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Abstract. Masonry structures are one of the most common housing type built all around the 

world. Nonetheless computational methodologies implemented in classical engineering soft-

ware seem not to be adapted to fine analysis of masonry structures. 

The Non-Smooth Contact Dynamics method developed by JJ Moreau and M Jean (the Dis-

crete Element Method implemented in the software LMGC90) can perform the modeling of 

divided media and thus seem particularly well adapted to this type of computation.  

This work aims to better understand the behavior of the algorithm used in the LMGC90 soft-

ware in the resolution of this kind of problems. The impact on the local and global behaviors 

of structures are considered and discussed. Both the notion of reliability of model and the no-

tion of quality of the simulation are focused on.  

This work is particularly based on the comparison between experimental and numerical re-

sults obtained with the LMGC90 software. The test consists in the modeling of a simple dry 

masonry structure placed on a tilting table. Three interaction laws are used to model the Sig-

norini-Coulomb condition. The stability of the wall modeled with rigid bodies is studied re-

garding with the influence of numerical parameters calibrating the Gauss-Seidel algorithm 

used to resolve such a multi-contact problem. Local behaviors are also considered as well as 

CPU effectiveness.  
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1 INTRODUCTION 

Masonry structures, as a widespread construction type, cover various type of structures 

from the most complex civil engineering ones inherit from the past – roman aqueducts, stone 

bridges, ... – to more common building constructions. This very last category is usually split 

into specific heritage buildings and more basic housing constructions. Their proportion in the 

whole building stock can be explained throughout many reasons amongst historical, economi-

cal and technical ones. Even if a large part of those structures is inherit from the past, this me-

thod of house building is nowadays still one of the most usual type of construction since it 

appears as affordable and simple to go through with. 

Due to the longevity of these buildings, they present various type of degradation (corrosion 

due to the action of the weather, pollution, …) and are subjected to very different loading ac-

tions (settlement, action of the wind, …) throughout the most aggressive ones such as seismic 

solicitations. All those mechanisms have to be better understood so that the rehabilitation of 

the oldest masonry structures would be efficient, and the design of the newest ones would be 

accurate regarding all those factors. The better understanding of the behavior of masonry 

structures within their specific local context and their own mechanical and physical properties 

is one of the main issue which has to be dealt with by civil engineers and which has to be fo-

cused on regarding their numerical modeling with relevant software. 

Masonry structures as any buildings are subjected to standard construction rules which aim 

to insure their compliance with the best standard practices (EUROCODE 6). From the last four 

decades, computational methodologies have been developed and implemented in a lot of en-

gineering software so as to help to well design structures and to understand their behavior. 

While those tools give relevant results for the most newly methodologies used in civil engi-

neering (steel frame buildings, reinforced concrete buildings), they do not seem to be well 

adapted to masonry structures. This can be easily explained regarding the specificity of those 

structures built as an arrangement of heterogeneous blocks joint together in a cement-matrix. 

Among all the methods developed to take into account specificities of masonry buildings, 

Discrete Elements Methods (DEM), as NSCD (“Non Smooth Contact Dynamics”) developed 

by J.J. Moreau and M. Jean, method seem to be particularly well adapted. It can perform the 

modeling of very large collection of bodies in interaction, with various modeling options. 

Each body of the collection is defined throughout a unique geometrical description and a spe-

cific bulk model (rigid/deformable) – which can differ from a body to another – whereas inte-

raction laws (modeling friction, cohesion, etc) characterize body-body behavior. Due to this 

fine modeling of the structure we expect a reliable description of the masonry behavior. 

Considering the structure as a multi-contact system makes possible to compute the motion 

of each body belonging to the collection taking into account both their own loads and their 

interactions with other bodies in the collection. The main effort of the method finally consists 

in the resolution of the underlying multi-contact problem. As usual, the quality of the whole 

behavior of the collection depends on the way the algorithm is operating.  

This work aims to evaluate the uncertainties due to physical and numerical parameters on 

the modeling of specific masonry structures – dry masonry structures submitted to out-of-

plane loading – , using the NSCD method implemented in the LMGC90 software. The very 

first purpose of this study is to illustrate the behavior of the NLGS (“Non Linear Gauss Sei-

del”) contact solver focusing on both the influence of algorithm calibration and on physical 

model choice. The influence on the local behavior (at the scale of interaction) and on the 

global one (at the scale of the structure) are considered. Local phenomena observed due to the 

use of the NLGS algorithm are illustrated on a simple study case modeling the overturning of 

a column. Then, comparison of numerical results with experimental ones (performed by the 
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University of Pavia) on 1:5 scale dry masonry structures are performed so as to study parame-

ters influence at the scale of the structure. The experimental test consists in determining the 

angle for which a simple dry masonry structure placed on an inclination table machine be-

comes unstable. Bricks unit are modeled as rigid bodies whereas three contact laws, modeling 

the Signorini-Coulomb condition, are compared regarding: their influence on the NLGS algo-

rithm, their CPU time effectiveness in the modeling and their effect on the local and global 

behaviors of the sample. 

2 THE NON-SMOOTH CONTACT DYNAMICS 

Discrete element methods constitute an interesting tool for the study of divided materials 

or structures as granular matter or masonry [1, 2]. Basically DEM model a material or a struc-

ture at element scale and are able to describe various behaviors (equilibrium, flow, localiza-

tion of deformations, fracture, dissipation, etc) which can not be properly represented by a 

unique continuum approach even with advanced constitutive model based on a huge number 

of parameters. 

Various numerical strategies are available to deal with the dynamics of such collections of 

solids. Deriving a relevant numerical model raises many issues especially due to the fact that 

it mixes various time and space scales. In the present work we focus on a fully implicit me-

thod, the NSCD approach, initiated by J.J. Moreau and M. Jean [3, 4, 5, 6], and implemented 

in the LMGC90 software [7, 8, 9]. The interaction laws are written as multi-valued functions 

relating the local unknowns (impulse over the time step and the relative velocity), in the 

framework of Non-Smooth Dynamics proposed by J.J. Moreau. These impulses account for 

all events supposed to occur during a time step, free flight, single or numerous impacts be-

tween pairs or agglomerates of contacting bodies. The method allows reasonably large time 

steps. 

The resolution of the multi-contact problem consists indeed in solving two sets of un-

knowns – global ones (or kinematic space unknowns) related to the bodies and local ones (or 

contact space unknowns) related to interactions – linked together thanks to kinematic and 

duality relationships (H and 
T
H operators, Figure 1, [10]). 

 

 

Figure 1: Local-Global mapping 

The motion of each body of the collection of bodies in presence of contacts and with colli-

sions and other non smooth phenomena is given – using the formalism proposed by J.J. Mo-

reau in the NSCD method – by the following discretized in space and time equation: 

 u i+1 = u free + M 
−1

 r i+1  (1) 

where u i+1 is the velocity of the body at the end of the time step, u free is the velocity free of 

contact and M is an inertia like matrix, whose expression depends on the choice of modeling 

of the body. For rigid bodies M = M whereas for deformable ones M = M + hθC + h²θ²K, 

H(q) :   {Rα}  → r = ∑ H
α
(q) R

α 

                           α 

T
H(q):  u → {U

α
} = {

T
H

α
(q) u} 

                 q, u ← Equations of motion  →   r                                                                                                                         

       
T
H(q)   ↓                                                ↑   H(q)                           

                 U 
α   ←          Contacts laws          →  R 

α
 



P. Taforel, F. Dubois, and S. Pagano 

 4 

where M, C and K are respectively the mass, the viscosity and the stiffness matrix. r i+1 is an 

impulse resulting of all the contact impulses applied on the object over the time interval.  

The resolution of the contact problem is done expressing dynamics in term of interaction 

unknown and using a Non-Linear Gauss-Seidel method. Afterward the solution at the body 

scale is computed. Dynamics in term of local unknowns is obtained using H and 
T
H  map-

pings: 

 U i+1 
α  

= U free 
α
  + ∑ W 

α β 
(q)  R i+1 

β
 (2) 

contact law (g 
a
, U 

a
, R 

a
) 

where W is the so-called Delassus operator(W = 
T
H M

-1 
H

 
). 

The principle of the resolution [10] is summarized in Figures 2 and 3. The contact problem 

resolution is performed iteratively. An inner loop of iterations (gs_it1 ) is performed without 

checking convergence. Such choice has been done regarding the diffusion of information in 

the Gauss-Seidel algorithm. An outer loop (gs_it2) is related to convergence, with respect to 

the interaction law, for a given tolerance and norm. Those loops can be performed for a fixed 

number of iterations given by the checking parameter. The total number of iterations per-

formed by the NLGS algorithm can not exceed gs_it2 x gs_it1, even if the method has not 

achieved the convergence. 

 

Figure 2: Scheme of the algorithm for the resolution of the multi-contact problem (linear case) 

 

Figure 3: Scheme of the NLGS algorithm 

The presented work aims to better understand the coupling effect of the choice of a physi-

cal model together with specific numerical considerations due to the use of a NLGS algorithm 

in the resolution of the contact problem. 

  Iteration matrix computation (M)  

  Time loop k  
 Free velocity computation (u free) 

 Contact configuration computation (qm) 

 Contact detection 

             Contact problem resolution (NLGS algorithm) 

 Velocity correction (u i+1 = u free + M 
−1

 r i+1) 

 Update of the kinematics and the configuration 

 

  Halt criteria 

  Evaluation of all the matrices W 



NLGS iterations : 

 

   Check loop gs_it2 
       

        Iteration loop gs_it1       

Contacts 
Resolution of the local problem                                                               

U i+1 
α  

= U free 
α
 +   ∑ W 

α β
 R i+1 

β
      

     Contact law (g 
a
, U 

a
, R 

a
) 

  
  

Convergence test (regarding a  tolerance  

and the choice of a norm) 
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In the present work we focus on the modeling of simple dry masonry structures (columns, 

basic assembly of panel of bricks) under out-of-plane loading, for a given volumetric model 

(rigid bodies) and for different writings of the Signorini-Coulomb conditions and for different 

sets of parameters for the NLGS algorithm. In a first step we give an illustration of the two 

notions – reliability and quality of the simulation – on the very simple example of a swilling 

column. The same kind of analysis is then performed on a more realistic structure for which 

experimental results are available. 

3 COLUMN INSTABILITY 

The first page must contain the Title, Author(s), Affiliation(s), Keywords, and the Abstract. 

The second page must begin with the Introduction. The first line of the title is located 3 cm 

from the top of the printing box. 

3.1 Presentation of the study case    

A massive column composed of 4 blocks of concrete rosed up without mortar is subjected 

to rocking phenomena. Each block  (1 m x 1m x 1m) is modeled as a rigid body ( = 2500 

kg/m
3
). Interaction law between blocks characterizes frictional contact within a classical Sig-

norini-Coulomb without restitution (Figure 4). 

 

Figure 4: Signorini-Coulomb condition (IQS_CLB law) 

The overturning of the column starts after a self-weight period, between t = 0s and t = 0.5s.  

It is modeled using the rotation (angle ) of the gravity vector g

 up to reach the collapse of 

the column. Loading phases are summarized in Figure 5. 

 

Figure 5: Loading phases modeling the overturning of a simple column –  time evolution of 
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3.2 Effect of the convergence norm 

Whereas all other parameters are kept fixed (number of iterations in the check loop gs_it2, 

tolerance tol, and choice of the norm) gs_it1 is first set at 16 iterations, which corresponds to 

the number of contact points in the column (4 contact surfaces, all discretized with 4 contact 

points), and then increased by using a multiple of 16 (32 iterations, 48, etc). Varying the pa-

rameter gs_it1 is an artificial way to drive the convergence tolerance.  Local behaviors – ve-

locities and reactions – are tracked at each contact point.  

 

  One of the very first result of this study shows perfectly well the numerical instability af-

fecting the quality of the solution depending on the convergence threshold of the solution. 

Local reactions (normal or tangential) oscillate around a mean value which appears as the 

theoretical converged solution expected in the calculation (Figure 6). This imposes to make 

the distinguish between poor converged solutions and fully converged ones fitting with theo-

retical solutions. The oscillations of local reactions are purely due to numerical effects. A 

measure of the error in oscillation of the local reactions may appear as a good criterion of 

quality for the simulation (Figure 7). The evaluation of the mean amplitude of the oscillations 

of the local reactions at different contact scale (contact point, surface of contact, cf. Figure 8) 

and generalized to the whole column regarding the number of iterations gs_it1 performed in 

the NLGS algorithm (Figure 9) give instructive indications on the behavior of the algorithm. 

 

 

Figure 8: Estimation and repartition of errors due to the oscillations of the normal local  

reactions for different configuration of the NLGS algorithm at the surface of contact scale 

 

 

Figure 6: oscillations of the normal local reactions 

 for different configuration of the NLGS algorithm 

Figure 7: measure of the error  

due to local oscillations  

i, t) 

S1 

S2 

S3 

S4 
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Errors due to the oscillation of local reactions differ in function of their location in the col-

umn. Regarding the error – for given gs_it1 values – at the scale of the surface of contact as 

the mean value of the error at each contact point belonging to the considered surface, makes 

possible to identify two phenomena. The upper the surface of contact takes place in the col-

umn, the lower is the oscillating error, which can be explained throughout the effects of upper 

bodies on the considered surface behavior (trimmed oscillations). This can be observed for all 

gs_it1 values up to rise a critical value of this parameter from which the error due to the oscil-

lation of the local reactions – normal or tangential – vanishes. The generalization of such a 

treatment of the estimation of the error at the scale of the whole column using a mean of all 

the oscillations at  the contact  points belonging  to  the column give  the same tendency. 

 

Figure 9: Generalized estimation of the error due to the oscillations of local 

reactions – for normal and tangential components – at the whole column scale 

The same analysis performed on 2 other tested columns with 5 and 6 blocks respectively 

(Figure 10) shows moreover the dependency of this critical number of NLGS iterations gs_it1 

with the nature of the sample (number of blocks). As explained previously, the variation of 

the number of iterations gs_it1 decreases artificially the value of the tolerance for which the 

test of convergence of the solution is performed. An estimation of the effective tolerance tolef-

fective really driving the convergence of the simulation regarding the chosen one tol0 is given in 

Figure 11 depending of gs_it1 for two different measures of error in the sample from which 

depend the estimation of the convergence [11]. Error 2 gives an estimation of the variation of 

velocity in the sample during a Gauss-Seidel iteration, whereas Error 3 give an equivalent es-

timation for the variation of energy in the sample. Finally convergence occurs if Errors < tol0. 
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Figure 10: Influence of the number of blocks in the column regarding  

with the generalized estimation of the error due to the local oscillations 

 

Figure 11: Estimation of the effective tolerance artificially imposed  
by driving the convergence with GS iterations parameter 

3.3 Influence of the model for the Signori-Coulomb condition 

Similar tests are performed using a different formalism of the Signorini-Coulomb condi-

tion. This model differs from the previous one in the addition of an unilateral elastic behavior 

in compression for the normal component (Figure 12). The use of such a law might decrease 

the overestimation of the critical angle due to a full rigid modeling (at the body and at the in-

terface scales). This deformable interaction law acts through a unilateral spring of rigidity ki. 

The law used previously may appear as a deformable law with an infinite rigidity k∞. paper. 

 

Figure 12: Deformable law (Elastic_Repell_CLB) 

 

gs_it1crit 

4blocks 
gs_it1crit 

5blocks 
gs_it1crit 

6blocks 

RN 

0 g 

k1 k2 k3 k
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0 
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Usually the interaction rigidity is set to mimic the deformability of the body. This might 

give more realistic global behavior of the structure. The rigidity modulus ki of each spring is 

consequently defined regarding the influence area of a contact point (here the quarter of the 

contact  surface S1/4), the Young modulus of the block Ebrick_i and its height hbrick within the 

relation ki  = S1/4 x Ebrick_i x hbrick. Blocks are characterized by a unique value of the Young's 

modulus in the whole column. Different cases have been studied so as to evaluate the influ-

ence of the stiffness of the blocks and consequently the rigidity of the corresponding springs 

at the interface. Three of them are presented in this paper, retained values are summarized in 

Table 1 and are estimated regarding the following reference value Ebrick_0 = 1.67 e
+10

 N/m².   

 

Young modulus of blocks  
Rigidity modulus at the in-

terace (N/m) 

Ebrick_1 = 10 x Ebrick_0 k1 = 4.175 e
+10

 

Ebrick_2 = 100 x Ebrick_0 k2 = 4.175 e
+11

 

Ebrick_3 = 1000 x Ebrick_0   k3 = 4.175 e
+12

   

 

Table 1: Young's modulus. 

The same type of analysis of the results in terms of mean error at the column scale –  due 

to the oscillation of the local reactions at each contact point of the column – are proceeded for 

those different values of rigidity at the interface (Figure 13). Results are consistent with first 

observations done for the rigid contact law regarding the existence of a critical gs_it1. Regard-

ing the error variation toward the elasticity of the interface, the more rigid is the interface be-

tween blocks and the closer is the critical number of iteration gs_it1 of the rigid contact law. 

In terms of error estimation, the amplitude of the oscillations is much larger when the inter-

face are more rigid to the extent that the oscillation frequency of the spring is increased, 

which implies that springs are more sensitive to shocks. Results are also given in terms of ef-

fective tolerance with respect to the previous analysis (Figure 14). 
 

 

 

Figure 13: influence of the interface rigidity regarding  

with the generalized estimation of the error due to the  

local oscillations for the Elastic_Repell_CLB law 

Figure 14: estimation of the effective  

tolerance artificially imposed for the  Elas-

tic_Repell_CLB law 

 

Finally a very last analysis can be performed focusing on the influence on the CPU time. In 

first approximation, CPU time can basically be estimated throughout the number of iterations 

of the NLGS algorithm performed during the whole simulation. The results are proposed in 

Figure 15 by plotting the mean number of GS iterations in terms of the gs_it1 parameter. This 

shows once again the existence of critical values of the parameter gs_it1 for which the mean 

number of GS iterations performed is equal to the critical value. Depending on their rigidity 
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springs may trigger the instability of the system and delay the convergence of the algorithm. 

This phenomenon might be corrected by adding damping in the system. 

 
 

Figure 15: Estimation of the CPU effectiveness basically estimated  

thanks to the mean number estimation of the GS iterations parameter 

 

3.4 Conclusion  

 

Those simple tests perfectly show the dependency of the quality of the solution regarding 

with the choice of the NLGS parameters and the effects of the interface law model on the 

NLGS behavior and on the surrounding effects on the solution. The NLGS parameters are de-

pending on the nature of the problem and the modeling choice. The choice of driving  NLGS  

gs_it1 parameter for a fixed tolerance seem not to be well adapted. No trivial relationships 

have been identified regarding the existence of the critical value of this parameter and the na-

ture of the studied case. Only dependency has been highlighted. The next part of this work 

aims to proceed to the study of the numerical behavior of a more complex structure for which 

experimental tests have been performed. The purpose is to estimate the impact NLGS parame-

ter on the global physical behavior of a real structure. 

. 

4 INFLUENCE OF THE NUMERICAL INSTABILITY ON A REALISTIC 

STRUCTURE – GLOBAL BEHAVIOR 

4.1 Presentation of the study case  

A series of static tests have been performed in the Laboratory of the Department of Struc-

tural Mechanics of the University of Pavia in Italy [13]. Those tests consist in the study of dry 

masonry structures submitted to out-of-plane loading. Masonry specimens 1:5 scale were 

tested on an inclined plane machine so as to determine experimentally the activation multip-

lier  defined as the ratio of horizontal and gravitational accelerations, and which appears as 

the critical instability angle for which the masonry specimen only subjected to self-weight 

placed on the table becomes unstable. The activation multiplier  was measured by means of 

a plumb line placed at one side of the machine and converting the obtained quantity into an 

gs_it1crit 

ELAS_REPELL E1 

gs_it1crit 

ELAS_REPELL E2 

gs_it1crit 

ELAS_REPELL E3 
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inclination angle. According to the work of D'Ayala and Speranza [14] on the definition of 

mechanisms of collapse of historic masonry buildings, a total of 42 stone masonry specimens 

representative of several configurations of out-of-plane collapse mechanisms were tested. The 

following study focuses on the configuration S24 according with the reported tests classifica-

tion (Figure 16). This specimen is an assembly of two side walls and a front wall with two 

window openings with wood lintel beam. As the other ones, the specimen was built with dry 

stone masonry blocks of marble. The choice of this material amongst shale and granitic stones 

have been done due to the accuracy on the cutting, the durability of the material and an ap-

propriate friction coefficient. Specimens are typically built with 28 x 80 x 40 mm blocks. The 

friction coefficient μ in the joint was estimated thanks to measures for three different values 

of normal stress, using a couple of blocks on an inclined plane (0.67 ≤ μ ≤ 0.77).  

 

Figure 16: Masonry specimen S24 collapsing (University of Pavia, Italy) 

4.2 Modeling options and estimation of the instability of the structure 

Modeling strategy used previously in the simple study case is kept. Masonry blocks are 

modeled as rigid bodies ( = 2732 kg/m
3
) and behavior between blocks is modeled thanks to 

the same interface laws characterizing friction. Static coefficient of friction used in the fol-

lowing computations is taken equal to 0.67. The use of such constant value in the whole struc-

ture is discussed in Section 3.4. More generally it tackles the issue of the initial state of the 

specimen. Concerning the loading of the sample, three phases have been identified (Figure 

17). The masonry is first of all kept under self-weight, then inclination occurs to reach an in-

clined state of the table. The very last phases of the loading consists in keeping the specimen 

under self-weight in the tested inclined state so as to check its stability (relaxation). The incli-

nation of the table has been taken into account throughout the rotation of the gravity with a 

constant rotation velocity ddt. The duration of the loading phase consisting in  
 

 

Figure 17: Loading phases 
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inclining the table has been carefully managed so as to guarantee the non existence of iner-

tia phenomena. Tests of dependency regarding the rotation velocity have also been performed 

but are not presented in this paper. The test aims to determine instability angle for which the 

structure collapse. A series of numerical simulation are performed to define this value. The 

stability is checked throughout kinetic energy considerations (Figure 18). The kinetic energy 

of the specimen is tracked during the simulation. It allows both to control the non existence of 

inertia phenomena and to deal with the stability state of the structure.  

 

Figure 18: Estimation of the overturning of the specimen thanks to kinematic considerations  

and visualization with ParaView of a result of simulation obtained with LMGC90 

4.3 Tested parameters at the origin of the numerical instability of the structure 

As illustrated with the simple example of the column submitted to overturning phenomena, 

the choice of modeling strategy and numerical parameters may be at the origin of numerical 

instability. This instability depends also on the sample. The purpose of this part is to measure 

the influence of this numerical instability on the whole physical behavior of the structure cha-

racterized by the instability angle . The behavior of masonry specimens are studied regard-

ing different parameters of NLGS  (number of iterations, tolerance, contact ordering, etc) and 

different modeling of the Signorini-Coulomb condition. A new model taken into account 

viscous damping and elasticity is used in complement of the two previous ones. 

4.4 Full rigid model 

Simulations are first of all performed with a classical modeling of friction (no regulariza-

tion and no viscous damping). Effects of the variation of the NLGS parameters on the beha-

vior of the specimen are studied. Within the same type of scheme, variations on iterative loops 

of the NLGS algorithm are performed. The tolerance used to check the convergence of the 

algorithm is artificially decreased by increasing the number of iterations to perform before 

each test of convergence (variation of the gs_it1  parameter). The evolution of the critical in-

stability angle obtained is drawn in Figure 19. The results are consistent with those estab-

lished with the simple column tests. It shows the existence of a critical value of the parameter 

gs_it1 from which it is possible to distinguish poorly converged solution and totally converged 

one. The error cv , defined as the ratio cv / crit, cv where crit, cv the fully converged angle and 

cv is the difference between poorly converged instability angle and fully converged one (cv 

= max{ | crit, cv – crit, gs_it1 |, gs_it1 }), may be considered as a first measure of the conver-

gence error. Regarding this first set of NLGS parameters (fixed choice of the tolerance and 

norm, fixed reading of the contact data set), this error is estimated at cv = 5.17 %. 



P. Taforel, F. Dubois, and S. Pagano 

 13 

 
 

 

Figure 19: Estimation of the error on the converged critical instability angle 

A second series of simulations is performed to illustrate the behavior of the NLGS algo-

rithm, focusing on the convergence tolerance (Figure 20). Tests are proceeded for several con-

figurations of the NLGS parameters leading to different level of quality of the converged 

solution. Tolerance parameter value can be decreased so as to minimize local errors at contact 

points as illustrated with the column test. Independently on other NLGS parameters used, the 

fully converged solution is reached for enough severe tolerance. Here the effect of tolerance 

decreasing is artificially obtained decreasing gs_it1 parameter. 

A very last series of simulations is performed to test the influence of the contact ordering 

on the behavior of the structure (Figure 21). This point has not really been highlighted in the 

basic presentation of the NLGS algorithm. Since the frictional contact problem admits several 

solutions the way contact are ordered has an impact on the selected solution. However the va-

riability cv
ctc set 

observed between converged solutions can be estimated on this example 

around 1.3 %. 

 

Figure 20: Influence of the tolerance on the convergence  

for different configurations of the GS algorithm 

 

gs_it1 crit 

cv = 0.01 rad = 

0.57°  cv = 5.17 % 

GS 

1001/501 

GS  

701/501 

GS  

201/501 

cv, tol  
gs_it1 



P. Taforel, F. Dubois, and S. Pagano 

 14 

 
 

Figure 21: Difference on the fully converged  

instability angle due to the reading contact data set 

Reliability of numerical results can also be considered comparing them with the experi-

mental instability angles measured during the test. The fluctuation num between experimental 

and numerical results is defined as the ratio num / crit, exp  where crit, exp  is the experimental 

value of the instability angle (crit, exp = 0.156) and the num difference between the experi-

mental and numerical angles (num = | crit, cv - crit, exp | ). With rigid blocks and inelastic inter-

face model, this fluctuation is quiet important (num
rigid

 = 24%). It should be explained 

throughout the over estimation of the mechanical stiffness due to the use of a full rigid model. 

Effect of elasticity in the interface model is discussed in Section 3.6. 

4.5 Rigid bulk behavior with randomly assigned friction coefficient interface 

The influence of the coefficient of friction on the stability of the structure is trivially and 

basically shown in Figure 22. For uniform distributions, the smaller is the friction coefficient 

and the sooner the instability angle is reached. Regarding with the important variation of the 

coefficient of friction found experimentally (0.67 ≤ μ ≤ 0.77) to characterize friction between 

blocks, we can reasonably assume a non uniform distribution of the friction coefficient in the 

whole structure. 

 

Figure 22: Evolution of the critical instability angle in function of the coefficient  

of friction uniformly set on the structure 

cv   =   2.5 E-03 rad = 0.14°  
ctc set 
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A series of simulations is performed to discuss the influence of the initial state of the struc-

ture and to deal with more realistic study case of non ideal structures. Variability of the coef-

ficient of friction is taken into account in the model. Values of the coefficient of friction are 

randomly assigned within a normal distribution (, ) at each contact point (Figure 23). This 

aims to model asperity of blocks through out a non uniform interface behavior. The difference 

between the probability density function corresponding to the distribution of the coefficients 

of friction in a given sample and the target one can be explained regarding with the small 

number of draws performed to realize the statistic. This implies in our case the restriction of 

the variation of the coefficients of friction around the mean value . 

 

Figure 23: Randomly assigned friction within a normal distribution (, ) 

Nearly 200 draws are performed for 4 different values of the gs_it1 parameter (gs_it1 = 51, 

201, 501 and 1001) whereas other parameters are kept fixed ( gs_it2 and tol). Critical values 

of the angle of instability for the different draws are given in Figure 24. Results are compared 

with the ones obtained with uniform coefficient of friction (Figure 25). 

 

Figure 24: Instability angles for different configurations of the initial state of the structure  

(randomly assigned friction coefficients) and for different values of the gs_it1 parameter 
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Considering randomly assigned friction, it appears clearly that the introduction of such a 

variability on this parameter may impact the collapse of the structure making the structure 

more or less prone to overturning phenomena. It has to be noticed that the mean values of crit-

ical angles obtained stay very closed from the one corresponding to the full rigid model with a 

uniform friction. Eventually, the variability on the coefficient of friction give an estimation of 

the error introduced when using ideal structures. 

 

Figure 25: Comparison of critical angles found for uniform or randomly assigned coefficients of friction 

4.6 Rigid bulk behavior with elastic interface 

Simulations are performed using five values of stiffness around a given reference value, 

which is obtained such as the relative displacement of objects due to compression is equiva-

lent to the one obtained with deformable objects with a given Young's modulus (E0 = 2.6 e
+10  

N/m² standing for a marble). Those values are reported in Table 2. It covers, once again, a 

large range of values illustrating the influence of this formalism on the description of the con-

tact behavior (Figure 21). Regarding the efficiency of the convergence, it clearly appears that 

the smoother the rigidity of the spring is, the faster the convergence appears. However the 

system is disturbed by local oscillations due to the springs which takes time to be damped 

(numerically or physically).   

 

Young Modulus of 

blocks 
E2 = E0/10 E4 = (E1+E2)/2  E1 =  E0   E5 = (E1+E3 )/2 E3 = E0 x 10  

Rigidity modulus at 

the interface 

(MN/m) 

k2 = 74
 

k4 = 409
 

k1 = 743
 

k5 = 4085
 

k3 = 7429
 

 

Table 2: Tested Young's modulus and equivalent interface rigidity. 
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4.7 Damping effect on elastic interfaces 

Simulations have been performed by adding viscous damping in the Signorini-Coulomb 

model [9]. This method makes possible to take benefit of the elasticity without wasting time 

due to springs oscillations. This pure phenomenological law, introducing elasticity and vis-

cosity parameters, aims to introduce interface deformation damping oscillations at the struc-

ture level. 

 

Figure 26: Estimation of the errors on the converged  

critical instability angle values for the different tested laws 

Results presented in Figure 26 are once again consistent with previous analysis performed 

in this work. Effect of convergence norm can be easily identified. The dependency of the so-

lutions with regard to the variation of critical viscous damping has not been really highlighted. 

Only two different values of the damping parameter (Di) have been tested. The difference ob-

tained for collapsing angle can be explained by the fact that the viscous model also modify the 

tangential behavior. 

Figure 27 presents the whole results of this work throughout tolerance considerations. As 

previously explained with the simple study case of the column, an effective tolerance value 

can be estimated from results obtained using variation on GS parameters. This representation 

of the results points out the efficiency of this contact law regarding the other ones. 

 

Figure 27: Estimation of the effective tolerance artificially imposed for the three tested laws  

regarding two types of error (error 2 and error 3 defined in 2.2) 

. 
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4.8 Conclusion 

This study has showed the influence of the choice of the NLGS parameters. The choice of 

the frictional contact model has an influence on the NLGS method. Nonetheless, it clearly ap-

pears that the choice of a different model gives similar global behavior, but may have signifi-

cant impact on the duration of the calculation. Finally, it also has to be noticed that numerical 

instability coming from a poor convergence can have a real influence on the global behavior 

of the structure. 

5 CONCLUSION AND PERSPECTIVES  

As it can be explicitly noticed regarding the theoretical expression of the problem to be 

solved using the NSCD method, and regarding the choice of the use of the NLGS algorithm to 

solve it, it clearly appears that the choice of modeling options – throughout the definition of 

volumetric and interface models whose depends the physical reliability of the whole simula-

tion – and the definition of a configuration of the NLGS algorithm insuring to sort out the 

problem within a given level of quality, are deeply related. This works shows the dependency 

of the choice of the parameters of the NLGS algorithm on the local and global behaviors of 

the sample, and points out the influence of the choice of the formalism of the interface model 

on the algorithm behavior. Eventually the level of the quality of the simulation have been dis-

cussed regarding those factors. However the reliability of simulation governing by the choice 

of both the volumetric model and the interface one has not been enough studied. The variation 

of the interface model used to deal with the study of the reliability of the model are being 

completed with other tests involving the deformability of blocks belonging to the masonry 

and the influence of their space-discretization. 
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