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Fast and accurate direct MDCT to DFT conversion

with arbitrary window functions
Shuhua Zhang* and Laurent Girin

Abstract—In this paper, we propose a method for direct con-
version of MDCT coefficients to DFT coefficients, without passing
through time signal reconstruction. In contrast to previous work,
this method is valid for any pair of MDCT and DFT window
functions. It is based on the decomposition of the MDCT-to-
DFT conversion matrices into a Toeplitz part plus a Hankel
part. The latter is split, then mirrored and combined with the
former to construct a global Toeplitz matrix. This leads to a
fast FIR filtering implementation of the conversion process. The
filter taps are DFT coefficients of window functions products, and
concentrate most of their energy in a few low-frequency taps. The
conversion can thus be efficiently approximated by keeping only a
few most significant taps, as confirmed by numerical experiments:
For example, for frame size of 2048, Hanning-windowed DFT is
obtained from KBD-windowed MDCT with SNR over 60 dB
when keeping only 20 taps.

Index Terms—MDCT, DFT, window function, Toeplitz matrix,
FIR filtering.

I. INTRODUCTION

The Modified Discrete Cosine Transform (MDCT) [1] is a

time-frequency (TF) transform that is widely used in audio

processing, especially in perceptual audio coding algorithms.

This is the case for, e.g., MPEG-2/4 Advanced Audio Coding

(AAC) [2] and Ogg Vorbis. The MDCT belongs to the family

of Lapped Transforms (LT) which are critically sampled, even

with overlap between adjacent frames of input signal, and

assume perfect reconstruction (for both time→TF→time and

TF→time→TF) [3], [4]. Those properties are much appreci-

ated in audio coding, since even with quantization of MDCT

coefficients, the MDCT ensures smooth transitions between

frames and good signal reconstruction.

However, the MDCT is poorly appropriate for spectral

analysis and signal manipulation in the TF domain, for several

reasons [4], [5], [6]: Its basis vectors are not shift-invariant,

it does not conserve the energy, and MDCT coefficients,

which are real-valued, cannot be easily interpreted in terms

of magnitude and phase. All this contrasts with the widely

used Discrete Fourier Transform (DFT) or Short-Term Fourier

Transform (STFT)1. In the same line, linear time-invariant

S. Zhang and L. Girin are with the Grenoble Laboratory of Images, Speech,
Signals, and Automation (GIPSA-lab), Grenoble Institute of Technology,
Grenoble, France (see http://www.gipsa-lab.grenoble-inp.fr).

This work is supported by the French National Research Agency (ANR)
as part of the DReaM project — ANR CONTINT 2009-006.

Manuscript submitted May 11, 2012.
1DFT refers to the discrete version of the Fourier transform as applied

on a given frame of signal, whereas STFT refers to a set of DFTs applied
on successive (generally ovelapping) signal frames. There is no such literary
distinction for the MDCT: this term can refer to a given MDCT frame — as
for the proposed MDCT-to-DFT conversion which is a frame-wise process —
or it can refer to the overall set of MDCT frames, depending on the context.
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Fig. 1. Connections between the time, DFT, and MDCT domains. F denotes
the DFT operation, and M denotes the MDCT operation.

filtering is generally not equivalent to product in the MDCT

domain, except for very specific filter shapes [7]. For all those

reasons, the DFT/STFT are used in most audio/speech (TF)

processing systems.

Therefore, if one wants to apply some TF-domain signal

processing on signals that are coming from perceptual audio

decoders, one has the following two possibilities: 1) develop

(often tricky and over-specific) MDCT-domain processing

(e.g., [8] for instantaneous frequency estimation; see [6] for a

review of several other examples of MDCT-domain process-

ing), or 2) go to the DFT domain. The latter possibility is the

more general, and currently, most audio processing systems

that are cascaded with audio coders consider this solution.

The plain way to go from the MDCT to the DFT is to first

go from the MDCT back to time using the inverse MDCT

(IMDCT) and then go from time to the DFT, or the “IMDCT

+ DFT” scheme (Fig. 1). But there are two related drawbacks

with this indirect method: Nonlocality and complexity. The

“IMDCT + DFT” scheme works on complete spectra, even

if only a subband conversion is intended. In other words, we

need to apply the IMDCT on the whole MDCT spectra before

DFT calculation, and this is true even if a limited number of

DFT coefficients are intended. However, both the MDCT and

the DFT decompose time signals into orthogonal trigonomet-

ric functions with evenly spaced frequencies. Thus, MDCT

spectra and DFT spectra of the same time signal should look

alike roughly, and a DFT coefficient should mainly depend on

a few MDCT coefficients at nearby frequencies. Therefore, it

is legitimate to look for a direct MDCT-to-DFT transform that

would exploit such local relationship between MDCT and DFT

coefficients. This would allow efficient calculation of specific

DFT coefficients from a reduced set of MDCT coefficients

at nearby frequencies, hence reduce complexity in subband

conversion, and possibly reduce complexity for the fullband

http://www.gipsa-lab.grenoble-inp.fr
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conversion either.

In [11], the so-called mapping methods were proposed for

the MDCT-to-DFT conversion, but this was only to save mem-

ory usage, not computational complexity. In [12], a method

for directly converting the MDCT to the Modified Discrete

Sine Transform (MDST) was proposed, which can be easily

extended to direct conversion from the MDCT to the Modified

Complex Lapped Transform (MCLT) [13], [14] — a special

shifted DFT. However, the window functions for the MDCT

and the MDST are required to be identical. This is sufficient

when the MCLT is intended, but not when the DFT or a

general shifted DFT is intended. Indeed, in practice different

window functions are very often used for the MDCT (e.g., the

Kaiser-Bessel-Derived (KBD) window [15] or the sine window

that both ensure the perfect reconstruction property, for coding

[1]) and the DFT (e.g., Hamming or Hanning windows, for

spectral analysis and processing). In [6], an intermediate

transform called Circulant Lapped Transform (CLT) has been

proposed to convert the MDCT to the DFT, i.e., MDCT-to-CLT

followed by CLT-to-DFT. The overall process is shown to be

efficiently approximated by a complex-valued Finite Impulse

Response (FIR) filtering applied on MDCT coefficients. But

the conversion is limited to the DFT with the rectangular

window (and the MDCT with an arbitrary symmetric window).

In the present paper, we propose a new direct MDCT-to-

DFT conversion process that has the following advantages.

Most importantly, it overcomes the limitation of the above

methods concerning the window functions: It is valid for

any arbitrary pair of MDCT and DFT windows. Also, this

process is more efficient in the sense that it does not rely on

an intermediate representation (such as the CLT) while also

leading to a fast and accurate FIR implementation. This FIR

implementation inherently allows locality of the MDCT-to-

DFT conversion, i.e., it can be applied on a subband basis,

and has a low complexity, even for full-band conversion.

Fast algorithms for the MDCT [9] and the DFT [10] all

have computational complexity of O(M log2M) (M being

the number of MDCT coefficients for a single transform, or

1/2 of the frame size), while the proposed direct conversion

method only has computational complexity of O(M). More-

over, unlike fast MDCT or FFT that depends on complicated

bit-reverse indexing and butterfly operations, the direct method

needs only vector scaling and vector addition, thus it is much

more simpler to implement and also memory efficient. The

resulting conversion process can be plugged on the output of

any perceptual audio coder based on MDCT representation

to provide DFT coefficients corresponding to any arbitrary

window, hence ready-to-use for a large set of audio/speech

processing applications.

The rest of the paper is organized as follows. In Section II,

a general form of matrix transformation from MDCT to DFT

vectors is presented. In Section III, the specific structure of

the conversion matrices is investigated. The fast FIR imple-

mentation is derived from this specific structure in Section IV.

Section V presents the accurate low-order approximation of the

FIR-based conversion, numerical simulations, and an example

of application that validate this approach. Section VI concludes

the paper.

II. MATRIX TRANSFORMATION FROM MDCT TO DFT

Assuming that the MDCT is calculated with a window func-

tion wc(n) that satisfies the perfect reconstruction condition

[1], [3], then MDCT coefficients can be transformed back

to time samples, which can be further transformed to DFT

coefficients. Therefore, in this section, we first provide the

expression of the DFT coefficients (of a given signal frame) as

a linear transformation of the MDCT coefficients (of the same

frame and neighboring frames). For this aim, let us express

the DFT matrix F and the MDCT matrix P as trigonometric

matrices. Here a trigonometric matrix is the product of a real

diagonal matrix (window function part) and a matrix whose

entries are of the form of WN [α] ≡ exp[−j 2π
N
α] or its real

part. Let M be the size of the MDCT (the number MDCT

coefficients for a single transform). The matrix F is of size

N ×N with N = 2M , P is of size N ×M , and we have2:

{
F(n, k) = wf (n)W2M [−nk],
P(n, l) = Cwc(n)Re

{
W2M [(n+ 1

2 + M
2 )(l + 1

2 )]
}
,

(1)

where C =
√
2/M for energy normalization. Note that we

can have different arbitrary window functions wf (n) for F and

wc(n) for P (but remind that wc(n) must satisfy the perfect

reconstruction condition).

Given a time vector x size of 2M , whose first and second

halves are xa and xb, respectively, the corresponding MDCT

coefficient vector X size of M is

X = P
′
x ≡ P

′
0xa +P

′
1xb, (2)

where P0,P1 are the first and last M rows of P, respectively.

Let us denote by xu, u = 0, 1, 2, 3, four consecutive sample

vectors of size M , and denote by xu,u+1, u = 0, 1, 2, the

concatenation of xu and xu+1 (see Fig. 2). Then MDCT

coefficient vector Xu,u+1 ≡ P
′
xu,u+1 = P

′
0xu + P

′
1xu+1

from (2). By the inverse MDCT (IMDCT) and the overlap-add

operation, time samples x1 and x2 can be recovered from the

MDCT coefficients, but from the last, current, and next frames:

[
x1

x2

]
=

[
P1 P0 0

0 P1 P0

]

X01

X12

X23


 , (3)

if P1P
′
0 = P0P

′
1 = 0 and P0P

′
0 + P1P

′
1 = I, which is

ensured by the perfect reconstruction condition of the window

function wc(n).

Similarly, for the DFT, let us denote by F0 and F1 the first

and last M rows of F. Thus the DFT carries the time vector

xu,u+1 to DFT coefficient vector Zu,u+1 ≡ F
′
xu,u+1 =

F
′
0xu+F

′
1xu+1 for u = 0, 1, 2. Combining this latter equation

for u = 1 with (3), the DFT coefficient vector Z12 for the time

2Note that for clarity, we adopt the “C convention” for vector/matrix entries
indexing, i.e., all indexes go from 0 to number of terms minus one. Vectors are
column oriented if not specified otherwise. The symbol ⊤ denotes transpose,
∗ denotes conjugate, and ′ denotes transpose and conjugate.
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x0 x1 x2 x3

X01,Z01 X12,Z12 X23,Z23

Fig. 2. Overlap and add in the time domain and corresponding TF-domain
vectors. The time vectors x0,x1,x2 and x3 all have the same size M .

vector x12 is given by

Z12 = F
′
x12

=
[
F

′
0 F

′
1

] [P1 P0 0

0 P1 P0

]

X01

X12

X23




≡
[
T01 T12 T23

]


X01

X12

X23


 , (4)

where 



T01 ≡ F
′
0P1

T12 ≡ F
′
P = F

′
0P0 + F

′
1P1

T23 ≡ F
′
1P0

(5)

are called conversion matrices, size of (2M)×M . Thereby, the

DFT coefficient vector of a given frame is obtained from the

MDCT coefficient vectors of the previous, current and next

frames, using three conversion matrices T01, T12 and T23,

which depend only on the window functions wf (n) and wc(n),
and share a specific structure that we shall see in the next

section.

In the following, time samples are supposed to be real, thus

their DFT spectra are conjugate symmetric. Therefore, we only

consider the first M + 1 rows of T01,T12,T23, hence the

conversion matrices are reduced from the original size 2M ×
M to truncated size (M + 1)×M .

III. STRUCTURE OF THE CONVERSION MATRICES

Each entry of the three conversion matrices T01,T12, and

T23 is an inner product between one DFT basis vector and

one MDCT basis vector. This gives a specific structure to the

matrices regardless of the MDCT window function wc(n) and

the DFT window function wf (n)
3.

A. Phase shift, Toeplitz and Hankel matrices

For the purpose of generality, i.e., deriving common prop-

erties for T01,T12, and T23, let us define two trigonometric

matrices U and V given by
{
U(n, k) = w0(n)W2M [−(n+ n0)k],

V(n, l) = Cw1(n)Re
{
W2M [(n+ n1)(l +

1
2 )]

}
,

(6)

where w0(n), w1(n) are real window functions, and n0, n1 are

time shifts. We first study the product of U
′ and V, and we

3As already mentioned in the introduction, this is a notable extension to
the previous work [6] where a rectangular window function was considered
for the DFT. Note also that a specific matrix structure was also exploited in
[6] but this was within the MDCT-to-CLT conversion, although we consider
here direct MDCT-to-DFT conversion matrices.

will apply the results to T01,T12, and T23 in Section IV with

specific settings of w0, w1, n0 and n1.

Remark 1. In the first equation of (6), by changing [−(n +
n0)k] to [−(n+n0)(k+k0)], where k0 is a constant frequency

shift, we can derive conversion from the MDCT to the shifted

DFT, including the MCLT. Since the real part of the MCLT

is simply the MDCT and the imaginary part is the MDST, we

can derive the MDCT-to-MDST conversion. But for clarity of

notations and mathematical development (at the cost of minor

generality), we restrict our development to the conversion from

the MDCT to the standard DFT.

The product of U′ and V has the form

T(k, l) ≡ [U′
V](k, l)

= φ(k)[h(k − l − 1) + h(k + l)], (7)

where

φ(k) =W2M [(n0 − n1)k], (8)

h(l) =
C

2

N−1∑

n=0

W2M [(n+ n1)(l +
1
2 )]w0(n)w1(n). (9)

Here φ(k) is frequency-dependent phase shift, and h(l) is the

frequency response of w0(n)w1(n) with time and frequency

shift. See Appendix A for detailed derivation. Both w0(n)
and w1(n) are real, thus frequency response h(l) is conjugate

symmetric about l = − 1
2 and 2M -periodic except for a phase

term µ ≡ e−j2πn1 :
{
h(−l − 1

2 ) = h(l − 1
2 )

∗,

h(l + 2M) = µh(l).
(10)

From (7), we see that matrix T can be factored into two

matrices, the first one is Ψ ≡ diag{φ(k)} for phase shift and

the second one is a sum of a Toeplitz matrix [16] and a Hankel

matrix:
{
Ttoep(k, l) ≡ h(k − l − 1),

Thank(k, l) ≡ h(k + l).
(11)

This way (7) can be written as

T = U
′
V = Ψ(Ttoep +Thank). (12)

Note that this structure is shared by the conversion matrices

T01, T12, and T23 since F0,F,F1 are special cases of U and

P0,P,P1 are special cases of V by (4) and (1).

Product of a Toeplitz matrix and a vector is equivalent

to FIR filtering applied to the vector; Product of a Hankel

matrix and a vector is equivalent to FIR filtering applied to

the reversed vector. Therefore, applying matrix T of (12) to a

MDCT vector X is equivalent to two FIR filtering processes,

one applied to X in the order of bin 0 to bin M − 1 and

the other applied to the same vector X but in the order

of bin M − 1 down to bin 0. However, neither Ttoep nor

Thank is ready for vectorized implementation of FIR filtering,

because different rows have different sets of non-zero entries

(see the top two matrices in Fig. 3), thus modification of filter

taps are needed for different DFT bins. In the following, we

shall see that it is possible to reorganize the entries of matrix
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Ψ
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Ttoep

h∗

0

h0

h1

h2

h3

h∗

1

h∗

0

h0

h1

h2

h∗
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1

h∗

0

h0

h1

h∗

3

h∗

2

h∗

1

h∗

0

h0

+

Thank

h0

h1

h2

h3

µh∗

3

h1
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1
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1
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0
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0

h∗

3

h∗

2
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1
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0

0

0

h∗
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h∗

2

h∗

1

0

0

0

h∗

3

h∗

2

0

0

0

0

h∗

3

X̂ =
⊤

X0 X0 µX0X1 X1 µX1X2 X2 µX2X3 X3 µX3

Fig. 3. Splitting and mirroring of the Hankel matrix Thank, and composition of the extended Toeplitz matrix T̂. Here M = 4, Xl = X(l), and hl = h(l)
for illustration.

Ttoep +Thank into a global Toeplitz matrix, where each row

has the same sequence of non-zero entries, leading to a single

FIR filtering process ready for vectorized implementation.

B. Splitting and mirroring of the Hankel matrix

Equation (11) shows that the Toeplitz and the Hankel parts

are connected by the frequency response function h(l), whose

properties (10) in turn lead to explicit relations between the

two parts:

Ttoep(k,−l − 1) = Thank(k, l), (13)

Ttoep(k,M + l) = µ∗
Thank(k,M − l − 1), (14)

provided negative column indexing is permitted, which is

equivalent to extending matrices to the left. Observe that the

column indexes in (13) add up to −1 thus can be seen as

mirrored values about l = − 1
2 . Similarly, the column indexes

in (14) add up to 2M − 1 thus can be seen as mirrored values

about l = M − 1
2 . This mirror symmetry allows the matrix

Thank to be split and mirrored, and then combined with the

matrix Ttoep to form an extended matrix T̂:

T̂(k, l) ≡





Thank(k,−l − 1), −M + k ≤ l < 0,

Ttoep(k, l), 0 ≤ l < M,

µ∗
Thank(k, 2M − l − 1), M ≤ l < M + k,

(15)

for k = 0, 1, . . . ,M . This process is illustrated in Fig. 3. The

splitting of Thank is along k + l = M − 1
2 , then the upper

left part is mirrored to the left about l = − 1
2 and the lower

right part is mirrored to the right about l = M − 1
2 . Ttoep is

then inserted between the two mirrored parts of Thank. The

resulting extended matrix T̂ is a Toeplitz matrix size of (M+
1)× 3M :

T̂(k, l) =

{
h(k − l − 1), if −M + 1 ≤ k − l ≤M,

0, else.

(16)

If Ttoep +Thank is replaced with T̂, the vector X needs to

be replaced with an extended version X̂ that echos (15) so

that by (15) and (12), we have

Y ≡ Ψ
−1

TX = (Ttoep +Thank)X = T̂X̂. (17)

The extended vector X̂ is given by (see Appendix B for the

details)

X̂(l) ≡





X(−l − 1), −M ≤ l < 0,

X(l), 0 ≤ l < M,

µX(2M − l − 1), M ≤ l < 2M,

(18)

which can also be viewed as padding for the finite length input

X . As can be seen in Fig. 3, the vector X⊤ is mirrored about

l = − 1
2 to the left and about l = M − 1

2 to the right (with

multiplication by µ). Finally, the rightmost term of (17) is a

vectorized FIR filtering process applied on X , as detailed in

the next section.

IV. SYMMETRIC FIR FILTERING OF MDCT COEFFICIENTS

A. Basic implementation

Let us now apply the developments of Section III to the

MDCT-to-DFT conversion problem. Eq. (17) can be written
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as

Y (k) =
2M−1∑

l=−M

T̂(k, l)X̂(l)

=

k+M−1∑

l=k−M

h(k − l − 1)X̂(l)

=

M−1∑

l=−M

h(l)X̂(k − l − 1)

=

M−1∑

l=0

{h(l)X̂(k − l − 1) + h∗(l)X̂(k + l)}, (19)

where the last equation is due to the conjugate symmetry of

h(l) in (10). Therefore, by extending T01, T12, and T12 in

the way of extending T by (15), and extending X01, X12,

and X23 in the way of extending X by (18), the matrix form

of direct MDCT-to-DFT conversion (4) can be equivalently

represented as FIR filtering.

Remark 2. Note that in (19), the FIR filtering, or convolution,

is applied in the MDCT domain. This is not the usual fast

implementation of time-domain convolution by frequency-

domain point-wise product. Also in (19), for each k =
0, 1, . . . ,M , the filtering process requires the same sequence

of filter taps h(−M), h(−M + 1), . . . , h(M − 1), thus can

be easily implemented in a vectorized manner. In [12], direct

MDCT-to-MDST conversion with the same window function

was derived through trigonometric manipulations, resulting in

a FIR filtering similar to (19). However, a key difference is

that in [12], outputs at different bins require different segments

of a filter taps sequence, which complicates implementation.

Let us now calculate the phase term φ(k) and FIR taps h(l)
for each of T01, T12, and T23. For shorthand, let us denote

here

{
ϕ(k) ≡W2M [−( 12 − 1

2M)k],

f(n, l) ≡ (n+ 1
2 + 1

2M)(l + 1
2 ).

(20)

Then let us substitute time shifts of F0, F, and F1 in place

of n0, and times shifts of P0, P, and P1 in place of n1 for

matrices U and V defined in (6). From (8), we have the phase

terms:

φ01(k) = (−1)kφ12(k) = φ23(k) = ϕ(k), (21)

and from (9), we have the filter taps determined by the window

functions wf (n) and wc(n):





h01(l) =
C
2

∑2M−1
n=M W2M [f(n, l)]wf (n−M)wc(n),

h12(l) =
C
2

∑2M−1
n=0 W2M [f(n, l)]wf (n)wc(n),

h23(l) =
C
2

∑M−1
n=0 W2M [f(n, l)]wf (n+M)wc(n).

(22)

See Appendix C for the details. Also, the vectors

X01,X12,X23 are extended to X̂01, X̂12, X̂23, respectively,

using (18) and here µ = (−1)M+1 (n1 = M
2 + 1

2 ). Then

applying (21) and (22) to (17), (16), and (4), we have

Z12(k) = ϕ(k)

M−1∑

l=−M

[
(−1)kh12(l)X̂12(k − l − 1)

+ h01(l)X̂01(k − l − 1) + h23(l)X̂23(k − l − 1)
]
.

(23)

Therefore, each of h01, h12, h23 can be seen as a FIR filter with

2M taps and is conjugate symmetric by (10). The FIR filtering

processing of (23) is represented as a flowchart diagram in

Fig. 4(a).

B. Filter coefficients calculation using DFT and alternative

implementation

One way to compute the filter taps is to use (22) directly.

But it is also possible to compute the filter taps by the DFT,

that is, DFT of element-wise window function product with

appropriate pre- and post-twiddle. Let

w±

f (n) =

{
wf (n+M), for 0 ≤ n < M,

±wf (n−M), for M ≤ n < 2M,

be two circular extensions of wf (n), which are different only

in sign at their second halves. Let h0(l) ≡ h12(l) and h±(l) ≡
h23(l)± h01(l). Then, we have




h0(l) = C
2 ψpost(l)F2M{ψpre(n)[wf (n)wc(n)]},

h+(l) =
C
2 ψpost(l)F2M{ψpre(n)[w

+
f (n)wc(n)]},

h−(l) =
C
2 ψpost(l)F2M{ψpre(n)[w

−

f (n)wc(n)]},
(24)

where F2M denotes DFT size of 2M , and the pre- and post-

twiddle factors are{
ψpost(l) ≡W2M [( 12 + 1

2M)l],

ψpre(n) ≡W2M [ 12 (n+ 1
2 + 1

2M)],
(25)

for n, l = 0, 1, . . . ,M−1 (see Appendix C). Fig. 5 provides an

illustration of window function products and Fig. 6 provides

an illustration of the magnitude of the corresponding filter

taps (discussed in Section V-A). Note that an important case

is when both wf (n) and wc(n) are symmetric. Then the filter

taps in (24) have equal real and imaginary parts except for

sign (see Appendix C):




Im{h0(l)} = (−1)lRe{h0(l)},
Im{h+(l)} = (−1)lRe{h+(l)},
Im{h−(l)} = (−1)l+1Re{h−(l)},

(26)

Obviously, the taps h01(l), h12(l), and h23(l) can be eas-

ily recovered from (24) with h01(l) = 1
2 (h+(l) − h−(l)),

h12(l) = h0(l), and h23(l) = 1
2 (h+(l) + h−(l)), and since

this calculation is made only once, the FIR process can be

then implemented with (23). Alternately, the coefficients of

(24) can be used directly in the equivalent FIR filtering:

Z12(k) = ϕ(k)

M−1∑

l=−M

[
(−1)kh0(l)X̂0(k − l − 1)

+ h−(l)X̂−(k − l − 1) + h+(l)X̂+(k − l − 1)
]
,

(27)
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Fig. 4. (a) Flowchart of direct MDCT-to-DFT conversion by (23); (b) Flowchart of direct MDCT-to-DFT conversion by (27). Here D−1 denotes one frame
delay of the MDCT spectrum, P denotes extension (padding) operation for the MDCT spectra by (18), H[.] denotes convolution with the filter h[.].
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where X̂0 ≡ X̂12 and X̂± ≡ 1
2 [X̂23± X̂01] for consistency.

This alternative FIR filtering processing is represented as a

flowchart diagram in Fig. 4(b). Although a little bit more

complicated than the implementation of (23)/Fig. 4(a) because

of the MDCT vectors addition/subtraction, we will consider

this implementation in the next section since we shall see

that (24) is not only fast way to compute filter taps but also

plays a key role in addressing the problem of low-order FIR

approximation and convergence of filter taps as M → ∞.

Because of the tight and simple links between both sets of

filters, similar derivations and conclusions can be drawn from

the simpler implementation (23).
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Fig. 6. Filter taps for MDCT to DFT conversion (log-magnitude). Here
M = 1024, wf (n) is a Hanning window and wc(n) is a KBD window.

V. LOW-ORDER FIR APPROXIMATION

A. Energy concentration of filter taps

Both the MDCT and the DFT are Fourier-type spectral

transforms with a grounded physical interpretation in terms of

energy concentration around the spectral components of the

transformed signal. Given a pure tonal signal x(n) = cos[ωn]
where the frequency ω ∈ [0, π), with appropriate smooth

windowing functions, both its MDCT spectrum X(k) and its

DFT spectrum Z(k) concentrate at k ≈ ωM/π. Moreover,

|X(k)|2 and |Z(k)|2 should have similar shapes since they

both approximate the power spectrum of x(n) (for a discussion

on the specific shape of MDCT spectra, see, e.g., [17] and
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[5]). Therefore, only minor local modifications should be

needed to go from X(k) to Z(k), i.e., each coefficient Z(k0)
should be fairly well reconstructed from X(k0) and the

neighboring coefficients, and therefore, we can expect some

energy concentration of the three filters h0(l), h−(l), h+(l)
in the coefficients around l = 0. Note that this echoes the

discussion about the locality vs. non-locality of the conversion

as begun in the introduction.

This is totally compliant with the fact that from the per-

spective of multirate filterbank, smooth window functions

wf (n) and wc(n) are impulse responses of low-pass prototype

FIR filters [18], and therefore, in the frequency domain both

wf (n) and wc(n) are assumed to have a narrow mainlobe

centered around 0 that concentrates most of the taps energy

(one of the most important design goals of window functions

[19]). This is, for example, the case for the Hamming or

Hanning window used for the DFT, and the sine or KBD

window used for the MDCT. Then, this will also be the

case for the product functions wf (n)wc(n) and w±

f (n)wc(n).
More specifically, suppose that the mainlobes of the frequency

responses of wf (n) and wc(n) are within |ω| < ωf ≪ π
and |ω| < ωc ≪ π, respectively. Since time-domain point-

wise product corresponds to frequency-domain convolution,

by (24), most energy of h0(l) will be within

|l| < (ωf + ωc)
π

M
≪M.

Similar results can be drawn for h−(l) and h+(l).

The energy concentration property of the conversion filters

is illustrated in Fig. 6. Here, the DFT window wf (n) is

a Hanning window (widely used in, e.g., spectral analysis)

and the MDCT window wc(n) is a KBD window (the most

frequently used window in AAC coding [2]), Let us recall

that the filter taps are conjugate symmetric (about l = − 1
2 )

so that we only represent here their magnitude for positive

indexes l. It can be seen that for the three filters the power

of the taps decreases to 0 very quickly with the index l (note

the log2 scale of the l-axis). Taps with |l| > 7 (i.e., 99.2%
of M = 1024 taps) are more than 50 dB below the tap at

l = 0; in other words, most of the taps energy is concentrated

at a few low-frequency bins. Of course, how much precisely

of energy is concentrated at low frequency taps depends on

the DFT and MDCT window functions, but similar results are

obtained with other window combinations.

B. Low-order approximation

Based on the above discussion, it is possible to approximate

(27) accurately by keeping only several most significant taps,

that is, keeping the coefficients of the conversion filters for

−m ≤ l < m, with m≪M , and setting the other coefficients

to zeros. Furthermore, when doing that, it may be desirable

that the number of coefficients kept be not the same for the

three filters, i.e., m = m0 for h0(l), m = m+ for h+(l), and

m = m− for h−(l), resulting in an approximate FIR filtering4:

Z12(k) ≈ ϕ(k)
{
(−1)k

×
m0−1∑

l=0

[
h0(l)X̂0(k − l − 1) + h∗0(l)X̂0(k + l)

]

+

m
−
−1∑

l=0

[
h−(l)X̂−(k − l − 1) + h∗−(l)X̂−(k + l)

]

+

m+−1∑

l=0

[
h+(l)X̂+(k − l − 1) + h∗+(l)X̂+(k + l)

]}
.

(28)

Indeed, the three filters h0(l), h+(l) and h−(l) display the

same general trends, but they generally do not have the same

overall magnitude and decaying speed. As illustrated in Fig. 6,

h0(l) usually decays faster to 0 than h±(l), due to their

difference in the phasing of the window functions (Fig. 5).

But on the other hand, h0(l) usually has larger total energy

than h±(l), that is,
∑M−1

n=0 |h0(l)|2 >
∑M−1

n=0 |h+(l)|2 =∑M−1
n=0 |h−(l)|2, by (24) and Parseval’s theorem. Therefore,

different values for m0, m+ and m− in (28) can be set to

obtain the best tradeoff between (high) conversion accuracy

and (low) computational cost.

More specifically, the computational cost of the approximate

FIR processing is proportional to the total number of kept taps

mtot = m0 +m+ +m−. Its accuracy can be estimated in log

signal-to-noise power terms as (see Appendix D):

SNR ≈ 10 log10
1

1− σ(m0,m+,m−)/σ(M,M,M)
, (29)

where

σ(a, b, c) ≡
a−1∑

l=0

|h0(l)|2 +
b−1∑

l=0

|h+(l)|2 +
c−1∑

l=0

|h−(l)|2. (30)

Eq. (29) can be used to predict approximation accuracy before

filtering signals with given filters length, or to set mtot and

corresponding optimal values of m0, m+ and m− given a

target accuracy. For a given value of mtot, one basic strategy

to obtain m0, m+ and m− is to sort out all coefficients h0(l),
h−(l), h+(l) in decreasing order of their absolute values, then

keep the first mtot taps, and finally count out m0, m−, and

m+.

Following this sorting strategy for a range of mtot values,

it is shown in Fig. 7 that the estimated SNR of (29) closely

follows the actual SNR (resulting from numerical simulations)

for both random and musical signals (5 × 106 samples, or

113 s of 44.1 kHz signal), hence validating (29). This is

observed here for both the Hanning-KBD and the Hanning-

sine window configurations. The Hanning-KBD configuration

appears to be significantly more accurate than the Hanning-

sine given the same mtot > 16, which is consistent to the

significantly lower sidelobes of the KBD window than those

4Note that (28) reveals locality between MDCT spectra and DFT spectra,
as discussed in Section V-A: An output coefficient Z12(k) depends mainly

on the 2m0, 2m+ and 2m− consecutive input coefficients in X̂0, X̂+ and

X̂− centered at bin k, respectively. This is a direct consequence of energy
concentration of the filter taps.
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of the sine window5. We can also see from Fig. 7 that setting

mtot = 20 is enough to keep SNR at about 60 dB for the

Hanning-KBD configuration. Such a number of coefficients

is very low compared to the MDCT size M = 1024. (Note

that for the Hanning-KBD configuration, a reconstruction SNR

about 100 dB is obtained with mtot = 64, i.e., 1/16 of the

number of MDCT coefficients.)

C. Asymptotic analysis of FIR approximation

As the MDCT size M increases, we may expect that, for

a given accuracy, the required total number of taps mtot in-

creases too. But this is not the case: the required mtot actually

tends to saturate at some value even as M → ∞, which

guarantees O(M) complexity of the approximate FIR filtering

process for a given accuracy. This saturation phenomenon is

illustrated in Fig. 8, where the independence of mtot w.r.t. M
is visible for SNRs lower than, say, 60 dB with the Hanning-

KBD configuration, and for SNRs lower than, say, 45 dB with

the Hanning-sine configuration.

There are two reasons for this phenomenon: The first is

that the total energy of the taps of each of the three filters

in (27) is proportional to M ; the second is that for a fixed

l, the filter tap h0(l), or h−(l), or h+(l), when normalized

(divided) by
√
2M , converges to a fixed value as M → ∞.

Thus, if first m0, m−, and m+ taps of the three filters are to

be kept, respectively, then the ratio of their energy to the total

energy converges, and by (29), this implies that the accuracy

converges too as M → ∞. If this limit accuracy is no lower

than the required accuracy, then mtot = m0 + m− + m+

will ensure the required accuracy for any M , in other words,

the needed mtot saturates at some value as M → ∞. Let

w(t) be a function defined on [0, 1] whose periodical extension

on R has a convergent Fourier series, and when discretely

sampled, becomes the window function product with pre-

twiddle ψpre(n)wf (n)wc(n) (or ψpre(n)w
±

f (n)wc(n)). By

5This is why the KBD window is used more often in AAC coding.
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(24) and Parseval’s theorem, as M → ∞, we have

1

2M

M−1∑

l=0

|h0(l)|2 =
2M−1∑

n=0

|ψpre(n)wf (n)wc(n)|2
1

4M

=
1

2

2M−1∑

n=0

|w(n/(2M))|2 1

2M

→ 1

2

∫ 1

0

|w(t)|2 dt. (31)

Note that the post-twiddle factor, which does not change

energy, is omitted here for simplicity, and

|h0(l)|√
2M

=
∣∣∣
2M−1∑

n=0

w( n
2M )e−j π

M
nl 1

2M

∣∣∣ (32)

→
∣∣∣
∫ 1

0

w(t)e−j2πlt dt
∣∣∣. (33)

The same is true for h−(l) and h+(l). Therefore, the two

reasons mentioned above are valid and saturation of mtot is

proved.

D. Comparison with the plain MDCT-to-DFT conversion

The complexity of the direct MDCT-to-DFT conversion (fil-

tering + phase-shifting) for a complete spectrum is 2mtot(M+
1)+4(M+1) real multiplications and 2mtot(M+1)+2(M+1)
real additions using (28), or totally (4mtot+6)(M+1). On the

other hand, the plain MDCT-to-DFT conversion scheme, that

is, IMDCT + DFT, has the complexity of (2+10 log2M)M+8
of additions and multiplications (the fast IMDCT based on

the FFT costs 2M log2(2M) [9]; the split-radix FFT costs

8M log2(2M)−12M+8). Therefore, roughly, if 4mtot+6 <
2 + 10 log2M , then, theoretically, the direct method will be

faster than the plain method. For a typical M = 1024, we

have mtot < 24.

Moreover, compared to the plain method, the proposed

direct method has the two following major advantages. First, it

works also locally, that is, conversion can be applied directly

within a subband by (28). In contrast, calculating a reduced

set of DFT coefficients with the plain scheme implies to

calculate the complete IMDCT. Second, (28) is straightforward
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TABLE I
RUNNING TIME OF THE DIRECT MDCT-TO-DFT METHOD AND THE PLAIN

METHOD (IMDCT + DFT), C IMPLEMENTATION.

direct
plain

mtot=5 mtot=10 mtot=15 mtot=20

M = 1024 1.54 2.29 3.00 4.01 3.35
M = 2048 1.67 2.48 3.21 3.95 3.82
M = 4096 1.71 2.52 3.30 3.98 4.27
M = 8192 1.73 2.51 3.31 4.91 4.78

Note: Running time is measured in ms for a mono audio signal sampled
at 44.1 kHz of 1 second long (CPU 1.83 GHz).

to implement in Matlab, C, or assembly. Unlike the fast

IMDCT and the FFT, it does not involve any bit-reversed

addressing or complicated data flow control, and can be very

efficient on systems supporting vector operations, for example,

most modern DSPs.

We have implemented the direct method on Matlab using

vector operations. It runs about 60X real-time on a 3.0 GHz

CPU for 44.1 kHz mono signals with mtot = 20 and

M = 1024. We have also implemented both the direct method

and the plain method in C. (The Matlab and C implementations

are available at http://www.gipsa-lab.grenoble-inp.fr/~laurent.

girin/demo/). Running speeds of both methods with different

M and different mtot are shown in Tab. I. Generally, the larger

M or the smaller mtot, the faster the direct method relatively,

and the break-even mtot is about 20, close to the above-

mentioned value. It should be noted that the fast IMDCT and

the FFT in the plain method use the renowned FFTW3 library

(http://www.fftw.org) which is highly optimized, although the

direct method is implemented without using any optimized

vector library.

E. Example of application – Phase vocoder

As a straightforward example of application, we have

combined our direct conversion method in Matlab with D.

Ellis’s vocoder [20]. A phase vocoder typically works in the

DFT domain and speeds up or slows down audio signals by

interpolating the amplitude and phase of DFT coefficients [21],

[22]. With the direct MDCT-to-DFT method, we can construct

a phase vocoder that accepts MDCT coefficients as input. This

is applicable to audio signals compressed by MDCT-domain

audio coders. For instance, the inputs are MDCT coefficients

decoded from AAC bitstreams encoded at 32 kbps for a mono

speech signal sampled at 16 kHz. The performance are tested

in terms of SNR (against exact MDCT-to-DFT conversion, i.e.,

log power ratio between reconstructed signal and difference

between reconstructed signals with the two methods) and

Mean Opinion Score (MOS, given by the PESQ evaluation

software [23], references are time-scaled signals with the exact

conversion). In Tab. II, results with two time scaling factors

(r = 0.8, 0.6, slowing down) and four different approximation

orders (mtot = 1, 5, 15, 20) are given. It is found that the SNRs

are noticeably lower than the SNRs of the direct conversion

itself (i.e., without time scaling) with the same approximation

order. This is because the phase vocoder accumulates phase

and thus accumulates phase error, and reconstruction SNRs are

TABLE II
SNRS AND MOS OF THE PHASE VOCODER WITH THE APPROXIMATE

MDCT-TO-DFT CONVERSION AGAINST THE PHASE VOCODER WITH THE

EXACT MDCT-TO-DFT CONVERSION.

mtot=1 mtot=5 mtot=10 mtot=15 mtot=20

SNR (r = 0.8) 2.26 4.50 11.94 18.02 20.68
SNR (r = 0.6) 0.70 1.95 8.17 15.18 15.59

MOS (r = 0.8) 2.96 3.16 3.92 4.16 4.31
MOS (r = 0.6) 2.67 2.78 3.63 4.08 4.01

Note: Time scaling factor is denoted by r and r < 1 is for slowing down;
SNR has the unit of dB; MOS is from 1 to 5 for bad to excellent quality.

very sensitive to this problem. However, the quality in terms

of MOS given by PESQ is quite good for mtot > 10 (larger

than 4, which means the difference between the approximate

and exact methods is perceptually insignificant), and it remains

fair (MOS ≈ 3) even for the extreme case mtot = 1.

VI. CONCLUSION

In this paper, we have proposed a method for converting

MDCT coefficients to DFT coefficients through conjugate

symmetric FIR filtering, which can be effectively approxi-

mated by retaining only the few first (most significant) taps.

This method is based on the observation that three MDCT-to-

DFT conversion matrices are involved in this process, and that

each of those three matrices can be separated into a Toeplitz

matrix and a Hankel matrix, which can be combined into an

extended Toeplitz matrix due to the 1/2 frequency shift term in

the MDCT. Also, we exploited the fact that the coefficients of

the extended Toeplitz matrix are DFT coefficients of window

functions product, resulting in an equivalent FIR filtering

process with sharp concentration of energy at low-frequency

taps for usual DFT and MDCT window functions.

Beyond the presented study, the low order FIR filtering

for MDCT-to-DFT conversion reveals an intrinsic relation-

ship between the MDCT and the DFT: the energy of an

MDCT coefficient is projected locally, that is mostly to a

few DFT coefficients of near frequencies. Therefore, using

the presented conversion technique, it is possible to accurately

estimate amplitude, phase or group delay of a signal in a

subband using local MDCT coefficients and very few local

computations (instead of relying on whole spectra IMDCT

synthesis and DFT analysis). In a general manner, the proposed

method allows direct chaining of MDCT-based perceptual

audio decoders (e.g., AAC) and DFT-domain processing. As

a straightforward example of application, we have plugged

our conversion method between an AAC decoder and a phase

vocoder. Another application of this method is for MDCT

quantization in perceptual audio coders: the method may

allow accurate and efficient control of quantization noise in

the MDCT domain according to DFT domain psychoacoustic

criteria. Finally, we plan to plug the presented method within

the Informed Source Separation (ISS) system of [24], which is

based on a DFT-domain Wiener filtering of source signals from

mixture signals, to adapt it efficiently to AAC compressed

mixture signals: source separation and generation of remix

signal will then be possible without passing through mix signal

time-domain reconstruction.

http://www.gipsa-lab.grenoble-inp.fr/~laurent.girin/demo/
http://www.gipsa-lab.grenoble-inp.fr/~laurent.girin/demo/
http://www.fftw.org
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APPENDIX A

Note that Re{W2M [α]} = 1
2{W2M [−α]+W2M [α]}. Then,

the entry of T = U
′
V at (k, l), by definition of matrix

multiplication and (6), is

T(k, l) =

2M−1∑

n=0

(U(n, k))∗V(n, l)

=
1

2

2M−1∑

n=0

w0(n)w1(n)W2M [(n+ n0)k]

×
{
W2M [(n+ n1)(−l − 1

2 )] +W2M [(n+ n1)(l +
1
2 )]

}

=W2M [(n0 − n1)k]
1

2

2M−1∑

n=0

w0(n)w1(n)W2M [(n+ n1)k]

×
{
W2M [(n+ n1)(−l − 1

2 )] +W2M [(n+ n1)(l +
1
2 )]

}

= φ(k)
{1

2

2M−1∑

n=0

w0(n)w1(n)W2M [(n+ n1)(k − l − 1 + 1
2 )]

+
1

2

2M−1∑

n=0

w0(n)w1(n)W2M [(n+ n1)(k + l + 1
2 )]

}

= φ(k)[h(k − l − 1) + h(k + l)],

as is stated in (7), (8), and (9).

APPENDIX B

To show that the extended vector X̂ given by (18) indeed

satisfies (17), we compare the kth element in T̂X̂ and the kth

element in (Ttoep +Thank)X .

By (16) and (18), we have

2M−1∑

l=−M

T̂(k, l)X̂(l)

=

M−1∑

l=0

T̂(k, l)X̂(l) +

−1∑

l=−M

T̂(k, l)X̂(l) +

2M−1∑

l=M

T̂(k, l)X̂(l)

=
M−1∑

l=0

Ttoep(k, l)X(l)

+

−1∑

l=−M+k

Thank(k,−l − 1)X(−l − 1)

+

M+k−1∑

l=M

µ∗
Thank(k, 2M − l − 1)µX(2M − l − 1)

=
M−1∑

l=0

Ttoep(k, l)X(l)

+

M−k−1∑

l=0

Thank(k, l)X(l) +

2M−1∑

l=M−k

Thank(k, l)X(l)

=

M−1∑

l=0

Ttoep(k, l)X(l) +

M−1∑

l=0

Thank(k, l)X(l).

Therefore, the extended vector X̂ given by (18) satisfies (17).

(Note that the phase term verifies µ∗µ ≡ 1.)

APPENDIX C

From (1), we write explicitly the matrices F1 and P1 as

F1(n, k) = wf (n+M)W2M [−(n+M)k],

P1(n, l) = Cwc(n+M)Re
{
W2M [(n+ 1

2 + 3M
2 )(l + 1

2 )]
}
,

which implies their time shifts are M and 1
2+

3M
2 , respectively.

Obviously, both F0 and F have time shift 0 while both P0 and

P have time shift 1
2 +

M
2 . Then replace n0 with the time shifts

of F0,F,F1 and replace n1 with time shifts of P1,P,P0

respectively in (8), we have

φ01(k) =W2M [(0− ( 12 + 3M
2 ))k] =W2M [− 1

2 (1−M)k],

φ12(k) =W2M [(0− ( 12 + M
2 ))k] =W2M [− 1

2 (1 +M)k],

φ23(k) =W2M [(M − ( 12 + M
2 ))k] =W2M [− 1

2 (1−M)k].

Note that W2M [α +Mk] = (−1)kW2M [α]. To compute the

filter taps h01, h12, h23 by (9), we have to replace w0 with

the window functions for F0, F, and F1, and then replace w1

with the window functions for P1, P, and P0:

w0(n) = wf (n−M), w1(n) = wc(n), for h01(l),

w0(n) = wf (n), w1(n) = wc(n), for h12(l),

w0(n) = wf (n+M), w1(n) = wc(n), for h23(l).

Note that n ranges from M to 2M − 1 for h01(l), from 0 to

2M−1 for h12(l), and from 0 to M−1 for h23(l). Then (22)

follows readily from the above.

For the DFT form (24), the modulation term is

W2M [f(n, l)] = W2M [(n + 1
2 + M

2 )(l + 1
2 )] instead of the

normal W2M [nl]. But we have

W2M [(n+ 1
2 + M

2 )(l + 1
2 )]

=W2M [( 12 + M
2 )l]W2M [nl]W2M [ 12 (n+ 1

2 + M
2 )]

= ψpost(l)W2M [nl]ψpre(n),

which implies (24). The modulation term also has a special

symmetry due to its phase:

f(n, l) + f(2M − 1− n, l) = 3M(l + 1
2 )

⇒W2M [f(n, l)]±W2M [f(2M − 1− n, l)]

= (1± (−1)lj)(cos[f(n, l)]± sin[f(n, l)]).

Now consider wf (n) and wc(n) are even symmetric (and

real). Then window function products wf (n)wc(n) and

w+
f (n)wc(n) are even symmetric too and w−

f (n)wc(n) is odd

symmetric, which, with the above symmetry of the modulation

term, lead to (26).

APPENDIX D

Let us assume that in (28), coefficients X̂0(l) are zero-

mean uncorrelated white noises with the same variance equal

to 1. Then, the variance of the error of approximating Y 0(k)



11

(defined in (19), but with subscript 0) in (28) is

E[|δY 0(k)|2] =
M−1∑

l=m

{
|h0(l)|2E[|X̂0(k − l − 1)|2]

+ |h∗0(l)|2E[|X̂0(k + l)|2]
}

=

M−1∑

l=m

{
|h0(l)|2 + |h∗0(l)|2

}

=2

M−1∑

l=m

|h0(l)|2. (34)

And similarly, the variance of the exact filter output Y 0(k) is

E[|Y 0(k)|2] = 2
M−1∑

l=0

|h0(l)|2. (35)

Similar results can be drawn for δY ±(k) and Y ±(k). Let

us further assume that X̂0(l), X̂−(l), X̂+(l) in (28) are

independent with each other (in addition to being each one

a zero-mean 1-variance white noise). The function σ(a, b, c)
defined in (30) is the total energy of the first a, b, c taps of the

three filters, respectively. Then, by (34), the variance of total

approximation error of DFT coefficient Z12(k) using (28) is

E[|δZ12(k)|2] = 2σ(M,M,M)− 2σ(m0,m−,m+), (36)

and by (35), the variance of the DFT coefficient Z12(k) is

E[|Z12(k)|2] = 2σ(M,M,M). (37)

Therefore, the approximation accuracy in term of log-SNR can

be estimated as

SNR ≈10 log10
E[|Z12(k)|2]
E[|δZ12(k)|2]

≈10 log10
1

1− σ(m0,m+,m−)/σ(M,M,M)
. (38)

Note that the white noise and independence assumptions of

X̂0(l), X̂−(l), and X̂+ may not be valid in reality. Neverthe-

less, (29) still gives very close estimation of the approximation

accuracy even for musical signals, as shown by experiments,

illustrated in Fig. 7, and commented in Section V-B.
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