof for (α, s) satisfying (6.1).

Finally for s = 1/2 we apply the fixed point argument in

X̃M,T :=
{
u ∈ C

(
(0, T ], H

1+α
2 (R)

)
| ‖u‖X̃T := sup

t∈(0,T ]
t
1
4 ‖u(t)‖

H
1+α
2 (R)

≤M
}
.

Using that H
1+α
2 (R) is an algebra we easily get

t
1
4

∥∥∥∫ t

0
Sα(t− t′)u2(t′) dt′

∥∥∥
H

1+α
2 (R)

. t
1
4

∫ t

0
‖u2‖

H
1+α
2 (R)

dt′

. t
1
4

∫ t

0
‖u‖2

H
1+α
2 (R)

dt′

. t
3
4 ‖u‖2

X̃t

∫ 1

0
θ−1/2 dθ .(6.9)

This gives the local existence and uniqueness in X̃M,T for M ∼ ‖u0‖H1/2(R) and T ∼

‖u0‖
−4
3

H1/2(R)
. The fact that the solution u belongs to C

(
[0, T ];H

1
2 (R)

)
and the continuous
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dependence with respect to initial data in H
1
2 (R) follows by noticing that

sup
t∈]0,T [

∥∥∥∫ t

0
Sα(t− t′)(u2 − v2)(t′) dt′

∥∥∥
H

1
2 (R)

. sup
t∈]0,T [

∫ t

0
‖Sα(t− t′)(u2 − v2)(t′)‖

H
1
2 (R)

dt′

. sup
t∈]0,T [

∫ t

0
‖(u2 − v2)(t′)‖

H
1
2 (R)

dt′

. sup
t∈]0,T [

∫ t

0
‖u(t′)2 − v(t′)2‖

H
1+α
2 (R)

dt′

. sup
t∈]0,T [

∫ t

0
‖u(t′) + v(t′)‖

H
1+α
2 (R)

‖u(t′)− v(t′)‖
H

1+α
2 (R)

dt′

. ‖u+ v‖X̃T ‖u− v‖X̃T T
1
2

∫ 1

0
θ−1/2dθ .(6.10)

�

6.2. Illposedness result for α = 1/2 and s = −1/2. Let us now prove an ill-posedness

result at the crossing point (α, s) = (1/2,−1/2) of the two lines s = −α and s = 1/2−2α.

Recall that there exists T0 > 0 and R0 > 0 such that the solution-map u0 7→ u associated

with (1.1) for α = 1/2 is well-defined and continuous from the ball B(0, R0)L2 of L2(R)

with values in C([0, T ];L2(R)). The following norm inflation result clearly disproves the

continuity of this solution map from B(0, R0)L2 endowed with the H−1/2-topology with

values in C([0, T ];H−1/2), for any T ≤ T0.

Theorem 3. There exists a sequence TN ↘ 0 and a sequence of initial data {φN} ⊂ L2(R)

such that the sequence of emanating solutions {uN} of (1.1)is included in C([0, TN ];L2(R))

and satisfy

(6.11) ‖φN‖H−1/2 → 0 and ‖uN (TN )‖H−1/2 → +∞ as N →∞ .

We follow exactly the very nice proof of Iwabuchi-Ogawa [8] that proved the ill-posedness

in H−1 of the 2-D quadratic heat equation. Note that (1,−1) is the intersection of the two

lines s = −α and s = 1 − 2α, this last line corresponding to the scaling critical Sobolev

exponent in dimension 2. We need to introduce the rescaled modulation spaces (M2,1)N

that are defined for any integer N ≥ 1 by

(M2,1)N :=
{
u ∈ S ′(R) | ‖u‖(M2,1)N <∞

}
where

‖u‖(M2,1)N :=
∑
k∈2NZ

‖û‖L2(k,k+2N ) .
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It is easy to check that

‖uv‖(M2,1)N =
∑
k∈2NZ

‖û ∗ v̂‖L2(k,k+2N )

.
( ∑
k∈2NZ

‖v̂‖L1(k,k+2N )

)( ∑
k∈2NZ

‖û‖L2(k,k+2N )

)
≤ C0 2N/2‖u‖(M2,1)N ‖v‖(M2,1)N ,(6.12)

for some constant C0 > 0. Hence (M2,1)N is an algebra and, since Sα is clearly continuous

in (M2,1)N , we easily get for any u0 ∈ (M2,1)N and any v ∈ L∞T (M2,1)N that

(6.13) ‖Λu0(v)‖L∞T (M2,1)N . ‖u0‖(M2,1)N + T2N/2‖Λu0(v)‖2L∞T (M2,1)N
.

Picard iterative scheme then ensures the well-posedness of (1.1) in (M2,1)N with a minimal

time of existence

(6.14) T ∼ 2−N/2‖u0‖−1(M2,1)N
.

Therefore the analytic expansion (6.16) holds in (M2,1)N on the time interval [0, T ].

We set

φ̂N,R := Rϕ(2−N ·)

where ϕ is defined in the beginning of Section 2, N ≥ 1 and R > 0 tends to 0 as N →∞.

We easily check that

(6.15) ‖φN,R‖(M2,1)N ≤ 4R2N/2 and ‖φN,R‖H−1/2 ∼ R→ 0 as N → +∞ .

According to (6.14), the solution uN,R of (1.1) emanating from φN,R exists and satisfies

on [0, 2−N ],

(6.16) uN,R(t) = Sα(t)φN,R +

∞∑
k=2

Ak(t, φ
k
N,R),

where hk = (h, · · · , h), hk 7→ Ak(t, h
k) are k−linear continuous maps from ((M2,1)N )k

into C([0, T ]; (M2,1)N ) and the series converges absolutely in C([0, T ]; (M2,1)N ). Moreover,

setting A1(t, h) := Sα(t)h, the Ak’s satisfy the following recurrence formula for k ≥ 2,

(6.17) Ak(t, h
k) =

∑
k1+k2=k

∫ t

0
Sα(t− t′)

(
Ak1(t′, hk1)Ak2(t′, hk2)

)
dt′ .

According to (6.15), for any t > 0,

‖Sα(t)φN,R‖H−1/2 . R→ 0 as N → +∞ .
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Moreover, as in (5.7) , we have

Â2(t)(ξ) := Fx
(
A2(t, φN,R, φN,R)

)
(ξ) = 2

∫
R
φ̂N,R(ξ1)φ̂N,R(ξ−ξ1)e−|ξ|t

(e[|ξ|−|ξ1|−|ξ−ξ1|]t − 1

|ξ| − |ξ1| − |ξ − ξ1|

)
dξ1 .

By the support property of φ̂N,R we infer that for t . 2−N it holds

e−|ξ|t
∣∣∣e[|ξ|−|ξ1|−|ξ−ξ1|]t − 1

|ξ| − |ξ1| − |ξ − ξ1|

∣∣∣ ∼ t .
This ensures that |Â2(t)(ξ)| & R22N t for t . 2−N and |ξ| ≤ 2N/8. Hence,

‖A2(t)‖H−1/2 & R22N t
(∫ 2N

8

−2N

8

〈ξ〉−1
)1/2

& R22N tN1/2 ,(6.18)

where 〈ξ〉 = (1 + |ξ|2)1/2. On the other hand, we have the following upper bound on the

H−1/2-norm of the Ak’s.

Lemma 6.1. For any k ≥ 3 it holds

(6.19) ‖Ak(t, φkN,R)‖H−1/2 ≤ 8kCk−10 (N + ln k)1/2Rk2(2k−2)
N
2 ktk−1 .

Proof. We first prove that for k ≥ 1 we have

(6.20) ‖Ak(t, φkN,R)‖(M2,1)N ≤ 4kCk−10 tk−1Rk2(2k−1)N/2.

For k = 1, it follows directly from (6.15) that

‖A1(t, φN,R)‖(M2,1)N = ‖S1/2(t)φN,R‖(M2,1)N ≤ 4R2N/2,

and using (6.12) we obtain

‖A2(t, φ
2
N,R)‖(M2,1)N ≤

∫ t

0

∥∥∥(A1(τ, φN,R)
)2∥∥∥

(M2,1)N
dτ

≤ C02
N/2

∫ t

0

∥∥∥A1(t)φN,R

∥∥∥2
(M2,1)N

dτ

≤ 42C02
3N/2R2t .(6.21)

In view of the expression (6.17) of Ak(t, φ
k
N,R), (6.20) follows then easily by a recurrence

argument on k.

Now, again from (6.17) it is easy to check that the support of the space Fourier transform
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of Ak(t, φ
k
N,R) is contained in {ξ ∈ R, |ξ| ≤ k2N+2}. It thus holds, using Hausdorff-Young

and Hölder inequalities, that

‖Ak(t, φkN,R)‖H−1/2 ≤ ‖〈·〉−1/2‖L2(−k2N+2, k2N+2) sup
ξ∈R
|Âk(t, , φkN,R)|(ξ)

. 2(N + ln k)1/2
∑

k1+k2=k

∫ t

0
‖Âk1(τ, φk1N,R) ? Âk2(τ, φk2N,R)‖L∞ξ dτ

≤ 2(N + ln k)1/2
∑

k1+k2=k

∫ t

0
‖Ak1(τ, φk1N,R)‖L2‖Ak2(τ, φk2N,R)‖L2 dτ .

Therefore (6.12) and the fact that (M2,1)N ↪→ L2, with an embedding constant less than

1, lead to

‖Ak(t, φkN,R)‖H−1/2 ≤ 2(N + ln k)1/2
∑

k1+k2=k

∫ t

0
‖Ak1(τ, φk1N,R)‖(M2,1)N ‖Ak2(τ, φk2N,R)‖(M2,1)N dτ

≤ 2(N + ln k)1/24kCk−10 Rk2(2k−2)N/2
∫ t

0
τk−2 dτ

( ∑
k1+k2=k

1
)

≤ 2(N + ln k)1/24kCk−10 Rk2(2k−2)N/2
k tk−1

k − 1
.(6.22)

�

We deduce from the above lemma that∑
k≥3
‖Ak(t, φkN,R)‖H−1/2 ≤ 83C3

022NR3t2
∑
k≥3

(N + ln k)1/2(8C02
NRt)k−3 .(6.23)

Therefore setting R := N−1/4 lnN we get

(6.24)

sup
0<t≤(8C02N )−1

∑
k≥3
‖Ak(t, φkN,R)‖H−1/2 . N−3/4(lnN)3

∑
k≥3

(N+ln k)1/2
( lnN

N1/4

)k−3
≤ γ(N) ,

with γ(N)→ 0 as N →∞. Setting TN := (8C02
N )−1 and gathering (6.18), (6.19), (6.24)

and (6.16) we deduce that

(6.25) ‖uN (TN )‖H−1/2 & C(lnN)2 −N−1/4 lnN − γ(N) −→ +∞ as N →∞ ,

which, together with (6.15), concludes the proof of Theorem 3.

Remark 6.2. By the previous theorems, for 0 < α ≤ 1, we obtained the well-posedness

of the fractional heat equation (1.3) in Hs(R) for s ≥ max(−α, 1/2 − 2α) and (α, s) 6=
(1/2,−1/2). See Figure 1.
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Figure 1. The domains of well-posedness and ill-posedness for the frac-

tional heat equation (1.3) in Hs(R), α ∈ (0, 1], s ∈ R. Well-posedness

holds inside the hatched region with its boundary without the point

(1/2,−1/2). Ill-posedness holds in side the shaded region and the point

(1/2,−1/2).
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6.3. The periodic case. The periodic case can be treated in exactly the same way as the

real line case since the linear fractional heat equation enjoys the same regularizing effects

on the torus. The only difference is that the dilation symmetry, that we used at the end

of Section 4, does not keep a torus invariant but maps it to another torus. To overcome

this difficulty it suffices to notice that, in the periodic setting, the estimates derived in

Section 3 are uniform for all period λ ≥ 1.
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Universté Francois Rabelais Tours,

CNRS UMR 7350- Fédération Denis Poisson

Parc Grandmont, 37200 Tours, France

e-mail: Luc.Molinet@lmpt.univ-tours.fr

Slim Tayachi

Department of Mathematics

Faculty of Science of Tunis

University Tunis El Manar

2092 Tunis, Tunisia

e-mail: slim.tayachi@fst.rnu.tn


