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Abstract. Although acoustics is one of the disciplines of mechanics, its ”geometrization” is still lim-

ited to a few areas. As shown in the work on nonlinear propagation in Reissner beams, it seems that

an interpretation of the theories of acoustics through the concepts of differential geometry can help to

address the non-linear phenomena in their intrinsic qualities. This results in a field of research aimed

at establishing and solving dynamic models purged of any artificial nonlinearity by taking advantage of

symmetry properties underlying the use of Lie groups. The geometric constructions needed for reduction

are presented in the context of the ”covariant” approach.

1 Introduction

The Reissner beam is one of the simplest acoustical system that can be treated in the context of mechanics

with symmetry. A Lie group is a mathematical construction that handle the symmetry but it is also a manifold

on which a motion can take place. As emphasized by Arnold [1], physical motions of symmetric systems

governed by the variational principle of least action correspond to geodesic motions on the corresponding

group G. This paper will try, in a first part, to illustrate this basic concept in the case of the continuous

group of motion in space. After a literature survey on this subject, an extension from geodesics to auto-

parallel submanifolds is proposed in the second part and naturally leads to the geometric covariant approach

available to study evolution problems for fields defined by a variational principle.

2 Nonlinear model for Reissner Beam

2.1 Reissner kinematics

A beam of length L, with cross-sectional area A and mass per unit volume ρ is considered. Following the

Reissner kinematics, each section of the beam is supposed to be a rigid body. The beam configuration can

be described by a position r(s, t) and a rotation R(s, t) of each section. The coordinate s corresponds to the

position of the section in the reference configuration Σ0 (see figure 1).

2.2 Lie group configuration space

Any material point M of the beam which is located at x(s, 0) = r(s, 0) + w0 = sE1 + w0 in the reference

configuration (t = 0) have a new position (at time t) x(s, t) = r(s, t) + R(s, t)w0. In other words, the current

configuration of the beam Σt is completely described by a map

(

x(s, t)

1

)

=

(

R(s, t) r(s, t)

0 1

)

︸            ︷︷            ︸

H(s,t)

(

w0

1

)

, R ∈ S O(3), r ∈ R3, (1)



Fig. 1: Reference and current configuration of a beam. Each section, located at position s in the reference configuration

Σ0, is parametrized by a translation r(s, t) and a rotation R(s, t) ∈ S O3 in the current configuration Σt.

where the matrix H(s, t) is an element of the Lie group S E(3) = S O(3) × R3, where S O(3) is the group

of all 3 × 3 orthogonal matrices with determinant 1 (rotation in R3). As a consequence, to any motion

of the beam a function H(s, t) of the (scalar) independent variables s and t can be associated. Given some

boundary conditions, among all such motions, only a few correspond to physical ones. What are the physical

constraints that such motions are subjected to?

In order to formulate those constraints the definition of the Lie algebra is helpful. To every Lie group

G, we can associate a Lie algebra g, whose underlying vector space is the tangent space of G at the identity

element, which completely captures the local structure of the group. Concretely, the tangent vectors, ∂sH

and ∂tH, to the group S E(3) at the point H, are lifted to the tangent space at the identity e of the group.

The definition in general is somewhat technical1 , but in the case of matrix groups this process is simply a

multiplication by the inverse matrix H−1. This operation gives rise to definition of two left invariant vector

fields in g = se(3)

ǫ̂c(s, t) = H−1(s, t)∂sH(s, t) (2)

χ̂c(s, t) = H−1(s, t)∂tH(s, t), (3)

which describe the deformations and the velocities of the beam. Assuming a linear stress-strain relation,

those definitions allow to define a reduced Lagrangian function by the difference of kinetic and potential

1 In the literature, one can find the expression dLg−1 (ġ) where dL stands for the differential of the left translation L by

an element of G defined by

Lg : G → G

h → h ◦ g.



energy l(χc, ǫc) = Ec − Ep, with

Ec(χc) =

∫ L

0

1

2
χ

T
c Jχcds, (4)

Ep(ǫc) =

∫ L

0

1

2
(ǫc − ǫ0)T

C(ǫc − ǫ0)ds, (5)

where J and C are matrix of inertia and Hooke tensor respectively and ǫ̂0 = H−1(s, 0)∂sH(s, 0) correspond

to the deformation of the initial configuration.

2.3 Equations of motion

Applying the Hamilton principle to the left invariant Lagrangian l leads to the Euler-Poincaré equation

∂tπc − ad∗
χc
πc = ∂s(σc − σ0) − ad∗

ǫc
(σc − σ0), (6)

where πc = Jχc and σc = Cǫc, (see for example [3], [4] or [5] for details). In order to obtain a well-posed

problem, the compatibility condition, obtained by differentiating (2) and (3)

∂sχc − ∂tǫc = adχc
ǫc, (7)

must be added to the equation of motion. It should be noted that the operators ad and ad∗ in eq. (6)

ad∗(ω,v)(m, p) = (m ×ω + p × v, p ×ω) (8)

ad(ω1,v1)(ω2, v2) = (ω1 ×ω2,ω1 × v2 −ω2 × v1), (9)

depend only on the group S E(3) and not on the choice of the particular ”metric” L that has been chosen to

described the physical problem [6].

Equations (6) and (7) are written in material (or left invariant) form (c subscript). Spatial (or right invari-

ant ) form exist also. In this case, spatial variables (s subscript) are introduced by

ǫ̂ s(s, t) = ∂sH(s, t)H−1(s, t) (10)

χ̂s(s, t) = ∂tH(s, t)H−1(s, t) (11)

and (6) leads to the conservation law [18]

∂tπs = ∂s(σs − σ0) (12)

where πs = Ad∗
H−1πc and σs = Ad∗

H−1σc. The Ad∗ map for S E(3) is

Ad∗
H−1 (m, p) = (Rm + r × Rp,Rp). (13)

Compatibility condition (7) becomes

∂sχs − ∂tǫ s = adǫs
χs. (14)

Equations (6) and (7) (or alternatively ( 12) and (14)) provide the exact non linear Reissner beam model and

can be used to handle the behavior of the beam if the large displacements are taking into account.

Notations and assumptions vary so much in the literature, it is often difficult to recognize this model (see

for example [7] for a formulation using quaternions). However, this generic statement is used to classify



publications according to three axes. In the first one, the geometrically exact beam model is the basis for

numerical formulations. Starting with the work of Simo [2], special attention is focused on energy and mo-

mentum conserving algorithms [8], [9]. Numerical solutions for planar motion are also investigated in [10].

Even, in some special sub-cases (namely where the longitudinal variables do not appear) the non-linear beam

model gives rise to linear equations which can be solved by analytical methods [11].

Secondly, much of the literature is also devoted to the so-called Kirchhoff’s rod model. In this case, shear

strain is not taken into account along a thin rod (i.e., its cross-section radius is much smaller than its length

and its curvature at all points). In this approximation cross-sections are perpendicular to the central axis of

the filament and the rotation matrix can be given in the Frenet-Serret frame. (see [12] , [14], [15], for

example). In that context an interesting geometric correspondence between Kirchhoff rod and Lagrange top

can be made [13].

Finally, if only rigid motion is investigated, ( i.e. if the spatial dependence in (6) is canceled: ∂s ≡ 0)

the so-called underwater vehicle2 model is obtained. In absence of exterior force and torque, the equation of

motion for a rigid body in an ideal fluid become more simply [16], [17]

∂tπc = ad∗χc
πc, that is






ṁ = m ×ω + p × v

ṗ = n × ω
(15)

In this simpler form, a geometric interpretation is easier. The solution of the equation of motion mentioned

above, if it exists, should be interpreted as a geodesic of the group S E(3) endowed with a non-canonical left

invariant metric J. To accomplish the correspondence between the Euler-Poincaré’s equation and geodesic

equation the historical definition of the covariant derivative is exposed in the next section.

3 Geometric interpretation

3.1 Geodesics on curved spaces

A trajectory of a particle of mass m which is moving on a manifold3 M can be thought as a curve α(t)

on M and v(t) = α̇(t) is the speed of the particle. According to the Newton’s second Law of motion, its

acceleration (the variation of its velocity) is proportional to the net force acting upon it
∑

F = m dv
dt

. The

expression of this variation, v(t + dt) − v(t), shows that the velocities are evaluated at two different points

of the curve: α(t + dt) and α(t) which are, a priori, incommensurable quantities. So, one of the two vectors

needs to be parallel transport as it is illustrated, for flat manifolds, in figure (2). For curved manifolds the

Fig. 2: For flat manifolds, a trivial parallel

transport is used to compute the

acceleration.

v(t + dt)v(
t)

v(t + dt) − v(t)

b

b

operation is not so easy and its historical construction is related by M.P. do Carmo in [19] for surfaces of

R3 (see figure 3). Technically, this historical construction gives rise to the concept of the covariant derivative

2 underwater vehicle in the case that the center of buoyancy and the center of gravity are coincident
3 a surface for short



Fig. 3 Parallel transport along a curve: Let α(t) be a

curve on a surface S and consider the envelope of the

family of tangent planes of S along α (see figure 3). As-

suming that α(t) is nowhere tangent to an asymptotic di-

rection, this envelope is a regular surface Σ which is tan-

gent to S along α. Thus, the parallel transport along α

of any vector w ∈ Tp(S ), p ∈ S , is the same whether we

consider it relative to S or to Σ. Furthermore, Σ is a de-

velopable surface; hence can be mapped by an isometry

φ into a plane P (without stretching or tearing). Parallel

transport of a vector w is then obtained using usual par-

allel transport in the plane along φ(α) and pull it back to

Σ (by dϕ−1).

Dw
dt
= ∇vw of a vector field w along α. The parametrized curves α : I → R2 of a plane along which the field

of their tangent vector v(t) is parallel are precisely the straight lines of that plane. The curves that satisfy an

analogous condition , i.e.
Dv

dt
= ∇vv = 0, (16)

for a surface are called geodesics. Intuitively, the acceleration as seen from the surface vanishes : in absence

of net force, the particle goes neither left nor right, but straight ahead.

The kinetic energy (4) define a left invariant Riemannian metric on S E(3), and then define also a sym-

metric connection ∇ which is compatible with this metric (Levi-Civita connection). It can be shown that

geodesic equation (16) for this particular connection coincide with Euler-Poincaré equation of motion (15)

when S E(3) is endowed with the kinetic metric (4).

Now, this equation deals with motion of rigid body described by a single scalar variable t. So what is the

geometric interpretation of the equations of motion (6) and (7) for which two variables s and t are involved.

In other word, can we extend a geodesic, which is a 1-dimensional manifold, to 2-dimensional geodesic ?

3.2 Auto-Parallel submanifolds, covariant point of view

A geodesic curve on a surface S is a 1-dimensional submanifold of S for which the parallel transport

of its initial velocity stay in its own tangent space. In that sense, a geodesic is an auto-parallel curve. If

now, geodesics are seen as auto-parallel curves on surface, a definition of an n-dimensional auto-parallel

submanifolds can be made.

A submanifold M is auto-parallel in S if the parallel translation of any tangent vector of M along any

curve in M stays in its own tangent space T (M). Note that a parallel translation of a vector w ∈ T (M)



certainly belongs to T (S ) but not necessarily to T (M). In other words, M is auto-parallel in S with respect

to the connection ∇ of S if ∇XY belongs to T (M), ∀X,Y ∈ T (M). A correspondence between auto-parallel

∂H
∂t

b e

b ∂H
∂s

S E(3)

Σ

b

s

t

H

Fig. 4: Symbolic representation of a parametrized surface Σ immersed into the group G = S E(3)

surface and solutions to equations (6) and (7) is still to be demonstrated. In this case, any motion of the beam

must be seen as a map from [0, L] × R ⊂ R2 to S E(3) given by

(s, t)→ H(s, t), (17)

rather then a curve t → H(., t) in the infinite dimensional configuration space F ([0; L]; S E(3)) of functions

from [0; L] to S E(3). In this perspective, solving a physical variational problem is therefore transposed to the

problem of finding an auto-parallel immersed surface as it is illustrated symbolically in figure (4). This pro-

cess illustrates the covariant (as opposed to dynamical) formulation of a variational problem (see [21], [22]).

More precisely, the map (17) should be interpreted as a (local) section s(x) = (x,H(x)) of the principal

fiber bundle P→ X with structure group G = S E(3)

π : P = X × S E(3)→ X, π(x,H) ..= x

over the spacetime X = [0; L] × R, (s, t) = x. The Lagrangian is then defined in the phase bundle L :

J1P → R, where J1P denotes the first jet bundle of the bundle P. If L is invariant under the action of G,

the variational principle drops to the quotient space (J1P)/G. This quotient is an affine bundle on X which

can be identified to the bundle of connections C → X. It induces a reduced lagrangian l : C → X from L

and a reduced section s̄ ∈ Γ(C) from s ∈ Γ(P). In that context, the multidimensional generalization of the

equations of motion (6), compatibility (7) and conservation law (12) are formulated by M. Castrillón López

in [23]. The equation of motion (6) now yields

div
δl

δs̄
+ ad∗s̄

δl

δs̄
= 0 (18)

where div stands for the divergence operator defined by the volume form v (here, v = ds ∧ dt). The compat-

ibility condition (7)gives rise to the flatness of s̄ (integrability condition)

curv(s̄) = ds̄ + [s̄, s̄] = 0. (19)



Finally, introducing the Cartan-Poincaré4 n-form, ΘL, the symmetries of a variational problem produces

conservation laws by means of the Noether’s Theorem

d(J1s)∗J = 0. (20)

The form J induces a conserved quantity since its differential vanishes along the critical section s. It can be

understood as a current form (like in electromagnetism). In that sense, this formulation is more appropriated

to describe a conservation law then the partial derivative balance law (12). But for a non-specialist audience,

the definition of this form

J(ξ) = ((ξ)∗)(1)
yΘL, ∀ξ ∈ g

is quite obscure (in particular the relationship between the Cartan-Poincaré form and the conserved quantity).

Here y stands for the interior product and ξ∗ is related to the infinitesimal vector field generated by the

symmetry5.

4 Conclusion

A geometrical approach of the dynamic of a Reissner beam has been studied in this article in order to

take into account non linear effects due to large displacements. There are basically two different geomet-

ric approaches available to study evolution problems for fields defined by a variational principle. The first

approach, called the ”dynamical” approach, uses, as its main ingredient, the infinite dimensional manifold

as configuration space (TQ). The reduction techniques developed in the dynamical framework have been

studied thoroughly in the literature (see for example [24] and the references therein cited), but it presents the

difficulty to handle geodesic curves in an infinite dimensional function space.

As an alternative, the covariant formulation allows to consider a finite dimensional configuration space

(the dimension of the symmetry group itself). Although its roots go back to De Donder [25], Weyl [26],

Caratheodory [27], after J. M. Souriau in the seventies [28], the classical field theory has been only well un-

derstood in the late 20th century (see for example [29] for an extension from symplectic to multisymplectic

form). It is therefore not surprising that, in this covariant or jet formulation setting, the geometric construc-

tions needed for reduction have been presented even more recently. In that circumstances in the literature,

it is also not easy to understand how the multisymplectic form can be obtained from the differential of the

Cartan-Poincaré n-form, which is crucial to give rise to an Hamiltonian framework (Lie-Poisson Schouten-

Nijenhuis (SN) brackets [30]). An understandable theory, that can unify all the results obtained ”ad hoc”,

case by case, is still missing to our knowledge.
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