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Abstract

Given a capacity, the set of dominating k-additive capacities is a convex polytope called
the k-additive monotone core; thus, it is defined by its vertices. In this paper we deal
with the problem of deriving a procedure to obtain such vertices in the line of the results
of Shapley and Ichiishi for the additive case. We propose an algorithm to determine the
vertices of the n-additive monotone core and we explore the possible translations for the
k-additive case.
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1 Introduction

One of the main problems of cooperative game theory is to define a solution of a game v, that is,
supposing that all players join the grand coalition N, an efficient pay-off vector or pre-imputation
to each player represents a sharing of the total worth of the game v(N). In the case of finite games
of n players, a pre-imputation can be written as a n-tuple (x1, . . . , xn) such that

∑n
i=1 xi = v(N).

Of course, some rationality criterion should prevail when defining the sharing.
In this respect, the core is perhaps the most popular solution of a game. It is defined as the

set of pre-imputations x on N such that

∑

i∈A

xi ≥ v(A), ∀A ⊆ N, A �= ∅ and

n
∑

i=1

xi = v(N).

It is a well-known fact that the core is nonempty if and only if the game is balanced [1]. For
games with an empty core, it is necessary to give an alternative solution. In this sense, many
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possibilities have been proposed in the literature, as the dominance core stable sets, Shapley
index, Banzhaf index, the ǫ-core, the kernel, the nucleolus, etc. (see e.g. [8]).

On the other hand, Grabisch has defined in [11] the concept of k-additive capacities (capacities
are monotone games). These capacities generalize the concept of probability and they fill the
gap between probabilities and general capacities. Moreover, as they are defined in terms of the
Möbius transform and this transform can be applied to the characteristic function of any game
(not necessarily monotone), the concept of k-additivity can be extended to games as well.

In a previous paper [19] we have defined the so-called k-additive core. The basic idea is to
remark that an imputation is nothing else than an additive game and, if the core is empty,
we may allow to search for games more general than additive ones, namely k-additive games,
dominating the game. We have presented a generalization of the concept of balanced games,
the k-balanced games; these games are those admitting a dominating k-additive game and no
dominating (k−1)-additive game. In that paper it is also defined a generalization of the concept
of pre-imputation, the k-imputation; from a k-imputation, we have proposed a procedure to
define a classical pre-imputation based on the pessimistic criterion.

In [19] we have seen that for general games, any game is either balanced or 2-balanced. More-
over, while the core is a polytope whose vertices have been obtained by Shapley [25] and Ichiishi
[15] for convex games, the 2-additive core is not a polytope but an unbounded convex polyhedron
[13].

On the other hand, when dealing with capacities, it makes sense to study the k-additive
monotone core, that consists in the set of capacities dominating the capacity; it can be easily
seen that the k-additive monotone core is a convex polytope, whence it can be described through
its vertices. The aim of this paper is to study these vertices.

Moreover, there are other fields in which it is interesting to find the set of probabilities dom-
inating a capacity. For instance, Dempster [6] and Shafer [24] have proposed a representation
of uncertainty based on a “lower probability” or “degree of belief”, respectively, to every event.
Their model needs a lower probability function, usually non-additive but having a weaker prop-
erty: it is a belief function [24]. This requirement is perfectly justified in some situations (see [6]).
The general form of lower probabilities has been studied by several authors (see e.g. [30, 31]).
Moreover, in many decision problems, in which we have not enough information, decision makers
often feel that they are only able to assign an interval value for the probability of events. In other
words, they do not know the real probability distribution but there exists a set of probabilities
compatible with the available information. Let us call this set of all compatible probabilities
P1 and let us define µ := infP∈P1

P ; then, µ is a capacity (but not necessarily a belief function
[29]); µ is called “coherent lower probability”, and it is the natural “lower probability function”.
Of course, if P ′ is a probability measure dominating µ, it is clear that EP ′(f) ≥

∫

fdµ, for
any function f , where

∫

fdµ represents Choquet integral [3]. Chateauneuf and Jaffray use this
fact and that µ ≤ P, ∀P ∈ P1 in [2] to obtain an easy method for computing a lower bound
of infP∈P1

EP (f) when µ satisfies some additional conditions (namely µ is 2-monotone). Their
method is based on obtaining the set of all probability distributions dominating µ. The same
can be done for obtaining an upper bound. In this case, we can find a similar motivation for
studying the set of all k-additive capacities dominating a capacity.

The paper is organized as follows: In next section we give the basic concepts about k-additive
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capacities and about the set of dominating probabilities. Section 3 is devoted to characterize the
vertices for the n-additive case and, in Section 4, we deal with possible generalizations for the
k-additive case. In Section 5 we outlined the case of dominated k-additive capacities. We finish
with the conclusions and open problems.

2 Basic concepts

We will use the following notation throughout the paper: we suppose a finite universal set with
n elements, N = {1, ..., n}. Subsets of N are denoted by capital letters A, B, and so on. The set
of subsets of N is denoted by P(N), while the set of subsets whose cardinality is less or equal
than k is denoted by Pk(N).

Definition 1. [21] A game over N is a mapping v : P(N) → R (called characteristic func-

tion) satisfying v(∅) = 0.
If, in addition,

1. v satisfies v(A) ≤ v(B) whenever A ⊆ B, the game v is said to be monotone;

2. v satisfies v(A∪B) = v(A) + v(B) whenever A, B ⊆ N , A∩B = ∅, the game is said to be
additive;

3. v satisfies v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B), for all A, B ⊆ N, the game is said to be
convex.

From the point of view of Game Theory, for any A ⊆ N, the value v(A) represents the minimum
asset the coalition of players A will win if the game is played, whatever the remaining players
may do, i.e., v(A) is the payoff that coalition A can guarantee for itself. We will denote by G(N)
the set of all games on N.

Definition 2. A non-additive measure [7] or capacity [3] or fuzzy measure [27] µ over
N is a monotone game with µ(N) = 1.

Consider a monotone game different from the trivial game defined by v(A) = 0, ∀A ⊆ N . In
this case, we can divide all the values of v by v(N) so that we obtain a new game µ equivalent to v.

Then, µ is a capacity and we conclude that any monotone game can be equivalently represented
by a capacity. Observe that the set of all capacities on N is a convex polytope, that we will
denote FM(N).

There are other set functions that can be used to equivalently represent a game. We will need
in this paper the so-called Möbius transform.

Definition 3. [23, 14] Let v be a game on N . The Möbius transform (or dividends) of v is
a set function on N defined by

mv(A) :=
∑

B⊆A

(−1)|A\B|v(B), ∀A ⊆ N.
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The Möbius transform given, the original characteristic function can be recovered through the
Zeta transform [2]:

v(A) =
∑

B⊆A

mv(B). (1)

The value m(A) represents the strength of subset A in any coalition in which it appears.
Let us turn to the concept of k-additivity, originally defined for capacities. In order to define a

capacity, 2n − 2 values are necessary; the number of coefficients grows exponentially with n, and
so does the complexity of the problem. This drawback reduces considerably the practical use of
capacities. Then, some subfamilies of capacities have been defined in an attempt to reduce the
complexity. Examples of subfamilies include the λ-measures [28], the k-intolerant capacities [16],
the k-additive capacities [10], the p-symmetric capacities [20], the decomposable capacities [9],
etc. In this paper we will use k-additive capacities.

Definition 4. [10] A game v is said to be k-order additive or k-additive for short if its
Möbius transform vanishes for any A ⊆ N such that |A| > k, and there exists at least one subset
A of exactly k elements such that m(A) �= 0.

Additive games are 1-additive games, and so probability measures are 1-additive capacities;
thus, k-additive capacities generalize probability measures. More about k-additive capacities
can be found, e.g., in [12]. We will denote by FMk(N) (resp. Gk(N)) the set of all k′-additive
capacities (resp. games) with k′ ≤ k. Observe that FMk(N) is a subpolytope of FM(N). Notice
also that FMn(N) = FM(N).

Let us now introduce the concept of k-additive monotone core.

Definition 5. Let v, v∗ be games in G(N). We say that v∗ dominates v, and we denote it
v∗ ≥d v, if and only if

v∗(A) ≥ v(A), ∀A ⊂ N, v∗(N) = v(N).

Definition 6. Let v be a game. We say that a vector : x = (x1, . . . , xn) ∈ R
n is a pre-

imputation for v if it satisfies
n

∑

i=1

xi = v(N).

Remark 1. For any x ∈ R
n, it is convenient to use the notation x(A) :=

∑

i∈A xi, for all A ⊆ N ,
with the convention x(∅) = 0. Thus, x identifies with an additive game.

The value xi is the asset player i receives when sharing v(N). Suppose that the pre-imputation
satisfies x(A) ≥ v(A), for all A ⊆ N . Then, no subcoalition of players has interest to form, since
they will receive more by the sharing (x1, . . . , xn). In other words, any such (x1, . . . , xn) is a
possible satisfactory pre-imputation for all players.

Definition 7. [25] Let v be a game. The core of v, denoted by C(v), is defined by

C(v) := {x ∈ R
n | x(A) ≥ v(A), ∀A ⊆ N, x(N) = v(N)}.
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Since by Remark 1 any x ∈ R
n induces an additive game, the core can be equivalently defined

as the set of additive games dominating v; if we are dealing with capacities, the core consists in
the set of probabilities dominating the capacity. When nonempty, the core is usually taken as
the solution of the game. If the core is not empty, it is a convex polytope and its vertices are
known when the game is convex:

Definition 8. A maximal chain in 2N is a sequence of subsets A0 := ∅, A1, . . . , An−1, An := N

such that Ai ⊂ Ai+1, i = 0, . . . , n − 1. The set of maximal chains of 2N is denoted by M(2N).

To each maximal chain C := {∅, A1, . . . , An = N} in M(2N) corresponds a unique permutation
σ on N such that A1 = σ(1), A2 \A1 = σ(2), . . . , An \An−1 = σ(n). The set of all permutations
over N is denoted by S(N). Let v be a game. Each permutation σ (or maximal chain C) induces
an additive game φσ (or φC) on N defined by:

φσ({σ(i)}) := v({σ(1), . . . , σ(i)}) − v({σ(1), . . . , σ(i − 1)})

or
φC({σ(i)}) := v(Ai) − v(Ai−1), ∀i ∈ N,

with the above notation.

Theorem 1. The following propositions are equivalent.

1. v is a convex game.

2. All additive games φσ, σ ∈ S(N), belong to the core of v.

3. C(v) = co({φσ}σ∈S(N)).

4. ext(C(v)) = {φσ}σ∈S(N),

where co(·) and ext(·) denote respectively the convex hull of some set, and the extreme points of
some convex set.

(i) ⇒ (ii) and (i) ⇒ (iv) are due to Shapley [25], while (ii) ⇒ (i) was proved by Ichiishi [15].
Suppose the core of the game is empty. Since from Remark 1 the core is the set of 1-additive

dominating games, it is natural to look for 2-additive games dominating v; if this set is empty
too, then look for 3-additive games dominating v and so on. This leads us to the following
definition.

Definition 9. [19] A game v on N is called k-balanced if there exists a k-additive game
dominating it and no game in Gk−1(N) dominates v.

Definition 10. [19] Given a game v, we define the k-additive core of v, denoted by Ck(v), as
the set of all k-additive games dominating v, i.e.,

Ck(v) := {v∗ ∈ Gk(N) | v∗ ≥d v}.

In [19], the following has been proved:
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Proposition 1. For any k ≥ 2 and any game v ∈ G(N), Ck(v) �= ∅.

Consequently, for the general case, only the core and the 2-additive core make sense. Moreover,
it has been shown in [13] that the 2-additive core is an unbounded convex polyhedron.

On the other hand, when dealing with capacities, the following notion makes sense:

Definition 11. A capacity µ on N is k-balanced monotone if there exists a k-additive capacity
dominating it and no capacity in FMk−1(N) dominates µ.

Definition 12. Given a k-balanced monotone capacity µ, we define the k-additive monotone

core of µ, denoted by MCk(µ), as the set of all k-additive capacities dominating µ.

Notice that if µ is a balanced capacity, C1(µ) = MC1(µ) = C(µ).
If nonempty, it is easy to see that MCk(µ) is a polytope. In next sections we will study its

vertices.

3 The set MCn(µ).

In this section we provide an algorithm for obtaining all the vertices of MCn(µ) for a given
capacity µ. We consider the following procedure.

• Let ≺ be a linear order on P(N)\{N, ∅}. This order allows us to rank the different subsets
of N,

A1 ≺ A2 ≺ ... ≺ A2n−2.

• Next, define a partition P = {U ,L} on P(N) \ {N, ∅}, where U or L could be empty.

The aim of the procedure is to define a capacity µ≺,P dominating µ.

• Initializing step: Let us define

µ0(Ai) := 1, µ0(Ai) := µ(Ai), ∀Ai.

• Iterating step: For i = 1 until i = 2n − 2, do:

– If Ai ∈ U , then assign
µ≺,P(Ai) := µi−1(Ai).

Redefine:

For µi, we put

µi(B) =

{

max{µi−1(Ai), µ
i−1(B)} if B ⊇ Ai

µi−1(B) otherwise

For µi, we put
µi(B) = µi−1(B), ∀B ⊂ N.
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– If Ai ∈ L, then assign
µ≺,P(Ai) = µi−1(Ai).

Redefine:

For µi, we put

µi(B) =

{

min{µi−1(Ai), µ
i−1(B)} if B ⊆ Ai

µi−1(B) otherwise

For µi, we put

µi(B) = µi−1(B), ∀B ⊂ N.

The idea of the procedure is the following: In step i, the values for µ≺,P(A1), ..., µ≺,P(Ai−1)
are fixed. Consider Ai; if Ai ∈ U , we assign to µ≺,P(Ai) the largest possible value keeping
dominance and monotonicity, which is µi(Ai). Similarly, if Ai ∈ L, we assign to µ≺,P(Ai) the
smallest possible value keeping dominance and monotonicity, which is µi(Ai). Once the value of
µ≺,P(Ai) is fixed, we need to actualize the lower and upper bounds for Aj , j > i. These lower
and upper bounds are stored in µi and µi, respectively. For example, for Ai ∈ L and for any B

such that B ⊂ Ai whose value has not been fixed yet, in order to keep monotonicity, the value
of the capacity on B cannot exceed µi−1(Ai), whence the maximum value that the capacity on
B can attain is given by

min{µi−1(Ai), µ
i−1(B)}.

A similar argument applies if Ai ∈ U .

Note that µ itself is a vertex of MCn(µ), appearing when L = P(N) \ {N, ∅} and U = ∅, no
matter which order ≺ is considered. Similarly, the measure attaining value 1 for every subset
except the empty set is another vertex of MCn(µ), appearing when U = P(N) \ {N, ∅} and
L = ∅, no matter which order ≺ is considered. The capacity µ is the least element of this set.
Similarly, the measure attaining value 1 for every subset except the empty set is the greatest
element of MCn(µ).

The figure explains the performance of the algorithm for the special case of |N | = 2. In this
case, P(N) \ {N, ∅} = {{1}, {2}} and we have an antichain. Then, ≺ has no relevance in the
algorithm. The set MCn(µ) is clearly the yellow square in the figure below. We can see that
MC2(µ) has four vertices, corresponding to the four possibilities for U and L.

µ≺,P({1})

µ≺,P({2})

µ

µmax

U = ∅

L = {{1}, {2}}

U = {{2}}

L = {{1}}

U = {{1}, {2}}

L = ∅

U = {{1}}

L = {{2}}
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In next results we will prove that the function µ≺,P obtained through this procedure is a vertex
of MCn(µ) and that any vertex can be obtained through a suitable choice of ≺ and P.

Proposition 2. µ≺,P ∈ MCn(µ).

The proof of this result is based on the following lemmas, that provide us with additional
properties of the sequences {µi(B)}2n−2

i=0 and {µi(B)}2n−2
i=0 .

Lemma 1. For any B ⊂ N, the sequence {µi(B)}2n−2
i=1 is nondecreasing. Similarly, the sequence

{µi(B)}2n−2
i=0 is nonincreasing.

Proof: The result is obvious from the definition of µi and µi in each iteration.

Lemma 2. µi, µi ∈ FM(N), ∀i = 0, ..., 2n − 2.

Proof: We show the result for µi; the same can be done for µi.

Clearly, in each iteration µi(B) ∈ [0, 1], ∀B ⊂ N. Thus, it suffices to show the monotonicity.
We will prove the result by induction on i.

Consider A, B ⊂ N such that A ⊂ B. In the initializing step, µ0(A) = µ0(B) = 1 and the
result holds. Therefore, assume the result is true for iterations 0, 1, ..., i − 1.

• If Ai ∈ U , then µi = µi−1 and the result holds by the induction hypothesis.

• If Ai ∈ L, we have three different possibilities.

– If A ⊂ B ⊆ Ai, then

µi(A) = min{µi−1(Ai), µ
i−1(A)} ≤ min{µi−1(Ai), µ

i−1(B)} = µi(B),

as µi−1(A) ≤ µi−1(B) by the induction hypothesis. Thus, the result holds.

– If A �⊆ Ai, then µi(A) = µi−1(A) and µi(B) = µi−1(B), and the result holds by the
induction hypothesis.

– If A ⊆ Ai, B �⊆ Ai, then

µi(A) = min{µi−1(Ai), µ
i−1(A)} ≤ µi−1(A) ≤ µi−1(B),

applying again the induction hypothesis. On the other hand, µi(B) = µi−1(B), so
that the result holds.

Lemma 3. µi ≥d µi, ∀i = 0, ..., 2n − 2.

Proof: We will prove the result by induction on i. For the initializing step, the result trivially
holds. Take B ⊂ N and assume then that the result is true for iterations 0, 1, ..., i− 1.

Suppose Ai ∈ U , the other case being symmetric.

• If Ai �⊆ B, then µi(B) = µi−1(B) and µi(B) = µi−1(B), whence the result holds by
induction.
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• Otherwise, µi(B) = µi−1(B) and

µi(B) = max{µi−1(Ai), µ
i−1(B)}.

Note that µi−1(B) ≥ µi−1(Ai) as µi−1 ∈ FM(N) (Lemma 2). On the other hand,
µi−1(B) ≥ µi−1(B) by induction, whence µi(B) ≥ µi(B) in the i-th iteration and the
result holds.

Proof of the proposition: First, let us see that µ≺,P ∈ FM(N).
Clearly, µ≺,P(B) ∈ [0, 1], ∀B ⊂ N. Thus, it suffices to check the monotonicity. Take A, B ⊂ N

such that A ⊂ B. Suppose A ≺ B; a similar proof can be derived when B ≺ A. Thus, A = Ai

and B = Aj for some i, j such that j > i.

• If A ∈ L, then µ≺,P(A) = µi−1(A). By Lemma 2,

µi−1(A) ≤ µi−1(B), µi−1(A) ≤ µi−1(B).

Now,

– If B ∈ L, then µ≺,P(B) = µj−1(B) and result holds because, by Lemma 1, we know

that {µi(B)}2n−2
i=1 is a nondecreasing sequence.

– Otherwise, B ∈ U , whence

µ≺,P(B) = µj−1(B) ≥ µj−1(B)

by Lemma 3 and the result holds again applying Lemma 1.

• If A ∈ U , then µ≺,P(A) = µi−1(A). By construction,

µi(B) = max{µi−1(A), µi−1(B)} ≥ µ≺,P(A).

– If B ∈ L, then µ≺,P(B) = µj−1(B) and result holds because, by Lemma 1, we know

that {µi(B)}2n−2
i=1 is a nondecreasing sequence.

– Otherwise, B ∈ U , whence

µ≺,P(B) = µj−1(B) ≥ µj−1(B)

by Lemma 3 and the result holds, again applying Lemma 1.

Therefore, the result holds.
Let us now prove that µ≺,P ≥d µ.

In the initializing step, we have µ0(A) = µ(A), ∀A ⊂ N. Besides, by Lemma 2, we know that

{µi(A)}2n−2
i=1 is a nondecreasing sequence. Moreover, by Lemma 3, µi(A) ≤ µi(A), ∀i. Thus, as

µ≺,P(A) is either µi(A) or µi(A) for some i, we always obtain µ≺,P(A) ≥ µ(A).

Indeed, it can be easily seen that µi ≤ µ≺,P ≤ µi, ∀i. Moreover, the following holds.
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Proposition 3. µ≺,P is a vertex of MCn(µ).

Proof: Consider µ≺,P and let us suppose that there exist µ1, µ2 ∈ MCn(µ) such that µ≺,P =
αµ1 + (1 − α)µ2, α ∈ (0, 1). We will prove by induction on i that µ≺,P(Ai) = µ1(Ai) = µ2(Ai).

Consider A1. If A1 ∈ U , then µ≺,P(A1) = 1, whence µ1(A1) = µ2(A1) = 1. Otherwise, A1 ∈ L
and µ≺,P(A1) = µ(A1), whence µ1(A1) = µ2(A1) = µ(A1) because they dominate µ.

Now, suppose the result holds until i − 1. Assume Ai ∈ L, the other case being symmetric.

• If µ≺,P(Ai) = µ(Ai), then µ1(Ai) = µ2(Ai) = µ(Ai) because they dominate µ.

• Otherwise, by construction of µi−1, there exists j < i such that Aj ⊂ Ai and Aj ∈ U
satisfying

µj−1(Aj) = µj−1(Ai) = µi−1(Ai).

Consequently, µ≺,P(Aj) = µj−1(Aj) = µi−1(Ai) = µ≺,P(Ai). On the other hand, µ1(Aj) =
µ2(Aj) = µ≺,P(Aj) by induction. As µ1 ∈ FM(N), it follows by monotonicity that

µ1(Ai) ≥ µ1(Aj) = µ≺,P(Aj) = µ≺,P(Ai).

Similarly, µ2(Ai) ≥ µ≺,P(Ai) whence µ1(Ai) = µ2(Ai) = µ≺,P(Ai).

Finally, it can be seen that all the vertices can be derived from this procedure.

Proposition 4. If µ∗ is a vertex of MCn(µ), then there exists an order ≺ and a partition P of
P(N) \ {N, ∅} such that µ∗ = µ≺,P .

Proof: Take µ∗ a vertex of MCn(µ). We will show that we can build an order ≺ and a
partition P such that µ∗ = µ≺,P .

Let us define

A1 := {A ∈ P(N) \ {N, ∅} | µ∗(A) = µ(A) or µ∗(A) = 1}.

Take any linear order ≺ on A1. If A ∈ A1 and µ∗(A) = 1, then A ∈ U . Otherwise, A ∈ L.

If A1 = P(N) \ {N, ∅}, let us prove by induction that µ∗ = µ≺,P .

Take A1. If A1 ∈ U , then µ≺,P(A1) = µ0(A1) = 1, whence µ≺,P(A1) = µ∗(A1) and the result
holds. Otherwise, A1 ∈ L and µ≺,P(A1) = µ0(A1) = µ(A1), whence µ≺,P(A1) = µ∗(A1) and the
result holds.

Take i > 1 and assume the result holds until i − 1. Suppose Ai ∈ U , the case Ai ∈ L being
symmetric. Let us show that µ≺,P(Ai) = 1 = µ∗(Ai). As Ai ∈ U , it follows that µ≺,P(Ai) =
µi−1(Ai). We have two different cases:

• If there exists no j < i such that Aj ∈ L and Aj ⊃ Ai, then by the construction of the
procedure, it is µi−1(Ai) = µ0(Ai) = 1 and the result holds.
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• Otherwise,
µi−1(Ai) = min{µ≺,P(Aj) | j < i, Aj ∈ L, Aj ⊃ Ai}.

By the induction hypothesis, µ≺,P(Aj) = µ∗(Aj), ∀j < i, whence

µi−1(Ai) = min{µ∗(Aj) | j < i, Aj ∈ L, Aj ⊃ Ai}.

By construction of L, we have µ∗(Aj) < 1, ∀Aj ∈ L. Thus, µi−1(Ai) < 1. On the other
hand, Ai ∈ U , whence µ∗(Ai) = 1 by construction of U . But then, there exists Aj ⊃ Ai

such that µ∗(Ai) > µ∗(Aj), whence µ∗ is not monotone, a contradiction. Therefore, this
second case is not possible.

We conclude that if A1 = P(N) \ {N, ∅}, then µ∗ = µ≺,P and we are done.
Otherwise, define

A2 := {A ∈ (P(N) \ {N, ∅}) \ A1 | µ∗(A) = µ∗(B), B ∈ A1, B ⊂ A or B ⊃ A}.

Range the subsets in A2 in any way after the subsets in A1. If A ∈ A2 and µ∗(A) = µ∗(B) for
B ∈ A1 and B ⊃ A, then A ∈ U . Otherwise, A ∈ L.

As in the previous case, if A2 = (P(N) \ {N, ∅}) \ A1, then it can be checked that µ∗ = µ≺,P

and we are done.
Otherwise, we can reiterate the process defining A3 and so on. If at some step the whole

P(N) \ {N, ∅} is recovered, then µ∗ = µ≺,P and the result holds. Let us see that this is always
the case.

Suppose there exists an i such that Ai = ∅ and A1 ∪ ...∪Ai−1 �= P(N) \ {N, ∅}. Then, we can
define

µ1(B) =

{

µ∗(B) if B ∈ A1 ∪ ... ∪ Ai−1

µ∗(B) + ǫ otherwise
µ2(B) =

{

µ∗(B) if B ∈ A1 ∪ ... ∪ Ai−1

µ∗(B) − ǫ otherwise

As we are dealing with a finite number of subsets, it is possible to take an ǫ > 0 such that
µ1, µ2 ∈ FM(N). Moreover, ǫ can be chosen so that µ1, µ2 ∈ MCn(µ). But µ∗ = 1

2
µ1 + 1

2
µ2,

whence µ∗ is not a vertex of MCn(µ), a contradiction.
This finishes the proof.

Note that these results allow us to derive an upper bound for the number of vertices of MCn(µ).

Proposition 5. The number of vertices of MCn(µ) is bounded by (2n − 2)!22n−2.

Proof: The number of possible orders ≺ is (2n − 2)!. On the other hand, for a fixed order,
there are 22n−2 possible partitions P.

Observe that the number of vertices can be far below this bound as it could be the case that
some possibilities lead to the same capacity. For example, we have already seen that µ can be
obtained by taking L = P(N) \ {N, ∅}, no matter the order ≺ . Even more, if µ(A) = 1, ∀A �= ∅,
then MCn(µ) = {µ} and consequently, all possibilities lead to the same vertex µ.
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Remark 2. An interesting case arises when µ is an extreme point of FM(N). In this case,
µ is a {0, 1}-valued measure [22], and it can be trivially seen that the procedure developed in
this section leads to {0, 1}-valued measures, i.e. vertices of FM(N). This means that the set of
vertices of MCn(µ) is the set of vertices of FM(N) dominating µ. As a vertex of the polytope of
fuzzy measures is characterized by the family of minimal subsets [18], the smallest subsets such
that µ(A) = 1, if {C1, ..., Ck} are the minimal subsets of µ, then

MCn(µ) = {µ∗ ∈ FM(N) : µ∗(A) = 1∀A | ∃Ci ⊆ A}.

On the other hand, it has been proved in [4] that FM(N) is an order polytope [26] for the
poset P(N)\{∅, N} and the partial order defined by the containing condition.

Remark that MCn(µ) fixes the values of some subsets of N ; then, we can partitionate P(N)\{∅, N}
in terms of subsets of N with the same value; this partition π on the poset P(N)\{∅, N} is given
by the classes [C] ∪ {[A] := {A}, Ci �⊆ A, i = 1, ..., k} where

[C] = {A ∈ P(N)\{∅, N} | ∃Ci ⊆ A}.

This partition is trivially compatible with the containing partial order and it is also a connected
partition of the poset P(N)\{∅, N}. Thus, the set MCn(µ) can be seen as a quotient of the order
polytope FM(N) [4], and we can apply the results of [26] to conclude that MCn(µ) is indeed a
face of the polytope FM(N).

4 The case of MCk(µ)

In this section we treat the general k-additive case, 1 ≤ k < n. The basic idea is to translate the
results of the previous section to this case. In order to do this, we will need to solve two new
problems:

• For a fixed value of µ∗(A), the possible lower and upper bounds of µ∗(B), B �= A are not
trivial, as it happened for the n-additive case. Moreover, if we are dealing with MCk(µ),
it could be the case that µ �∈ FMk(N). Thus, µ cannot be taken as the least element
for MCk(µ), and it could be the case that MCk(µ) have not a least element, so that µ0

could not be defined. Similarly, the measure attaining value 1 for every subset is n-additive
and thus, it is no longer in MCk(µ), whence it could be the case that MCk(µ) have not a
greatest element, so that µ0 could not be defined.

• Contrary to FMn(N), the structure of the polytope FMk(N) is not known for k ≥ 3.
Indeed, it has been proved in [18] that there are vertices of FMk(N), k ≥ 3 that are not
{0, 1}-valued measures; moreover, to our knowledge, no description of these vertices has
been achieved. However, it could be the case that some of these vertices are in MCk(µ).
How can they be characterized?

In order to partially solve the first problem, we will study in this section the particular case in
which µ ∈ FMk(N). Then, MCk(µ) �= ∅ and has a least element (µ itself). Moreover, µ can be
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used as the lower bound in the initial step. Notice that in the n-additive case these properties
trivially hold.

Note also that for a capacity in FMk(N), if we consider its Möbius transform, we only
need to define the values for subsets in Pk(N)\{∅}. As the Möbius transform is an equivalent
representation of the capacity by Eq. (1), we conclude that we only need to consider the values
of the capacity on subsets whose cardinality lies between 1 and k in order to completely define
a k-additive capacity.

Taking these facts in mind, the procedure goes as follows:

• IN:

– Let us consider a total order on Pk(N) \ {∅}. This total order allows us to rank the
subsets: A1 ≺ A2 ≺ ... ≺ Ar, where r =

∑k

i=1

(

n

k

)

.

– Next, take a partition P = {U ,L} on Pk(N) \ {∅}, where U or L could be empty.

• OUT:

– Initializing step: Let us define µ0 := µ

– Iterating step: For i = 1 until i = r do:

∗ If Ai ∈ L, then µi = µi−1.

∗ Otherwise Ai ∈ U .

1. Let us consider the subset given by

B := {µ∗ ∈ FMk(N) | µ∗ ≥d µi−1, µ∗(Aj) = µi−1(Aj), j = 1, ..., i − 1}.

2. Look for s := maxµ∗∈B{µ
∗(Ai)}.

3. Define
A0 := {µ∗ ∈ B|µ∗(Ai) = s}.

(a) If A0 = {µ∗}, then define µi := µ∗.

(b) Otherwise:

· Initialize j = 1.

· Repeat until |Aj| = 1.

· Look for si+j := minµ∗∈Aj−1
{µ∗(Ai+j)}.

· Define
Aj := {µ∗ ∈ Aj−1|µ

∗(Ai+j) = si+j}.

· j = j + 1.

· If Aj = {µ∗}, define µi := µ∗.

Let us explain the procedure. The whole process spins around the capacities µi. By construc-
tion µi ∈ FMk(N), ∀i ≥ 1. Observe also that µi can be built because µ0 = µ ∈ FMk(N).
Moreover, µi ≤d µi+1, ∀i. Indeed, µi represents the lower bounds for Aj , j > i when the val-
ues on A1, ..., Ai are fixed. Thus, following the same spirit as in the previous section, we want
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that, at step i, the values for A1, ..., Ai−1 are already fixed. This is done through the property
µi(Aj) = µi+1(Aj), ∀j < i that appears in the definition of B.

Suppose we are in step i, so that we are dealing with Ai. If Ai ∈ U , we look for a capacity
µi whose value on Ai is the largest possible value provided that µi ≥d µi−1 and that the values
µi(A1), ..., µ

i(Ai−1) are already fixed; the possible candidates are capacities in B. As FMk(N)
is a polytope, so is B. Thus, for Ai, it follows that the capacity on Ai can vary in an interval
whose lower bound is µi−1(Ai), and whose upper bound is s. For the n-additive case, once this
value is found, the procedure modifies the upper and lower bounds for the values on Ak, k > i.

In the present case, the problem is not that simple because it might be the case that no greatest
element exist. Thus, we only look for the lower bounds.

We proceed as follows: Once s is obtained, it could be the case that several capacities reach
this value, i.e. it could happen that A0 is not a singleton. Our capacity µi should be chosen in
A0 and ideally, it should be the least element in this set. However, it could be the case that such
least element do not exist; in other words, we can find several capacities that are not dominated
for any other capacity in A0, i.e. these capacities are not comparable as vectors. In order to solve
this problem, we take as µi the capacity in A0 that takes the minimum value on Ai+1, Ai+2, ...;
this is done through A1,A2, ... This finishes in a finite number of steps because necessarily Ar−i

is a singleton.
On the other hand, if Ai ∈ L, then we look for the smallest k-additive capacity dominating

µi−1, that is µi−1 itself because µi−1 ∈ FMk(N). And we define µi := µi−1 for next iteration.
Therefore this algorithm coincides with the algorithm of the previous section for the n-additive

case.
Consider µr, the capacity obtained in the last iteration. We will prove that it is a vertex of

MCk(µ).

Lemma 4. The measure µr is an extreme point of MCk(µ).

Proof: Consider µr and let us suppose that there exist µ1, µ2 ∈ MCk(µ) such that µr = αµ1+
(1 − α)µ2, α ∈ (0, 1). We will prove by induction on iteration i that µr(Ai) = µ1(Ai) = µ2(Ai).

Consider A1. If A1 ∈ U , then µr(A1) attains the maximum possible value for a measure in
MCk(µ), whence µ1(A1) = µ2(A1) = µr(A1).

Otherwise, A1 ∈ L and µr = µ(A1), whence µ1(A1) = µ2(A1) = µ(A1) because both of them
belong to MCk(µ).

Now, take i > 1 and assume the result holds until i − 1.
Suppose Ai ∈ L. By construction of µr, it is µr(Ai) = µi−1(Ai). On the other hand, by

construction of µi−1, this capacity is such that it assigns to µi−1(Ai) the smallest possible value
keeping dominance on µ and satisfying µi−1(Aj) = µr(Aj) ∀j < i. But this implies that µ1(Ai) =
µ2(Ai) = µr(Ai) by induction.

Similarly, if Ai ∈ U , by construction µr assigns to Ai the greatest possible value while keeping
dominance on µ and satisfying µi−1(Aj) = µr(Aj) ∀j < i. But this implies that µ1(Ai) = µ2(Ai) =
µr(Ai) by induction.

However, this method does not obtain all the vertices of MCk(µ), as next example shows:

Example 1. Consider |N | = 4 and the measure u{1,4} given by u{1,4}(A) = 1 if {1, 4} ⊆ A and
u{1,4}(A) = 0 otherwise. Consider the measure µ∗ given by

14



Subset 1 2 3 4 1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4
µ∗ 0 0 0 0 0.5 0.5 1 0.5 0 0 0.5 1 1 1

It has been proved in [18] that µ∗ is an extreme point of FM3(N). On the other hand, µ∗ ≥
u{1,4}, whence µ∗ is an extreme point of MC3(u{1,4}). Let us check that µ∗ cannot be obtained
through the previous algorithm, no matter the order considered.

Assume A1 ∈ U .

• If A1 = {2} then we can consider the capacity µ′ whose Möbius transform is given by

m′(2) = 1, m′(1, 4) = 1, m′(1, 2, 4) = −1, m′(A) = 0 otherwise.

Thus, we have obtained a dominating capacity in FM3(N) such that µ′(2) = 1, whence µ∗

could not be derived. The same can be done if A1 = {3}.

• If A1 = {1} then we can consider the capacity whose Möbius transform is given by

m′(1) = 1, m′(A) = 0 otherwise.

Thus, we have obtained a dominating capacity in FM3(N) such that µ′(1) = 1, whence µ∗

could not be derived. The same can be done if A1 = {4}.

• If A1 = {1, 3} then we can consider the capacity whose Möbius transform is given by

m′(1, 3) = 1, m′(1, 4) = 1, m′(1, 3, 4) = −1, m′(A) = 0 otherwise.

Thus, we have obtained a dominating capacity in FM3(N) such that µ′(1, 3) = 1, whence
µ∗ could not be derived. The same can be done for any pair different from {1, 4} and {2, 3}.

• Suppose A1 = {2, 3} and consider the capacity whose Möbius transform is given by

m′(2, 3) = 1, m′(1, 4) = 1, m′(1, 2) = 1, m′(1, 2, 3) = −1, m′(1, 2, 4) = −1, m′(A) = 0 otherwise.

In this case, we obtain a 3-additive measure dominating u{1,4} and thus, it is possible to
obtain µ1(2, 3) = 1. Therefore, µ∗ cannot be derived in this case.

• If A1 = {1, 2, 3}, we can consider the capacity whose Möbius transform is given by

m′(1, 2) = 1, m′(1, 4) = 1, m′(1, 2, 4) = −1, m′(A) = 0 otherwise.

Thus, we have obtained a dominating capacity in FM3(N) such that µ′(1, 2, 3) = 1, whence
µ∗ could not be derived.

• For the other possibilities, we have u{1,4}(A1) = 1, whence the value is fixed.

Consequently, it is not possible to obtain µ∗ if A1 ∈ U . Thus, assume A1 ∈ L. This fixes
µ1(A1) = u{1,4}(A1).

• If A1 ∈ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, then µ1(A1) = 0, whence µ∗ cannot be recovered.

• For other possibilities, we fix a value either 0 or 1.

But then, we can repeat the process for A2 with the same results. Thus, µ∗ cannot be obtained
through the procedure.
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5 On the polytope of dominated k-additive capacities

In the previous sections we have considered a profit game, the value µ(A) representing the payoff
that the coalition A can guarantee, i.e. we are dealing with winning quantities. A dual problem
arises if µ(A) denotes losing quantities. In this case, we look for dominated capacities instead of
dominating capacities and the concepts of core, k-additive core, and so on can be translated to
this case accordingly.

Let µ be a capacity and suppose that we are interested in the set of k-additive capacities that
are dominated by µ. As before, it can be seen that this set is a polytope, so that it suffices to
study its vertices.

In this case, we can apply the results of the previous sections. For this, it suffices to note that

µ ≤d µ∗ ⇔ µ∗ ≤d µ,

where µ denotes the dual capacity of µ, defined by

µ(A) = 1 − µ(Ac), ∀A ⊆ X.

Observe that µ = µ and that the dual of a k-additive capacity is a k-additive capacity [17].
Moreover, if µ′ is a vertex of the polytope of the dominated k-additive capacities, then µ′ is

a vertex of dominating k-additive capacities of µ. For if there exist µ1, µ2 ∈ MCk(µ) such that
µ′ = αµ1 +(1−α)µ2, α ∈ (0, 1), then µ′ = αµ1 +(1−α)µ2. As µ1 and µ2 are k-additive capacities
dominated by µ, we conclude that µ′ is not a vertex of the set of dominated k-additive capacities,
a contradiction.

Consequently, for a given capacity µ, we can consider µ, apply the results of the previous
sections and then apply again duality. For example, the procedure for obtaining the set of
vertices of the polytope of dominated n-additive capacities can be written as:

• Let ≺ be a linear order on P(N)\{N, ∅}. This order allows us to rank the different subsets
of N,

A1 ≺ A2 ≺ ... ≺ A2n−2.

• Next, define a partition P = {U ,L} on P(N) \ {N, ∅}, where U or L could be empty.

The aim of the procedure is to define a capacity µ≺,P dominated by µ.

• Initializing step: Let us define

µ0(Ai) := 0, µ0(Ai) := µ(Ai), ∀Ai.

• Iterating step: For i = 1 until i = 2n − 2, do:

– If Ai ∈ U , then assign
µ≺,P(Ai) := µi−1(Ai).

Redefine:
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For µi, we put

µi(B) =

{

max{µi−1(Ai), µ
i−1(B)} if B ⊇ Ai

µi−1(B) otherwise

For µi, we put
µi(B) = µi−1(B), ∀B ⊂ N.

– If Ai ∈ L, then assign
µ≺,P(Ai) = µi−1(Ai).

Redefine:

For µi, we put

µi(B) =

{

min{µi−1(Ai), µ
i−1(B)} if B ⊆ Ai

µi−1(B) otherwise

For µi, we put

µi(B) = µi−1(B), ∀B ⊂ N.

6 Conclusions

In this paper, we have characterized the vertices of the n-additive core; these results generalize
the Shapley-Ichiishi theorem of probabilities for the general case. Observe that in this case no
conditions on µ are required, while in the Shapley-Ichiishi theorem convexity is needed.

Next, we have treated the possible extensions for the k-additive case. Finally, the dual case
for dominated k-additive capacities is treated.

It should be noted that in Example 1 we have considered a capacity u{1,4} of FM3(N) and a
vertex of FM3(N) dominating u{1,4}. Notice that this vertex is not {0, 1}-valued. In [18], it has
been proved that these vertices might appear for the polytope FMk(N) when 3 ≤ k ≤ n − 1.
On the other hand, the vertices of FM1(N),FM2(N) and FMn(N) (the general case) are
{0, 1}-valued. Thus, it arises the question of whether this algorithm holds for k = 1, 2.

If k = 1 and µ is a probability, then the set MC1(µ) = C(µ) = {µ}. In this case the algorithm
holds and the problem is trivial. The 2-additive case remains an open problem and deeper
research is needed.

Related to Example 1, we have the problem of whether the procedure developed in Section
4 obtains all the vertices of MCk(µ) that are not vertices of FMk(N). If this holds, then the
vertices of MCk(µ) could be completed using the procedure developed in [5]. However, verifying
this hypothesis seems to be a difficult problem and more research is needed.

In order to determine the vertices of MCk(µ), we could apply a modified version of the proce-
dure developed in [5], but the complexity should be investigated in order to study its practical
applicability.

Another important problem arising in the k-additive case is the number of vertices of the
k-additive core. For the general n-additive case, the set of vertices of FM(N) coincides with the
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n-th Dedekind number; simulations carried out for the k-additive case [5] seem to show that the
number of vertices of FMk(N) is even greater, due to vertices that are not {0, 1}-valued. This
problem could make unfeasible to store all the vertices of the k-additive monotone core in some
cases.
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monotone capacities through the use of Möbius inversion. Mathematical Social Sciences,
(17):263–283, 1989.

[3] G. Choquet. Theory of capacities. Annales de l’Institut Fourier, (5):131–295, 1953.

[4] E. F. Combarro and P. Miranda. Adjacency on the order polytope with applications to the
theory of fuzzy measures. Fuzzy Sets and Systems, 180:384–398, 2010.

[5] E. F. Combarro and P. Miranda. On the structure of the k-additive fuzzy measures. Fuzzy
Sets and Systems, 161:2314–2327, 2010.

[6] A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. The
Annals of Mathematical Statististics, (38):325–339, 1967.

[7] D. Denneberg. Non-additive measures and integral. Kluwer Academic, Dordrecht (The
Netherlands), 1994.

[8] T. Driessen. Cooperative Games. Kluwer Academic, 1988.

[9] D. Dubois and H. Prade. A class of fuzzy measures based on triangular norms. Int. J.
General Systems, 8:43–61, 1982.

[10] M. Grabisch. k-order additive discrete fuzzy measures. In Proceedings of 6th International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU), pages 1345–1350, Granada (Spain), 1996.

18



[11] M. Grabisch. Alternative representations of discrete fuzzy measures for decision making.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5:587–607,
1997.

[12] M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets
and Systems, (92):167–189, 1997.

[13] M. Grabisch and P. Miranda. On the vertices of the k-additive core. Discrete Mathematics,
308:5204–5217, 2008.

[14] J. C. Harsanyi. A simplified bargaining model for the n-person cooperative game. Int.
Econom. Rev., 4:194–220, 1963.

[15] T. Ichiishi. Super-modularity: Applications to convex games and to the Greedy algorithm
for LP. Journal of Economic Theory, (25):283–286, 1981.

[16] J.-L. Marichal. Tolerant or intolerant character of interacting criteria in aggregation by the
Choquet integral. European Journal of Operational Research, 155(3):771–791, 2004.

[17] P. Miranda and E.F. Combarro. On the structure of some families of fuzzy measures. IEEE
Transactions on Fuzzy Systems, 15(6):1068–1081, 2007.

[18] P. Miranda, E.F. Combarro, and P. Gil. Extreme points of some families of non-additive
measures. European Journal of Operational Research, 33(10):3046–3066, 2006.

[19] P. Miranda and M. Grabisch. k-balanced games and capacities. European Journal of Oper-
ational Research, (200):465–472, 2010.

[20] P. Miranda, M. Grabisch, and P. Gil. p-symmetric fuzzy measures. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (Suppl.):105–123, 2002.

[21] G. Owen. Game Theory. Academic Press, 1995.

[22] D. Radojevic. The logical representation of the discrete Choquet integral. Belgian Journal
of Operations Research, Statistics and Computer Science, 38(2–3):67–89, 1998.

[23] G. C. Rota. On the foundations of combinatorial theory I. Theory of Möbius functions.
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