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Efficient Generation of Correctness Certificates for

the Abstract Domain of Polyhedra∗

Alexis Fouilhé† David Monniaux‡ Michaël Périn∗

April 2, 2013

Abstract

Polyhedra form an established abstract domain for inferring runtime
properties of programs using abstract interpretation. Computations
on them need to be certified for the whole static analysis results to
be trusted. In this work, we look at how far we can get down the
road of a posteriori verification to lower the overhead of certification
of the abstract domain of polyhedra. We demonstrate methods for
making the cost of inclusion certificate generation negligible. From a
performance point of view, our single-representation, constraints-based
implementation compares with state-of-the-art implementations.

In static analysis by abstract interpretation [6], sets of reachable states,
which are in general infinite or at least very large and not amenable to
tractable computation, are over-approximated by elements of an abstract
domain on which the analyzer applies forward (resp. backward) steps
corresponding to program operations (assignments, tests. . . ) as well as
“joins” corresponding to control points with several incoming (resp. outgoing)
edges. When dealing with numerical variables in the analyzed programs, one
of the simplest abstract domains consists in keeping one interval per variable,
and the forward analysis is known as interval arithmetic. Interval arithmetic
however does not keep track of relationships between variables. The domain
of convex polyhedra [7] tracks relationships of the form

∑
i aixi ./ b where

the ai and b are integer (or rational) constants, the xi are rational program
variables, and ./ is ≤, < or =.

The implementor of an abstract domain faces two hurdles: the implemen-
tation should be reasonably efficient and scalable; it should be reasonably
bug-free. As an example, the Parma Polyhedra Library (PPL) [1], version 1.0,
which implements several relational numerical abstract domains, comprises
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260,000 lines of C++; despite the care put in its development, it is probable
that bugs have slipped through. The same applies to the Apron library [11].

Such hurdles are especially severe when the analysis is applied to large-
scale critical programs (e.g. in the Astrée system [5], targeting avionics
software). For such systems, normal compilers may not be trusted, result-
ing in expensive post-compilation checking procedures, and prompting the
development of the CompCert certified compiler [12]: this compiler is pro-
grammed, specified and proved correct in Coq [21]. We wish to extend this
approach to obtain a trusted static analyzer; this article focuses on obtaining
a trusted library for convex polyhedra, similar in features to the polyhedra
libraries at the core of PPL and Apron.

One method for certifying the results of a static analysis is to store
the invariants obtained by an untrusted analyzer at (roughly) all program
points, then check that they are inductive using a trusted checker: each
statement is then a Hoare triple that must be checked. Unfortunately, storing
invariants everywhere proved impractical in the Astrée analyzer due to
memory consumption; we then opted to recompute them. Our (future)
analyzer will thus store invariants only at loop heads, and thus, for control
programs consisting of one huge control loop plus small, unrolled, inner loops,
will store only a single invariant. It will then enter a checking phase which
will recompute, in a trusted fashion, all intermediate invariants. Efficiency is
thus important.

The main contribution of our article is an efficient way of implementing
a provably correct abstract domain of polyhedra. Efficiency is two-fold:

1. In proof effort: most of the implementation consists in an untrusted
oracle providing certificates of the correctness of its computations;
only a much smaller certificate checker, consisting in simple algorithms
(multiplying and adding vectors, replacing a variable by an expression),
needs to be proven correct in the proof assistant.

2. In execution time: the expensive parts of the computations (e.g. linear
programming) are inside the untrusted oracle and may use efficient pro-
gramming techniques unavailable in parts that need formal proofs. We
do not compute certificates as an afterthought of polyhedral computa-
tions: close examination of the algorithms implementing the polyhedral
operators revealed that they directly expose the elements needed to
build certificates. Simple bookkeeping alleviates the need to rebuild
them after the fact. The overhead of making the operators certifying
is thus very limited. This contrasts with earlier approaches [4] based
on a posteriori generation of witnesses, which had to be recomputed
from scratch using linear programming.

A second contribution is a complete implementation of the abstract
domain of polyhedra in a purely constraints-based representation. Most
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libraries used in static analysis, including PPL and Apron, use a double
description: a polyhedron is both an intersection of half-spaces (constraints)
or the convex hull of vertices, half-lines and lines (generators), with frequent
conversions. Unfortunately, the generator representation is exponential in
the number of constraints, including for common cases such as hypercubes
(e.g. specification of ranges of inputs for the program). We instead chose
to represent the polyhedra solely as lists of constraints, with pruning of
redundant ones. Our implementation uses sparse matrices of rational numbers
and uses efficient techniques for convex hull [20] and emptiness testing by
linear programming [9].

We applied our library to examples of polyhedral computations obtained
by running the Pagai static analyzer [10] on benchmark programs. Despite
a common claim that implementations based on the double representation
are more efficient than those based on constraints only, our library reaches
performance comparable to the Apron library together with the high-level
of trust brought by our Coq certificate checker.

The remainder of this paper is organized as follows. After having stated
the conventions we are using (§1), we define correctness criteria for the
operators of the abstract domain (§2), which all reduce to inclusion properties
for which certificates are presented as Farkas coefficients (also known as
Lagrange multipliers). Such certificates may also be cheaply generated for
the convex hull (§4). Both forward step and convex hull operations reduce
internally to a form of projection. Some design choices of our implementation
are then described (§5), including how to keep the representation size of
the polyhedra reasonable. Last before conclusion (§7), an experimental
evaluation and accompanying results are presented (§6).

1 Definitions and Notations

In the remainder of this article, we use the following notations and definitions.

1. C: a linear constraint of the form ~a · ~x ≤ b where ~a is a vector of
rational constants, b is a rational and ~x ∈ Qn is the vector of the
analyzed program variables. Such a linear constraint, or constraint for
short, can be viewed as a half-space in an n-dimensional space. We
write C

def
= ~a · ~x > b for the complementary half-space.

2. P : a convex polyhedron, not necessarily closed, represented as a set of
constraints. We call “size of the representation of P” the number of
constraints that P is made of.

3. satisfaction: saying that point ~y of Qn satisfies a constraint C
def
= ~a·~x ≤ b

means that ~a · ~y ≤ b. By extension, a point ~y satisfies (or is in)
polyhedron P if it satisfies all of its constraints. We write this: Sat P ~y.
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Given that a constraint C can be regarded as polyhedron with only
one constraint, we also write: Sat C ~y.

4. Given our focus on the abstract domain of polyhedra we shall adopt
the following vocabulary.

(a) The order relation on polyhedra v is geometrical inclusion.

(b) The least upper bound t is the convex hull.

(c) The greatest lower bound u is geometrical intersection.

We will further distinguish the definition of abstract domain operators
from their actual implementation, which can have bugs. The imple-
mented version of the operators will be written with a hat: v̂, t̂ and û
implement the ideal operators v, t and u, respectively.

5. inclusion: a polyhedron P1 is included in a polyhedron P2 (noted P1vP2)
if and only if

∀~y, Sat P1 ~y ⇒ Sat P2 ~y (1)

Inclusion for constraints C1
def
= ~a1 · ~x ≤ b1 and C2

def
= ~a2 · ~x ≤ b2 is a

special case which is easy to decide: C1vC2 holds if and only if there
exists k > 0 such that k · ~a1 = ~a2 and k · b1 ≤ b2. This latter case is
thus proven correct directly inside Coq.

2 Correctness of the Abstract Domain Operators

Let us now see what needs to be proven for the implementation of each
operator of an abstract domain so that the correctness of its result can be
established.

Inclusion test P1 v̂P2 ⇒ P1vP2

Convex hull P1vP1t̂P2 and P2vP1t̂P2

Intersection ∀~x, Sat P1 ~x ∧ Sat P2 ~x⇒ Sat P1ûP2 ~x.
For now, we will assume a naive implementation of the intersection:
P1ûP2 is the union of the constraints of P1 with these of P2, which
trivially satisfies the desired property (1).

Assignment in a forward analysis, x := e amounts to intersection by the
equality constraint x′ = e (where x′ is a fresh variable), projection of x
and renaming of x′ to x.1 When analyzing backward, assignment is
just substitution.

1Other polyhedra libraries distinguish invertible assignments (e.g. x := x + 1, more
generally ~x′ = A · ~x with A an invertible matrix), which can be handled without projection,
from non-invertible ones (e.g. x := y + z). Because our library automatically keeps
a canonical system of equalities, which it uses if possible when projecting, no explicit
detection of invertibility is needed; it is subsumed by the canonicalization.
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Projection if P2 is the returned polyhedron for the projection of P1 par-
allel to variables xi1 , . . . , xip we check that P1vP2 and that variables
xi1 , . . . , xip do not appear in the constraints defining P2.

Widening : no correctness check needed. Widening (O) is used to accel-
erate the convergence of the analysis to a candidate invariant. For
partial correctness of the analyzer, no property is formally needed of
the widening operator, since iterations stop when the inclusion test
reports that an inductive invariant has been obtained. There exist
formalizations of the widening operator suitable for proving the total
correctness of the analysis (that is, that it eventually converges to an
inductive invariant) [15] but we avoided this question by assuming
some large upper bound on the number of iterations after which the
analyzer terminates with an error message.

Remark that we only prove that the returned polyhedron contains the
polyhedron that it should ideally be (which is all that is needed for proving
that the results of the analysis are sound), not that it equals it: for instance,
we prove that the polyhedron returned by the convex hull operator includes
the convex hull, not that it is the true convex hull. The precision of our
algorithms (that is, the property that they do not return polyhedra larger
than needed) is not proved formally; it is however ensured by usual software
engineering methods (informally correct algorithms, comparing the output
of our implementation to that of other polyhedra libraries. . . ).

3 A Posteriori Verification of the Inclusion Test

We shall now describe a way to ensure the correctness of the inclusion test.
Recall we represent polyhedra as sets of constraints only. Our certificate
for proving that a polyhedron P , composed of the constraints C1, . . . , Cn
satisfies a constraint C relies on the following trivial fact:

Lemma 1 If a point ~y satisfies a set of constraints {C1, . . . , Cn}, it satisfies
any linear positive combination

∑n
i=1 λiCi with λi ≥ 0.

If we can find a constraint C ′ that is a linear positive combination of C1,
. . . , Cn and such that C ′vC then it follows that P is included in C. Farkas’
lemma states that such linear combinations necessarily exist when inclusion
holds, which justifies our approach.

The motivation for a posteriori verification of inclusion results stems from
this formulation: while finding an appropriate linear combination requires
advanced algorithms, a small program checking that a particular set of λi’s
entails P vC can easily be proven correct in a proof assistant. We call
these λi’s the certificate for P vC.
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3.1 A Certificate Checker Certified in Coq

Our certificate checker has Coq type:

inclusion checker (P1 P2 : Polyhedra) (cert : Cert) : Exception (P1vP2)

where the type Polyhedra is a simple representation of a polyhedron as
a list of linear constraints and the type Cert is a representation for in-
clusion certificates. If a proof of P1vP2 can be built from cert , then
the inclusion checker returns it wrapped in the constructor value. How-
ever cert might be incorrect due to a bug in v̂. In this case, the inclusion checker

fails to build a proof of P1vP2 and returns error.
When extracting the Ocaml program from the Coq development, proof

terms are erased and the type of the checker function becomes that which
would have been expected from a hand-written Ocaml function: 2

inclusion checker : Polyhedra→ Polyhedra→ Cert→ bool

In reality, our implementation is slightly more complicated because the
untrusted part of our library, for efficiency reasons, operates on fast rational
and integer arithmetic, while the checker uses standard Coq types that
explicitly represent integers as a list of bits (see §5.6).

3.2 A Certificate-Generating Inclusion Test

Let us now go back to the problem of building a proof of P vC by exhibiting
an appropriate linear combination. From [4], this can be rephrased as a pure
satisfiability problem in linear programming:(

∀y,¬Sat
(
P u C

)
y
)
⇒ P vC

This problem can be solved by the simplex algorithm [8]. For this purpose,
the simplex variant proposed by [9], designed for SMT-solvers, is particularly
well-suited. This algorithm only implements the first of the two phases of
the simplex algorithm: finding a feasible point, that is a point satisfying
all the constraints of the problem. If there is no such point, a witness of
unsatisfiability is extracted as a set of mutually exclusive bounds on linear
terms and suitable Farkas coefficient ~λ, in the same way that blocking clauses
for theory lemmas are obtained for use in SMT-solving modulo linear rational
arithmetic. Furthermore, this algorithm is designed for cheap backtracking
(addition and removal of constraints), which is paramount in SMT-solving
and also very useful in our application (§5.2).

2We chose to replace the constructors value and error of the type Exception by
Ocaml booleans instead of letting the extraction define an Ocaml type “exception” with
two nullary constructors due to proof terms being erased.
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Our approach to certificate generation differs from previous suggestions
[4] where inclusion is first tested by untrusted means, and, if the answer is
positive, a vector of Farkas coefficients is sought as the solution of a dual
linear programming problem with optimization, which has a solution, the
Farkas coefficients, if and only if the primal problem has no solution. Ours
uses a primal formulation without optimization.

3.3 From an Unsatisfiability Witness to an Inclusion Certifi-
cate

Inclusion certificates are derived from unsatisfiability witness in a way similar
to [18]. To illustrate how they are built as part of the inclusion test, a global
idea of the inner workings of the simplex variant from [9] is needed. We
insist on the following being a coarse approximation.

We aim at building, given P non-empty and C, an inclusion certificate
for P vC, otherwise said P ∧ C having no solution. P is composed of n
constraints C1, . . . , Cn of the form

∑n
j=1 aij ·xj ≤ bi, where i is the constraint

subscript. We refer to C
def
= b0 <

∑n
j=1 a0j · xj as C0.

Let us start by describing the organization of data. Each constraint Ci is
split into an equation x′i =

∑n
j=1 aij · xj and a bound x′i ≤ bi where x′i is a

fresh variable. For the sake of simplicity, in this presentation, a constraint
xi ≤ bi is represented as x′i = xi ∧ x′i ≤ bi ; the actual implementation avoids
introducing such extra variable. Therefore, each x′i uniquely identifies Ci by
construction and the original variables xi are unbounded. We call basic the
variables which are defined by an equation (i.e. on the left-hand side, with
unit coefficient) and non-basic the others. Last, the algorithm maintains a
candidate feasible point, that is a value for every variable x′i and xj , initially
set to 0.

From this starting point, the algorithm iterates pivoting steps while
ensuring preservation of the invariant: the candidate feasible point always
satisfy the equations and the values of the non-basic variables always satisfy
their bounds (‡). At each iteration and prior to pivoting, a basic variable x′i
is chosen such that its value does not satisfy its bounds. Either there is
no such x′i, and the candidate feasible point is indeed a solution of P ∧ C,
thereby disproving P vC; or there is such a basic variable x′i. In this case,
we shift its value to fit its bounds and we seek a non-basic variable x′n such
that its value can be adjusted to compensate the shift: through a pivoting
step, x′i becomes non-basic, and x′n becomes basic. If there is no such x′n
(because all the non-basic variables already have reached their bound), the
equation which defines x′i exhibits incompatible bounds of the problem and
is of the form x′i =

∑
j 6=i λj ·x′j (only x′j ’s appear in this equation: recall that

the xj ’s are unbounded). We now show how to transform this unsatisfiability
result into an inclusion certificate.

Since we supposed that P is not empty, the unsatisfiability necessarily
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involves C0. Thus, x′0, which represents C0, has a non-zero coefficient λ0 in
the equation. Without loss of generality, we suppose that the incompatible
bounds involve an upper bound on x′i and that λ0 is positive. The above
equation can be rewritten so that x′0 appears on the left-hand side:

x′0 =
n∑
j=1

λ′j · x′j

where the lower bound b0 < x′0 and the upper bound
∑n

j=1 λ
′
j · x′j ≤ b′

are such that b′ ≤ b0. Recall that the x′i’s were defined as equal to linear

terms li
def
=
∑n

j=1 aij · xj of the constraints Ci. Let us now substitute the x′i’s
by their definition, yielding

l0 =
n∑
j=1

λ′j · lj

Noting that C is l0 ≤ b0 (since C0 = b0 < l0 is C), that
∑n

j=1 λ
′
j · lj ≤ b and

that b′ ≤ b0, the λ′j ’s form an inclusion certificate for P vC.

4 A Posteriori Verification of the Convex Hull

We saw in §2 that the result of the convex hull of two polyhedra P1 and P2

must verify inclusion properties with respect to both P1 and P2. Comput-
ing P

def
= P1t̂P2, then P1 v̂P and P2 v̂P and then checking the certificates

would produce a certified convex hull result, at the expense of two extra in-
clusion tests. From a development point of view, this is the lightest approach.
However, careful exploitation of the details of t̂ can save us the extra cost of
certificate generation, at the expense of some development effort.

Before delving into the details, let us introduce some more notations for
the sake of brevity. In this section, a polyhedron P is regarded as a column
vector of the constraints C1, . . . , Cn it is composed of. This allows for a

matrix notation: P
def
=
{
~x | A · ~x ≤ ~b

}
, where the linear term of Ci is the ith

line of A and the constant of Ci is the ith component of ~b.
Then, an inclusion certificate, λ1, . . . , λn, for P vC ′ is a line vector ~Λ,

such that ~Λ · P = C and C vC ′. Now, an inclusion certificate for P vP ′
is a set of inclusion certificates ~Λ1, . . . , ~Λn, one for each constraint C ′i of P ′.
Such a set can be regarded as a matrix F such that

F
def
=

 ~Λ1
...
~Λn

 and F × P vP ′

where the ith line of F × P is a constraint C such that C vC ′i. We call ~Λ a
Farkas vector and F a Farkas matrix.
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4.1 A Convex Hull Algorithm on Constraints Representa-
tion

The convex hull P1tP2 is the smallest polyhedron containing all line segments
joining P1 to P2. Thus, a point ~x of P1 t P2 is the barycenter of a point
~x1 in P1 and a point ~x2 in P2. Exploiting this remark, [3] defined P1 t P2,
with Pi = {~x | Ai · ~x ≤ ~bi}, as the set of solutions of the constraints
A1· ~x1 ≤ ~b1 ∧A2· ~x2 ≤ ~b2 ∧ ~x = α1· ~x1+α2· ~x2 ∧ α1+α2 = 1∧ 0 ≤ α1 ∧ 0 ≤ α2

using 2n + 2 auxiliary variables ~x1, ~x2, α1, α2 where n = |~x| is the number
of variables of the polyhedron. Still following [3], the variable changes
~x′1 = α1 · ~x1 and ~x′2 = α2 · ~x2 remove the non-linearity of the equation
~x = α1 · ~x1 + α2 · ~x2.

The resulting polyhedron can regarded as the 3-block system Sbar be-
low. The auxiliary variables ~x′1, ~x

′
2, α1, α2 are then projected out to stick

to the tuple ~x of program variables. Therefore, the untrusted convex
hull operator t̂ mainly consists in a sequence of projections: P1 t̂P2

def
=

p̂roj Sbar (~x′1, ~x
′
2, α1, α2) where

Sbar =



A1~x
′
1 ≤ α1

~b1

A2~x
′
2 ≤ α2

~b2

~x = ~x′1 + ~x′2
α1 + α2 = 1

0 ≤ α1

0 ≤ α2


4.2 Instrumenting the Projection Algorithm

Projecting a variable ~xk from a polyhedron P represented by constraints
can be achieved using Fourier-Motzkin elimination (e.g. [8]). This algorithm
partitions the constraints of P into three sets: E0

xk
contains the constraints

where the coefficient of ~xk is nil, E+
xk

contains those having a strictly positive
coefficient for ~xk and E−xk contains those which coefficient for ~xk is strictly
negative.

Then, the result Pproj of the projection of ~xk from P is defined as

Pproj = proj P ~xk
def
= E0

~xk
∪
(

map elim~xk (E+
~xk
× E−~xk)

)
where E+

~xk
×E−~xk is the set of all possible pairs of inequalities, one element of

each pair belonging to E+
~xk

and the other belonging to E−~xk . The elim~xk func-
tion builds the linear combination with positive coefficients of the members
of a pair such that ~xk has a zero coefficient in the result.

Illustrating on an example, projecting x from

P
def
= {y ≤ 1, 2 · x+ y ≤ 2,−x− y ≤ 1} gives
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E0
x = {y ≤ 1} and E+

x × E−x = {(2 · x+ y ≤ 2,−x− y ≤ 1)}

From 1 · (2 · x + y ≤ 2) + 2 · (−x − y ≤ 1) = −y ≤ 4, we get Pproj = {y ≤
1,−y ≤ 4}.

Note that every constraint C of Pproj is either a constraint of P , or
the result of a linear combination with non-negative coefficients λ1, λ2 of
two constraints C1 and C2 of P , such that λ1 · C1 + λ2 · C2 = C. It is
therefore possible, with some bookkeeping, to build a matrix F such that
F × P = Pproj. This extends to the projection of several variables: if
proj P ~xk = Pproj = F × P and proj Pproj ~xl = P ′proj = F ′ × Pproj, then
P ′proj = F ′′ × P with F ′′ = F ′ × F .

Fourier-Motzkin elimination can generate a lot of redundant constraints,
which make the representation size of Pproj unwieldy. In the worst case, the
n constraints split evenly into E+

xk
and E−xk , and thus, after one elimination,

one gets n2/4 constraints; this yields an upper bound of n2
p
/4p where p is

the number of elimination steps. Yet, the number of true faces can only grow
in single exponential [17, §4.1]; thus most generated constraints are likely to
be redundant.

The algorithm inspired from [20], which we use in practice, adds these
refinements to Fourier-Motzkin elimination:

1. Using equalities when available to make substitutions. A substitution
is no more than a linear combination of two constraints, the coefficients
of which can be recorded in F . Note that there is no sign restriction
on the coefficient applied to an equality.

2. Discarding trivially redundant constraints. The corresponding line F
can be discarded just as well.

3. Discarding constraints proved redundant by linear programming, as in
§5.2.

Note that, since discarding a constraint only adds points to the polyhedron,
there is no need to prove these refinements to be correct or to provide
certificates for them. We could thus very easily add new heuristics.

4.3 On-the-Fly Generation of Inclusion Certificates

In order to establish the correctness of static analysis, the convex hull
operator should return a superset of the true convex hull; we thus need
proofs of P1vP1 t̂P2 and P2vP1 t̂P2. The converse inclusion is not needed
for correctness, though we expect that it holds; we will not prove it. A
certifying operator t̂ must then produce for each constraint C of P1 t̂P2 a
certificate ~Λ1 (resp. ~Λ2) proving the inclusion of P1 (resp. P2) into the single-
constraint polyhedron C. The method we propose for on-the-fly generation
of a correctness certificate is based on the following remark.
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For each constraint C of P1 t̂P2, the projection operator p̂roj provides a
vector ~Λ such that ~Λ×Sbar = C, where Sbar is the system of constraints defined
in §4.1. An examination of the certificate reveals that ~Λ can be split into three
parts (~Λ1, ~Λ2, ~Λ3) such that ~Λ1 refers to the constraints A1.~x

′
1 ≤ α1

~b1 derived

from P1 ; ~Λ2 refers to the constraints A2.~x
′
2 ≤ α2

~b2 derived from P2 and ~Λ3

refers to the barycenter part ~x = ~x′1 + ~x′2 ∧ α1 + α2 = 1 ∧ 0 ≤ α1 ∧ 0 ≤ α2.
Let us apply the substitution σ = [α1/1, α2/0, ~x

′
1/~x, ~x

′
2/~0], that characterizes

the points of P1 as some extreme barycenters, to each terms of the equality
~Λ × Sbar = C. This only changes Sbar : Indeed, ~Λσ = ~Λ since ~Λ is a constant
vector and Cσ = C since none of the substituted variables appears in C (due
to projection). We obtain the equality (below) where many constraints of
Sbarσ became trivial.

(~Λ1, ~Λ2, ~Λ3)×



A1~x ≤ ~b1

0 ≤ 0

~x = ~x
1 = 1
0 ≤ 1
0 ≤ 0


= C

This equality can be simplified into ~Λ1 × (A1~x ≤ ~b1) + λ(0 ≤ 1) = C
where λ is the third coefficient of ~Λ3. This shows that ~Λ1 is a certificate3

for P1vC. The same reasoning with σ = [α1/0, α2/1, ~x
′
1/~0, ~x

′
2/~x] shows that

~Λ2 is a certificate for P2vC.

5 Notes on the Implementation

The practical efficiency of the abstract domain operators is highly sensitive
to implementation details. Let us thus describe our main design choices.

5.1 Extending to Equalities and Strict Inequalities

Everything we discussed so far deals with non-strict inequalities only. The
inclusion test algorithm however complements such non-strict inequalities,
which yields strict ones. Adaptation could have been restricted to the simplex
algorithm on which the inclusion test relies, and such an enhancement is
described in [9]. We have however elected to add full support for strict
inequalities to our implementation. Once the addition of two constraints
has been defined, almost no further change to the algorithms we discussed
previously was needed.

Proper support and use of equalities was more involving. As [20] points
out, equalities can be used for projecting variables. Such substitutions do not

3The shift λ of the bound is lost and will be computed again by our Coq-certified
checker.
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increase the number of constraints, contrary to Fourier-Motzkin elimination.
We ended up splitting the constraint set into a set of equalities, each serving
as the definition of a variable, and a set of inequalities in which these
variables have been substituted by their definitions. Minimization (see §5.2)
was augmented to look for implicit equalities in the set of inequalities. Last,
testing inclusion of P in C was split into two phases: substituting in C the
variables defined by the equalities of P and then using the simplex-based
method described earlier without putting the equalities of P in, which reduces
the problem size.

Inclusion certificates were adapted for equalities. If P vC, with C
def
= ~a ·

~x = b, cannot be proven using a linear combination of equalities, it is split
as {~a · ~x ≤ b,~a · ~x ≥ b} and P is proven to be included in each separately.

5.2 Minimization

The intersection P1ûP2 is a very simple operation. As §2 described, a naive
implementation amounts to list concatenation. However, some constraints
of P1 may be redundant with constraints of P2. Keeping redundant con-
straints leads to a quick growth of the representation sizes and thus of
computation costs. In addition, one condition for the good operations of
widening operators on polyhedra is that there should be no implicit equality
in the system of inequalities and no redundant constraint [2].

It is therefore necessary to minimize the size of the representation of
polyhedra, that is, removing all redundant constraints, and to have a system
of equality constraints that exactly defines the affine span of the polyhedron.
We call Pmin the result of the minimization on P . The correctness of the
result is preserved as long as Pmin is an over-approximation of P , which
means P vPmin.

First, we check whether P has points in it using the simplex algorithm
from §3.3. If P is empty, ⊥ is returned as the minimal representation. The
certificate is built from the witness of contradictory bounds returned by
the simplex algorithm. It is a linear combination which result is a trivially
contradictory constraint involving only constants (e.g. 0 ≤ −1) and which,
in other words, has no solution.

The next step is implicit equality detection. It builds on ~a ·~x ≤ b ∧ ~a ·~x ≥
b ⇒ ~a · ~x = b. For every C≤

def
= ~a · ~x ≤ b of P (by definition P vC≤), we

test whether P vC≥ def
= ~a · ~x ≥ b. If the inclusion holds, the certificate of the

resulting equality is composed of a linear combination yielding C≥ and a
trivial one, 1 · C≤, yielding C≤. Once this is done, the representation of P
can be split into a system of equalities Pe and a system of inequalities Pi
with no implicit equality. Pe is transformed to be in echelon form using
Gaussian elimination, which has two benefits. First, redundant equations
are detected and removed. Second, each equation can now serve as the
definition of one variable. The so-defined variables are then substituted in Pi,
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yielding P ′i . Although our implementation tracks evidence of the correctness
of this process, it should be noted that the uses of equalities decribed above
are standard practice.

At this point, if redundancy remains, it is to be found in P ′i only. It
is detected using inclusion tests: for every C ∈ P ′i , if P ′i \ {C}vP ′i , C is
removed. Removing a constraint is, at worst, an over-approximation for
which no justification needs to be provided.

All that we describe above involve many runs of the simplex algorithm.
The key point which makes this viable in practice is the following: they are
all strongly related and many pivoting steps are shared among the different
queries. We described (§3.3) the data representation used by the simplex
variant we use: it splits each constraint of P in linear term and bound
by inserting new variables. These variables can have both an upper and
a lower bound. Let us now illustrate the three steps of minimization on
constraint C

def
= ~a · ~x ≤ b, split as x′ = ~a · ~x and ~x′ ≤ b. The first step,

satisfiability, solves this very problem. Then, implicit equalities detection
checks whether x′ = ~a · ~x and x′ < b is unsatisfiable. Last, redundancy
elimination operates on x′ = ~a · ~x and x′ > b.

For all these problems, we only changed the bound on x′, without ever
touching either the constraint x′ = ~a · ~x or the other constraints of P . These
changes can be done dynamically, while preserving the simplex invariant
(‡ of §3.3), by making sure that the affected x′ is a basic variable. This
remark, once generalized to a whole polyhedron, enables the factorization of
the construction of the simplex problem. Actually, it is only done once for
each minimization. It is also hoped that the feasible point of one problem is
close enough to that of the next problem, so that convergence is quick.

Minimization also plays an important role in the convex hull algorithm.
We mentioned (§4.2) that projection increases the representation size of
polyhedra and described some simple counter-measures from [20]. When
projecting a lot of variables, as is done for computing the convex hull of two
polyhedra, each redundant constraint can trigger a lot of extra computation.
Applying a complete minimization after the projection of each variable
mitigates this. More precisely, only the third of the steps described above is
used: projection cannot make a non-empty polyhedron empty and it cannot
reduce the dimension of a polyhedron, no implicit equality can be created.

5.3 A More Detailed Intuition on Bookkeeping

We mentioned in §3.2 and §4 that simple bookkeeping makes it possible to
build inclusion certificates. We now give a more precise insight on what is
involved, on the example of the projection.

The main change is an extension of the notion of constraint, which is
now a pair (f, C) of a certificate fragment and a linear constraint as we
presented them so far. A certificate fragment f is a list of pairs (ni, id i), ni
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being a rational coefficient and id i a natural number uniquely identifying
one constraint of P . The meaning of f is the following∑

i

ni · Cidi
= c, with Cidi

∈ P and (ni, id i) ∈ f

The elim~xk function introduced in §4.2 is extended to take two extended
constraints (f1, C1) and (f2, C2), and return an extended constraint (f, C).
Recall that the original elim~xk chooses λ1 and λ2 such that the coefficient
of ~xk in the resulting C is nil. The extended version returns (λ1 · f1 @ λ2 ·
f2, λ1 ·C1 + λ2 ·C2), where @ is the list concatenation operator and λi · fi is
a notation for:

map (fun (n, id)→ (λi · n, id)) fi

The certificate fragment keeps track of how a constraint was generated
from an initial set of constraints. For a single projection proj P ~xk, the
fragments are initialized as [(1, idC)] for every constraint C before the actual
projection starts. For a series of projection as done for the convex hull, the
initialization takes place before the first projection.

5.4 Polyhedron Representation Invariants

The data representation our implementation uses for polyhedra satisfies a
number of invariants which relate to minimality.

(1) There is no implicit equality among the inequalities.

(2) There is no redundant constraint, equality or inequality.

(3) In a given constraint, factors common to all the coefficients of variables
are removed.

(4) Each equality provides a definition for one variable, which is then substi-
tuted in the inequalities.

(5) Empty polyhedra are explicitly labeled as such.

(3) helps keeping numbers small, hopefully fitting machine representation,
resulting in cheaper arithmetic. (1) implies in particular that if an implicit
equality is created when adding a constraint C to a polyhedron P , then C is
necessarily involved in that equality. It follows that the search for implicit
equalities can be restricted to those involving newly added constraints.
Because of (2), the same holds for redundancy elimination: if C is shown to
be redundant, P remains unaffected by the intersection. Furthermore, (4)
allows for the reduction of the problem dimension when testing for P1vP2.
Once the same variables are substituted in P1 and P2, only the inequalities
need to be inserted in the simplex problem. Last, (3) and (4) give a canonical
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form to constraints, which make syntactic criteria for deciding inclusion
of constraints more powerful. These criteria, suggested by [20], are used
whenever possible in the inclusion test and the projection.

5.5 Data Structures

5.5.1 Radix Trees

Capturing linear relations between program variables with polyhedra gener-
ally leads to sparse systems, as noted by [20]. Our implementation uses a tree
representation of vectors4 where the path from the root to a node identifies
the variable whose coefficient is stored at that node. This offers a middle
ground between dense representation, as used by other widely-used imple-
mentation of the abstraction domain of polyhedra, and sparse representation
which makes random access costly as sparsity diminishes.

5.5.2 Numbers Representation

Rational vector coefficients can grow so as to overflow native integer repre-
sentation during an analysis. Working around this shortcoming requires the
use of an arithmetic library for arbitrarily large numbers. This has a serious
impact on overall performance. Our implementation uses the ZArith[14]
Ocaml front-end to GMP[22]. ZArith tries to lower the cost of using GMP
by using native integers as long as they don’t overflow.

Our experiments show that, in many practical cases, extended precision
arithmetic is not used. This echoes similar findings in SMT-solvers such as
Z3 or OpenSMT [19]: in most cases, extended precision is not used, thus the
great importance of an arithmetic library that operates on machine words
as much as possible, without allocating extended precision numbers. In the
case of polyhedra, however, the situation occasionally degenerates when the
convex hull operator generates large coefficients.

The extracted Ocaml code of inclusion checker does not use this
efficient representation. Because of the need for correctness of computations,
the checker instead uses the Coq representation of numbers (lists of bits),
which is inefficient on numerical computations. Alternatively, assuming trust
in ZArith and GMP, it is possible to configure the Coq extractor to base
the checker on ZArith.

5.6 A Posteriori Certification vs. Full COQ-Certified Devel-
opment

Even though our library is planned to be used in a Coq-certified analyzer,
we preferred a posteriori certification over a fully Coq-certified development.

4The idea was borrowed from [4].
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Keeping Coq only for the development of checkers of external computa-
tions reduces the development cost and reconciles efficiency of the tool and
confidence in its implementation through certificates.

First, it reduces the proof effort: verifying that a guess is the solution to a
problem involves weaker mathematic arguments than proving correctness and
termination of the solver. To illustrate the simplicity of our Coq development,
Figure 1 shows some excerpts which are self-explanatory. The last function,
inclusion checker, is representative of the difficulty of the proofs. This
function is close to its extraction in Ocaml except that it returns either an
error or a proof of P1vP2 wrapped in the value constructor (Line 38). In
the case where P1 is an empty polyhedron (established by eproof ) the proof
of inclusion in P2 is built from that proof of emptiness. The missing proof
of Line 38 is done in the interactive prover (Lines 43-45) and automatically
placed in the function. It consists in an induction on the list of constraints of
P2 that shows that the empty polyhedron P1 is included in every constraint
of P2.

Our external library acts as an oracle: it efficiently performs the operation
and returns a certificate which serves two purposes: it can be used to check
the correctness of the computations but it is also a short cut toward the
result. For instance, the convex hull P1 t P2 is easy to obtain from the
complete inclusion certificates (F1, ~λ1) related to P1 or (F2, ~λ2) related to
P2. Indeed, P1 t P2 = F1 · P1 + ~λ1 = F2 · P2 + ~λ2 (see §4.3). This way, the
expensive computations that involve numerous calls to our simplex algorithm
are done by our Ocaml implementation using ZArith and the result is
reflected in Coq at the cost of just a matrix product using the Coq-certified
representation of numbers. If we work in such a manner, we never actually
have to transfer polyhedra from the untrusted to the trusted side.

From a general point of view, splitting a tool into an untrusted solver and
a correctness checker makes it more amenable to extensions and optimizations.
A posteriori certification has a cost each time the correctness of a result
needs to be proved (only during the last phase of the analysis to ascertain the
stability of the inferred properties). However, it allows optimizations whose
correctness would be difficult to prove and usage of untrusted components
(e.g. GMP).

6 Experimental Results

In order to evaluate the viability of our solution, we compared experimentally
our library (referred to as Libpoly) with mature implementations.

In addition to the efficiency of the polyhedra computation, we wished
to measure the cost of the inclusion checker. Our approach guarantees that,
if our certificate checker terminates successfully on a given verification, the
result of the operation which produced the certificate is correct. However,

16



1 From module LinearCsrt:
2 Record LinearCstr: Set := mk {coefs: Vec; cmp op: Cmp; bound: Num}.
3

4 Definition Sat (c:LinearCstr) (x:Vec) : Prop :=

5 denote (Vec.eval (coefs c) x) (cmp op c) (bound c).
6

7 From module List:
8 Inductive Forall (A : Type) (pred : A → Prop) : list A → Prop :=

9 | Forall nil: Forall pred nil

10 | Forall cons: ∀ (x:A) (l:list A),

11 pred x → Forall pred l → Forall pred (x :: l)

12

13 From module Polyhedra:
14 Definition Polyhedra : Set := list (id * LinearCstr).

15

16 Definition Sat (P:Polyhedra) (x:Vec) : Prop :=

17 List.Forall (fun c => LinearCstr.Sat (snd c) x) P.
18

19 Definition Incl (P:Polyhedra) (C:LinearCstr) : Prop :=

20 ∀ x:Vec, Sat P x → LinearCstr.Sat C x.
21

22 Definition (infix v) (P1 P2 : Polyhedra) : Prop :=

23 ∀ x:Vec, Sat P1 x → Sat P2 x.
24

25 Definition CertOneConstraint : Set := list (id * Num)

26

27 Inductive Cert : Set :=

28 | incl: list (id * CertOneConstraint) -> Cert

29 | empty: CertOneConstraint -> Cert.

30

31 Lemma Empty is included: ∀ (P:Polyhedra) (C:LinearCstr),
32 (Empty P) → (Incl P C).
33

34 Definition inclusion checker (P1 P2:Polyhedra) (cert:Cert) : Exc(P1vP2).

35 refine ( match cert with

36 | incl icert => checkInclusion P1 P2 icert
37 | empty ecert => match (checkEmptyness P1 ecert) with

38 | value eproof => value ← missing proof
39 | error => error

40 end

41 end

42 ). The missing proof is provided by the following proof script:
43 induction P2 with IH;

44 exact (List.Forall nil ) ;

45 exact (List.Forall cons c (Empty is included P1 (snd c) eproof ) IH).

46 Defined.

Figure 1: Excerpts of our Coq-certified inclusion checker
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this assertion currently only applies to the polyhedra as known to the Coq
checker: a translation occurs between the Ocaml representation of numbers,
ZArith, and their representation in the Coq language as lists of bits. This
means that the checker has to compute on this inefficient representation, and
thus we wished to ascertain whether the cost was tolerable.5

The best approach to evaluating Libpoly would have been to rely on
it for building a complete static analyzer. Although this is our long-term
goal, a less demanding method was needed for a more immediate evaluation.
We chose to compare computation results from Libpoly to those of widely
used existing implementations of the abstract domain of polyhedra: the
NewPolka library and the PPL. More precisely, we used them through
their Apron front end [11].

6.1 The Method

As [16] points out, randomly-generated polyhedra do not give a faithful
evaluation: a more realistic approach was needed. Because of the lack of a
static analyzer supporting both Apron and Libpoly, we carried out the
comparison by logging and then replaying with Libpoly the abstract domain
operations done by the existing Pagai analyzer [10] using Apron.

Technically, logging consists in intercepting calls to the Apron shared
library (using the wrap functionality of the GNU linker ld), analyzing the
data structures passed as operands and generating equivalent Ocaml code
for Libpoly. NewPolka and PPL results are logged too, for comparison
purposes. At the end of the analysis, the generated Ocaml code forms a
complete program which replays all the abstract domain operations executed
by the NewPolka library or the PPL on request of the analyzer.

The comparison was done for the following operations: parallel assign-
ment, convex hull, inclusion test and intersection on the analysis of the
following programs:

1. bf: the Blowfish cryptographic cipher

2. bz2: the bzip2 compression algorithm

3. dbz2: the bzip2 decompress algorithm

4. jpg: an implementation of the jpeg codec

5An alternative would be to map, at checker extraction time, Coq numbers to ZArith
numbers, at the expense of having both ZArith and GMP in the trusted computing
base. One may consider that we already make assumptions about ZArith and GMP: we
assume they respect memory safety, and thus will not corrupt the data of the Ocaml code
extracted from Coq, or at least that, if they corrupt memory, they will cause a crash in
the analyzer (probably in the garbage collector) instead of a silent execution with incorrect
data. This seems a much less bold assumption than considering that they always compute
correctly, including in all corner cases.
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5. re: the regular expression engine of GNU awk

6. foo: a hand-crafted program leading to polyhedra with many con-
straints, large coefficients and few equalities

6.2 Precision and Representation Size Comparison

The result of each operator we evaluated is a well-defined geometrical object.
For every logged call, the results from NewPolka, PPL and Libpoly were
checked for equality (double inclusion). The certificates generated by Libpoly
were then systematically checked. Furthermore, polyhedra have a minimal
constraints representation, up to the variable choices in the substitutions of
equalities. It was systematically checked whether Libpoly, NewPolka and
the PPL computed the same number of equalities and inequalities. In all
the cases we tried, the tests of correctness and precision passed. It is to be
noted that the PPL does not systematically minimize representations: its
results often have redundant constraints.6

Besides giving confidence in the results computed by Libpoly, ensuring
that our results are identical to those of NewPolka or the PPL lead us to
believe that the analyzer behavior would not have been very different, had it
used the results from Libpoly. There is no noticeable difference between
the analyses carried out using NewPolka and the PPL.

6.3 Timing Measurements

Timing measurements were made difficult because of the importance of the
state of polyhedra in the double representation NewPolka and the PPL
use. We were concerned that logging and replaying as described above
would be unfair towards these libraries, since it would force the systematic
recomputation of generator representations that, in a real analyzer, would
be kept internally. We thus opted for a different approach.

We measured the timings for NewPolka and the PPL directly inside
Pagai by wrapping the function calls between calls to a high precision timer.
We made sure that the overhead of the timer system calls was sufficiently
small so as to produce meaningful results. For Libpoly, timing measurements
were done during the replay and exclude the time needed to parse and rebuild
the operand polyhedra.

We present two views of the same timing measurements, carried out
on the programs introduced in §6.1. Table 1 gives, for each benchmark
program, the total time spent in each operation of the abstract domain.
Such a table does not inform us of the typical distribution of problem sizes

6This is due to the lazy-by-default implementation of the operators of the PPL. Since
support for the eager version of the operators has been deprecated in and is being removed
from the PPL (see [23], § A Note on the Implementation of the Operators), we could not
configure the library to have the same behavior as NewPolka.
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Table 1: Timing comparison between NewPolka (N), PPL (P), Libpoly
(L) and Libpoly with certificate checker (C): total time (in milliseconds)
spent in each of the operations; trivial problems are excluded.

prog. assignment convex hull inclusion intersection
N P L N P L C N P L C N P L

bf 3.7 11.4 0.5 3.2 1.2 2.7 2.8 0.2 0.4 0.1 0.1 10.7 13.4 1.2
bz2 14.6 54.1 2.9 23.5 11.5 66.8 68.7 1.6 2.8 0.7 1.2 52.3 61.1 7.9
dbz2 1618 4182 83.8 1393 231.9 532.8 535.3 32.3 35.6 2.1 3.6 1687 1815 28.3
jpg 23.7 68.3 3.8 28.2 7.5 24.0 24.9 1.2 1.8 0.5 0.8 39.7 51.0 6.0
re 5.7 17.2 0.7 20.2 8.4 17.9 19.2 1.1 1.3 0.5 0.7 37.3 47.2 3.3
foo 9.2 14.8 8.5 4.2 0.6 941.8 943.7 0.2 0.2 0.9 0.9 6.7 7.1 5.5

and the relationship between problem size and computation time, thus we
compiled Table 2 which shows computation times aggregated according to
the “problem size”, defined as the sum of the number of constraints of all
the operands of a given operation.

For the assignment and the convex hull, all the constraints of the two
operands are put together after renaming and many projections follow. The
inclusion test P1 v̂P2, in the worst case, solves as many linear programming
problems as there are constraints in P2, but each is of size the number of
constraints of P1 + 1. Last, the intersection operator minimizes the result of
the union of the sets of constraints. Note that the sums in Table 1 exclude
operations on trivial problems of size zero or one.

The presented results show that Libpoly is efficient on small problems.
Yet, the performance gap between Libpoly and the other implementations
closes on bigger problems. This is especially true for the convex hull, which
is a costly operation in the constraint representation. At least part of the
difference in efficiency on small problems can be explained by the generality
Apron provides: it provides a unified interface to several abstract domains
at the expense of an extra abstraction layer which introduces a significant
overhead on small problems.

More generally, the use of ZArith in Libpoly is likely to lower the cost
of arithmetic when compared to NewPolka and the PPL, which use GMP
directly. The foo program illustrates this: the analysis creates constraints
with big coefficients, likely to overflow native number representation. However,
precise measurement of the effect of using ZArith would be a hard task.

Last, Table 1 seems to show that problems are most often of rather small
size, but this may well be due to our limited experimentation means.

In spite of the shortcomings of our evaluation method, these results seem
promising for a constraints-only implementation of the abstract domain of
polyhedra. Some progress still needs to be made on the convex hull side (see
§7). It is also interesting to notice the performance differences between the
NewPolka and the PPL, despite their design similarities; we ignore their
cause.

20



Table 2: Timing comparison between NewPolka (N), PPL (P) and Libpoly
(L). Computation times (in milliseconds) are aggregated according to opera-
tion and problem size. (n) is the total number of problems of the size range
in the benckmarks.

problem size 0–1 2–5 6–10 11–15 16–20 21–25 26–30 31+

assignment
N 33.8 601.8 385.4 20.9 78.3 537.4 59.5 13.1
P 47.5 1176 519.7 87.4 247.6 2111 81.7 77.9
L 1.1 6.6 14.3 10.7 5.2 39.2 15.2 11.6
n 539 667 381 58 64 480 30 16

convex hull
N 687.9 679.7 434.1 119.5 68.8 37.9 6.4 3.5
P 167.5 141.0 68.4 22.8 16.8 9.2 1.9 0.9
L 7.0 57.1 133.7 131.2 1050 106.4 50.1 27.8
n 3354 3373 1092 354 135 65 14 7

inclusion
N 7.2 9.7 9.7 3.3 5.8 4.0 4.0 0
P 6.5 12.8 10.6 4.2 7.0 3.9 3.4 0
L 0.6 1.6 1.3 0.5 1.0 0.3 0.1 0
n 1482 1881 673 277 111 52 17 4

intersection
N 1389 1752 52.3 27.4 1.3
P 1933 1740 158.6 91.4 4.8
L 35.0 30.9 18.4 8.8 0.6
n 11458 4094 322 156 6 0 0 0

6.4 Certificate Checking Overhead

The certificate checking overhead shown in Table 1 includes the translation
between Ocaml and Coq representations. Inside a certified static analyzer,
this overhead could be reduced by only transferring the certificates, as opposed
to the full polyhedra, and using them to simulate the polyhedra computations,
without bothering to check after every call that the polyhedron inside the
Ocaml library corresponds to the one inside the certified checker. In addition
to translation costs, there is the general inefficiency of computations on Coq
integers, which are represented as lists of bits; this is considerably more
expensive than using native integers, or even arrays of native integers as
GMP would do.

However, it should be noted that the checking of inclusion certificates
occurs only during the final step of the certified static analysis which consists
in verifying that the inferred invariant candidates are indeed inductive
invariants for the program.

Last, the overhead of certificate checking is relatively greater for inclusion
than for convex hull. Although the actual checking burden is bigger for the
convex hull, due to certificate composition densifying the resulting certificate,
the inclusion test algorithm is much cheaper than the convex hull in terms of
computations. More precisely, the convex hull algorithm involves inclusion
tests as part of representation minimization.
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7 Conclusions

The previous sections demonstrated that a realistic implementation of the
abstract domain of polyhedra can be certified using a posteriori verification
of results. This approach has a key benefit: the time-consuming develop-
ment inside the Coq proof assistant is reduced to the bare minimum. A
tight integration of the certification concern enables on-the-fly certification
generation as a by-production of the actual computations, thereby making
the associated cost negligible. The same procedures can be used for fixed
point iterations (with certificate generation turned off for efficiency) and for
fixed point verification (with certificates generated and checked).

The complete implementation which has been developed operates only on
a constraints representation of polyhedra; our motivations for this choice were
the ease of generation of certificates as well as the absence of combinatorial
explosion on common cases such as hypercubes. This is made possible through
careful choice of data structures and exploitation of recent algorithmic
refinements [20, 9]. Possible future developments include designing efficient
techniques for generating Farkas certificates for a library based on the double
representation (generators and constraints) and providing heuristics for
choosing when to operate over constraints only and when to use the double
representation.

Prior to this, however, there remains room for both enhancement and
extension of our current implementation. A simple enhancement would be to
have both an upper and a lower bound for linear terms, which would further
condense the representation of polyhedra. The implicit equality detection
algorithm could be made less naive by exploiting the fact that a point in a
polyhedron P which has implicit equalities Ei necessarily reaches the bounds
of the inequalities involved in the proof of P vEi.

Finally, our library is planned to be part of a certified static analyzer,
such as the one being built in the Verasco project. Beyond a certified
implementation of the abstract domain of polyhedra, our library could also
serve to verify the numerical invariants discovered by untrusted analysis
using a combination of abstract domains (intervals, octagons, ... which are
special cases of polyhedra). The discovered invariants could be stored in the
form of polyhedra and the verification of their stability could be done with
our certified library. Currently, our polyhedron library only deals with linear
constraints, but a general-purpose analyzer has to handle nonlinearity. Our
library should therefore include linearization techniques [13] at the condition
that these be proven correct.
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