
HAL Id: hal-00806781
https://hal.science/hal-00806781v1

Submitted on 2 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CamiTK: a Modular Framework Integrating
Visualization, Image Processing and Biomechanical

Modeling
Céline Fouard, Aurélien Deram, Yannick Keraval, Emmanuel Promayon

To cite this version:
Céline Fouard, Aurélien Deram, Yannick Keraval, Emmanuel Promayon. CamiTK: a Modular
Framework Integrating Visualization, Image Processing and Biomechanical Modeling. Y. Payan.
Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, Springer Berlin Heidelberg,
pp.323-354, 2012, Studies in Mechanobiology, Tissue Engineering and Biomaterials, 978-3-642-29013-
8. �10.1007/8415_2012_118�. �hal-00806781�

https://hal.science/hal-00806781v1
https://hal.archives-ouvertes.fr


CamiTK : a modular framework integrating
visualization, image processing and
biomechanical modeling

Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

Abstract In this paper, we present CamiTK, a specific modular framework that

helps researchers and clinicians to collaborate in order to prototype Computer As-

sisted Medical Intervention (CAMI) applications by using the best knowledge and

know-how during all the required steps. CamiTK is an open-source, cross-platform

generic tool, written in C++, which can handle medical images, surgical navigations

and biomechanical simulations.

This paper first gives an overview of CamiTK core architecture and how it can be

extended to fit particular scientific needs. The MML extension is then presented: it

is an environment for comparing and evaluating soft-tissue simulation models and

algorithms. Specifically designed as a soft-tissue simulation benchmark and a ref-

erence database for validation, it can compare models and algorithms built from

different modeling techniques or biomechanical software. This article demonstrates

the use of CamiTK on a textbook but complete example, where the medical image

and MML extensions are collaborating in order to process and analyze MR brain

images, reconstruct a patient-specific mesh of the brain, and simulate a basic brain-

shift with different biomechanical models from ANSYS, SOFA and ArtiSynth.

1 Introduction

Soft-tissue biomechanical modeling in the context of Computer Assisted Medical

Intervention (CAMI thereafter) is a complex and multi-disciplinary field. The gen-

eral objective of intra-operative simulation requires a patient specific model that can

be built only from medical image analysis and reconstruction, image or mesh regis-

tration and finally efficient and trustworthy simulations. CAMI research requires the

collaboration of experts in several fields as various as medicine, computer science,

Céline Fouard, Aurélien Deram, Yannick Keraval, Emmanuel Promayon

UJF-Grenoble 1 / CNRS / TIMC-IMAG UMR 5525, Grenoble, F-38041, France e-mail: Ce-

line.Fouard@imag.fr, Aurelien.Deram@imag.fr, Emmanuel.Promayon@imag.fr

1



2 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

mathematics, instrumentation, signal processing, mechanics, modeling, automatics,

or optics. As shown in Figure 1, CAMI research can be divided into three steps

requiring very different expertise:

• Perception to acquire data on the patient, requiring sensor development and cal-

ibration, signal processing and analyzing, 2D/3D or even 4D images reconstruc-

tion, data processing (e.g., image segmentation) and analysis ;

• Reasoning to extract and fuse information from several sensors, acquisition

times, patients, between patients and models, etc. and which implies, among

others, anatomic, biomechanical and functional modeling of patients as well as

surgical intervention modeling, results analysis and prediction ;

• Action to help procedures carried out on the patient, possibly using imaged-

guided and/or surgical robotic technologies.

Even though this book mainly focuses on the reasoning part, soft tissue mod-

eling is a key element to a bigger picture and needs other fields to be efficiently

developed, used and validated. For research to be efficient, scientists must share

not only their knowledge but also their know-how. The first is generally performed

through publications, conferences and meetings. However, know-how is difficult to

transmit outside lectures or tutorials. In addition, the use of specific computer soft-

ware for each field can become a hindrance to share data and know-how. Data have

to be converted several times, specific parameters are not visible by other specialists

and prototyping a new concept or algorithm requiring several fields often becomes

a obstacle race.

Fig. 1 CAMI research domains includes perception, reasoning and action. This figure shows some

examples of research projects lead by members of our team. Courtesy of Jocelyne Troccaz.



CamiTK 3

CamiTK offers a common framework for many fields of CAMI so that scien-

tists from one field can develop their own expertise and use the tools developed

by other experts without changing application or data structure. This is achieved

through extensibility and modularity of the framework which allows every user to

develop their own piece of software and use any other developed pieces thanks to

the CamiTK abstraction layer.

1.1 Related Work

Different types of applications, libraries, and more generally frameworks are to-

day available for scientists, most of them are open-source or based on collaborative

projects. The lists given here are in no particular order and are not exhaustive but

try to give the most popular non-defunct choices. The software websites can eas-

ily be found using any search engine. They can be categorized into different area,

depending of their main functionality: data visualization (VTK, Paraview, voreen),

medical image analyzing or surgical planning (ITK, Analyze, Medical Imaging In-

teraction Toolkit, MeVisLab, DeViDE, SciRun, amira, 3D Slicer, GIMIAS, MedIN-

RIA/vtkINRIA3D, CreaTools), surgical navigation (IGSTK), biomechanical simu-

lation (ANSYS, GiPSi, SOFA, ArtiSynth, see also the corresponding chapters in

this book), generic viewers and user interaction (Common ToolKit).

Most of the open-source medical image analysis software are based on three key

open-source component libraries: VTK for data visualization, ITK for medical im-

age analysis, and Qt for the user interaction. These software systems are developed

to fulfill needs in their main domain and offer a highly specialized vision of a spe-

cific CAMI scientific field. This specialization is a big advantage when the targeted

application depends on one or two fields (e.g., image segmentation and organ sur-

face reconstruction, or biomechanical simulation). Most of them are also workflow

oriented, i.e., the data are transformed step by step through processing or visualiza-

tion filters. The workflow may be conveniently displayed and modified interactively.

This is a very efficient way of organizing medical image processing application.

However, when trying to solve a problem that includes many different facets of

CAMI research, both can be a disadvantage. Interoperability between very specific

data structures in highly specialized libraries or frameworks is difficult to achieve.

Static workflows are not always possible: algorithms might have to cooperate in a

more complex way. CamiTK proposes to address these issues by introducing some

abstraction of the software components, viewers and algorithms in order to ease the

full collaboration between CAMI fields.



4 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

1.2 Contributions

A common environment for CAMI requires data management, algorithms on data,

Human-Machine Interface or Graphical User Interface (GUI) and scientific data

visualization. As it would be problematic to impose one operating system to re-

search scientists of various fields and area of competences, the choice has been

made for CamiTK to be multi-platform. This requires to choose basic libraries to

also be multi-platform and multi-compilers. For those reasons, we choose to base

CamiTK on two multi-platform open source libraries: Qt for GUI and Vtk for scien-

tific data visualization. Those libraries are mature, rapidly evolving and benefit from

a large community of developers. CamiTK is therefore mainly implemented in C++,

a very efficient object-oriented language. Object-Oriented programming paradigms,

including inheritance and polymorphism, data abstraction, encapsulation and inter-

face and numerous design patterns are used in CamiTK in order to achieve a clean

and extensible architecture. Other technical details and how to get your version of

CamiTK are given in Table 1. CamiTK is composed by CamiTK core and CamiTK

extensions (see Figure 2). CamiTK core includes an abstract layer, useful interac-

tion widgets and viewers, as well as some default data component implementations

(see section 2). CamiTK plugins or extensions hold concrete implementations for

specific CAMI fields’ data or algorithms. While CamiTK core is distributed under

the LGPL open-source license, the license of each extension can be freely chosen

by the developer.

CamiTK extensively uses Kitware CMake, CPack, and CTest cross-platform

suite in order to facilely manage the build process on all targeted platforms, being

Linux or Microsoft Windows, gcc or MS Visual C++ (a CamiTK MacOS version

can also be build but is not yet supported by our development team).

CamiTK’s general design is inspired by component-based software engineering

(CBSE). Instead of building an application by adding features on existing code,

CBSE intends to build a software by integrating, arranging or assembling pre-built

software components. CamiTK shares the CBSE guiding principles:

• reuse and do not reinvent the wheel,

• assemble pre-built modules and components instead of adding codes where

needed.

This can be very efficient when component standard exists. Unfortunately no

such standard exists in CAMI field. CamiTK core therefore introduces simple light

standards for software modules that can be found in CAMI application. These light

standards are not specific to any sub-domain such as imaging, robotics, surgical

navigation or simulation. To conform to these standards, a software component

simply has to inherit from one of the four CamiTK extensions. The four possible

types of extension are component (data management), viewer (data visualization),

action (algorithms), and application (the GUI). Figure 2 shows some examples of

existing extensions. CamiTK source code includes a list of commonly required ex-

tensions. Provided component extensions include support for several formats of

volume image and mesh management (e.g., DICOM/Itk/Vtk/Analyze images and



CamiTK 5

Vtk/VRML/Obj/PML/SOFA scenes and meshes). Provided viewer extensions in-

clude a classical medical image viewer with four zones: one for axial plane dis-

play, one for coronal one for sagittal plane display and the last zone for 3D view.

Among existing action extensions, we developed volume image filtering algorithms

using ITK, model deformation using SOFA, ArtiSynth or ANSYS, and 3D mesh

reconstruction from stereoscopic video. Some basic application extensions are also

provided with CamiTK.

CamiTK Core

Application
Fancy

C
om

po
ne

nt

Im
ag

e

Action

ITK Image

Filte
rs

Itk

Component
PhysicalModel

A
ction

M
odel D

e-

form
ation

Sofa

A
pplication

Im
p

V
iew

er

M
ed

ica
l

Im
a
g
e

V
iew

er

(a) (b)

Fig. 2 CamiTK architecture: several existing and collaborating modules. (a) CamiTK core viewed

as a collaboration platform. (b) An example of a provided application extension.

Section 2 details CamiTK framework and extension principles, section 3 focuses

on biomechanical modeling in CamiTK. Section 4 shows a whole CAMI textbook

example that target the simulation of the brain shift, from volume image visualiza-

tion to model construction, biomechanical simulation and data fusion.

2 CamiTK Architecture and Key Concepts

2.1 Overview

CamiTK core architecture follows the Model-View-Presenter design pattern (MVP

thereafter), a generalization of the Model-View-Controller design pattern where the

presenter acts more like a supervising controller.

In classical software architecture, MVP design pattern helps to divide the logic

in two: domain logic and application logic. Domain logic, the Model, is the part of



6 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

URL http://camitk.imag.fr

License The core and distributed extensions are available under the terms of the LGPL v3

Language C++

Size ≈ 200 classes, 35,000 Single Lines Of Code

Some Metrics McCabbe cyclomatic complexity < 12 (moderate risk), SLOC/Comments ≈ 1.5

Components 6 component extensions are distributed: DICOM, Vtk image, Vtk mesh, Itk image, PML, MML

Documentation API documentation, user tutorials, developer tutorials, mailing lists

Dependencies Qt, VTK, optional: libxml2, xerces-c, ITK, IGSTK

Download Windows setup, Ubuntu package, source package, svn (through the collaborative forge)

Table 1 CamiTK factsheet.

Service Layer

InterfaceBitMap

InterfaceGeometry

InterfaceProperty

InterfaceNode
select (click, pick...)

visualize/render

modify property

trigger refresh

activate

arrangeinstantiate

D
a
ta

 L
o
g
ic

MainWindow

Viewers

P
resen

ta
tio

n
 a

n
d

In
tera

ctio
n
 L

o
g
ic

����

Action

P
ro

cessin
g
 L

o
g
ic

Fig. 3 CamiTK architecture overview.

the data structures and algorithms that is directly linked with the research field or

sub-domain. Application logic is the part generally used to build a GUI to present

and interact with the domain logic data and algorithms. Application logic generally

aggregates the View and Presenter parts of MVP. CamiTK core lets the researcher

concentrate on the domain logic and eases the development of the application logic

by following CBSE principles. To do so, a software based on CamiTK assembles

what we called viewers (application logic) than are used to present and interact

with components (i.e., the data, the data logic), and actions (i.e., the algorithms, the

processing logic). Viewers and components are bound together by a main window to

build an interactive application where actions on the components can be triggered.

Figure 3 presents an overview of the CamiTK architecture.

CamiTK furthermore distinguishes the domain logic in data logic (i.e., the man-

agement of dynamic or static data structures) and the processing logic (i.e., the



CamiTK 7

modification and transformation of data). This is an essential distinction as it fa-

cilitates software testing (unit and integration testing) and improves the segmenta-

tion of tasks (it is easy to define precise and well segmented software development

tasks). The data logic is handled by what we called components (generalized by the

Component class), while the processing logic is handled by what we called actions

(generalized by the Action class). In order to easily glue together viewers, compo-

nents and actions, CamiTK uses a Service Layer Pattern [6]. The service layer is

classically linked to the viewers by an Observer Pattern.

The service layer simplifies the creation of new components and actions by gen-

eralizing concepts and predefining generic behaviors. The service layer is an over-

lay of the Component class (see Figure 3). The Component class implements the

four interfaces: InterfaceNode, InterfaceProperty, InterfaceGeometry and

InterfaceBitMap, see Figure 4. Each interface describes the capabilities of a com-

ponent without committing it to use a specific implementation. It can also be thought

as contracts where the component is the provider of four services. On the other side

of the MVP, the viewers are consumers of the services. The viewers interact with

the components without knowing exactly which kind of data is managed by the

component or how it reacts to a specific call.

Fig. 4 CamiTK service layer overview.

Each interface lists the methods to be implemented and describes the correspond-

ing capabilities of components:

• InterfaceNode guarantees that each component has a name and can be associ-

ated with other components in a tree-like hierarchical structure or a dependency

graph.

• InterfaceProperty guarantees that components are associated with a list of

properties and can be identified in the class hierarchy of component families.

• InterfaceGeometry defines the ability of a component to provide a 3D geomet-

ric representation of some kind (mutually exclusive with InterfaceBitMap).

This is a convenient wrapper and simplifier for data that can be represented by a

vtkPointSet.



8 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

• InterfaceBitMap defines the ability of a component to provide a representation

as a bit map of a given thickness (mutually exclusive with InterfaceGeometry).

This is a convenient wrapper and simplifier for data that can be represented by a

vtkImageData.

A component has a concrete implementation of either an InterfaceGeometry or

an InterfaceBitMap or none.

The Action class generalizes the notion of component processing. An action

applies a given algorithm to a given component or list of components. Generally,

viewers trigger actions on the currently selected components.

CamiTK viewers handle all the presentation and interaction logic (the View and

Presenter part of MVP). The CamiTK viewers are using either Qt widgets or VTK

renderers, but are not limited to that. Viewers manage the user interactions and map

them into calls to the interface methods of the components. For example, viewers are

aware of the current selection, that is the list of currently selected data component,

and can be used to add or remove components to the selection (e.g., in the explorer

viewer clicking on component while pressing the Ctrl key adds it to the selection).

A specific interaction in a specific viewer is translated to a specific call of one of the

method of the service layer interface. This method is implemented in the Component

class or specialized in one of its subclass.

In order to build a CamiTK application, the developer may subclass MainWindow.

MainWindow is a kind of super Presenter: it instantiates and organizes the viewers

in an application GUI. It also sets up menus or widgets that allow the user to open,

close, save or export components from files or connected devices.

Two extensions mechanisms are possible in CamiTK: software plugins (for com-

ponent and action extensions) and simple inheritance (for viewer and main win-

dow). Adding an extension mainly consists in writing a new C++ class derived from

a CamiTK core class. This can generally be done in 10-50 Single Lines Of Code.

Core extension classes already define a lot of default behaviors, and each of them

can be redefined by just overriding the corresponding method.

CamiTK also follows some rules of test-driven development by providing a de-

fault unit test architecture for its components. An automated quality software pro-

cess is currently being set up for CamiTK thanks to Kitware CDash.

Subsections 2.2, 2.3, 2.4 and 2.5 describe the four types of extensions in details

for a developer or technical reader. Subsection 2.6 presents use-cases for the differ-

ent types of extensions.

2.2 Viewer

CamiTK viewers are automatically aware of instantiated data components, they can

be considered as content managers that present the data and allow the end users to

trigger actions.



CamiTK 9

Similarly to CommonTK1, CamiTK defines low-level software components that

can be used to build viewers (see Figure 5). Such low-level components include

pure Qt code (e.g., a synchronized slider and text input or a programmer-friendly Qt

Property controller) as well as pure VTK code (e.g., a 2D/3D full featured renderer

that support in particular mouse interaction, camera, lightning, 3D axes, node/facet

picking, and screenshots, similar to what can be found in MedINRIA, [15] or Slicer

3D).

(a) Synchronized

slider and text Qt

widget

(b) ObjectController features display

and interaction of any Component or

Viewer

(c) Full featured VTK 2D/3D renderer

Fig. 5 Some pure Qt and pure VTK low-level software components available for building CamiTK

viewers.

CamiTK Viewers offer a specific way of displaying a CamiTK component. The

same component can be displayed by any number of viewers, each showing a dif-

ferent representation or facet of the component (see Figure 6).

CamiTK viewers can have a menu, a widget, a toolbar and some properties. Each

of them can be assembled to build a CamiTK MainWindow, for example properties

can be automatically added in the application settings dialog, toolbar in the main

toolbar and menu in the application View menu.

1 http://www.commontk.org



10 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

(a) Explorer (data hierarchi-

cal tree)

(b) Property explorer

(c) Axial, sagittal, or coronal viewer

(block in 2D)

(d) 3D interactive viewer

(e) Medical image viewer

Fig. 6 Main viewers available to build a CamiTK MainWindow.

Viewers can also be assembled to build other viewers (e.g., the medical image

viewer), see Figure 6(e), is composed of three 2D interactive viewers and a 3D

interactive viewer.



CamiTK 11

A specific viewer is the action viewer, which displays the list of possible actions

for the currently selected component and triggers the action chosen by the user

amongst tagged actions or families of actions.

Another useful viewer is the Explorer viewers, see Figure 6(a), which displays

the Components as a hierarchical tree view.

2.3 Component

The component extension is very important in the CamiTK architecture. A com-

ponent wraps the domain objects (specific data) so that they can be inserted into

the viewers and manipulated by the user. CamiTK core class Component inher-

its from all the service layer interfaces (InterfaceNode, InterfaceProperty,

InterfaceGeometry and InterfaceBitMap). The Component class also provides

a default implementation for most of the service layer methods for visualization and

interaction, as detailed in the remaining of this section.

2.3.1 Node

A component is designed as a simplified Composite design pattern: an instance can

be an individual component or a composition of components. For example, faces

and nodes can be managed by one single component or may be managed individ-

ually by dedicated components. Therefore component instances can contain other

components, and instances can form a hierarchical tree, each component being ei-

ther the root or a node. The root of a component tree is specific and is called the

top-level component. It is the master component that ensures the building of the

whole tree. InterfaceNode ensures that a component provides an implementation

of root and node behaviors. InterfaceNode also forces each component to have a

name and other optional features like an icon pixmap.

Thanks to the service layer, the InterfaceNode may be used in a textual viewer,

for example to display the component hierarchical tree (see Figure 6 (a)), like in a

desktop file manager. If the user clicks on the textual representation of the compo-

nent in a viewer, the latter calls the setSelected(bool) method of the component.

Examples of methods already implemented by default include getParent():In-

terfaceNode*, addChild(InterfaceNode*), isTopLevel():bool.

2.3.2 Property

Each component can have a list of properties and methods for class introspection.

It allows components to have static properties (declared in headers) as well as dy-

namic properties. Each property has a name and a value. Value types can be anything

compatible with Qt class QVariant: int, double, boolean, string, 3D or 2D vector,



12 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

color, char, date, time, rectangle, font... InterfaceProperty is directly managed

by a QObject in order to benefit from the very efficient Qt Meta-Object system.

Thanks to the service layer, the PropertyInterface is used in the property

viewer to let the user interact with some of the encapsulated data of the component,

for example to view a medical image’s dimensions or to change the color of a mesh.

A specific viewer, called PropertyExplorer, is available in CamiTK to display

and interact with any defined component properties as shown Figure 6 (b). Exam-

ples of methods already implemented by default include property(const char

*):QVariant and setProperty(const char *, QVariant):bool.

2.3.3 Graphical Representation

A component can have no graphical representation or can have one of the following

two: a 3D geometry or a bit map (a flat image of a given thickness).

Under the hood, 3D geometry are managed by a vtkPointSet and bit map

are managed by a vtkImageData. A component handling a dataset that explic-

itly uses 2D or 3D point arrays, with or without any topological elements like

scattered points, lines, polygons, and tetrahedra, should therefore implement the

InterfaceGeometry. A component handling a dataset that has a topological and

geometrical regular array of points such as volumes (voxel data), slice in a volume,

and pixmaps, should therefore implement the InterfaceBitMap.

In order to facilitate the development of new components, a lot of default

behaviors are already programmed. Examples of methods already implemented

by default include getBoundingRadius():double for InterfaceGeometry and

getNumberOfColors():int for InterfaceBitMap. To satisfy code interdepen-

dency and modularity, graphical representation implementation is handled by two

separate classes. Therefore components do not directly handle their geometrical

or image representation. An Object Adapter design pattern (also known as Dele-

gate pattern) is used by the component to delegate all InterfaceGeometry and

InterfaceBitMap to an instance of respectively the Geometry class and the Slice

class. In the considered design pattern, the Component class is the adapter and the

Geometry and Slice classes are the adaptee classes.

Geometry and Slice are convenient overlays of VTK basic representation (re-

spectively vtkPointSet and vtkImageData). They provide all the concrete imple-

mentation of the 2D/3D visualization service and define a lot of default behavior.

A 3D viewer for example can easily access the surface representation of a compo-

nent implementing InterfaceGeometry by calling getActor(RenderingModes-

::Surface):vtkActor*. Geometry and Slice can also be used to directly manip-

ulate the low-level VTK objects.

One of the main advantages of the Object Adapter pattern is to simplify the con-

struction of the 2D/3D representation. A component only needs to build the low-

level encapsulated VTK structure corresponding to the chosen adaptee. The service

layer implementation is therefore automatically added without any intervention the

developer.



CamiTK 13

2.3.4 Component Extension

CamiTK core provides two generic classes: MeshComponent and ImageComponent.

Both classes allow for quick integration of user data that are based on geometries

and images respectively. They provide basic behavior for importing, loading and

interacting with such data.

A component extension is managed by a class inheriting from the Component-

Extension class. It defines the extension name, the supported file suffix for opening

and exporting and the dynamic or shared library itself. ImageComponentExtension

and MeshComponentExtension fasten the development of user data plugins to

provide image-based or mesh-based support in CamiTK. For example, Image-

ComponentExtension is the base class for DICOM and JPEG plugins, while Mesh-

ComponentExtension is the base class for the VRML and PML plugins.

CamiTK extension wizard generates the extension class header and code, the

component class skeleton, as well as the CMake configuration file: integration of a

new component in the project, compilation, linking and configuration are therefore

completely automated.

2.4 Action

CamiTK actions derive from the core class Action and are used to implement any

kind of algorithms on components (transformation or computation). Actions are

specific to a component or a family of components, they must therefore specify the

targeted component classes, which could be one of the generic MeshComponent and

ImageComponent class or a more specialized user-defined component class. Actions

are also grouped by family and can be tagged for quick retrieval.

Building a new action requires subclassing the Action class and overriding the

apply(ComponentList)method. Actions can be grouped in an ActionExtension,

similarly to the component extension. The CamiTK extension wizard can be used to

generate all skeleton code and configuration files that are needed for a new action.

Actions can be triggered many different ways, such as by the context menu of

a component in the explorer viewer or by selecting the desired action in the action

viewer (see section 2.2). The context menu only displays the available action of the

selected component.

The CamiTK action extension helps to concentrate on building or improving a

given algorithm. This could be very useful to define a specific task for a limited

amount of time and resource. The generalization of an action is currently being

extended to define a scripting framework for CamiTK applications.

Available actions include image visualization (e.g., LUT), image processing

(e.g., ITK filters, marching cube), mesh visualization (e.g., modifying the render-

ing mode or color) and processing (e.g., rigid transformation, tetrahedralization).



14 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

2.5 Application

Building a CamiTK application requires assembling viewers or other Qt-based

software components together. CamiTK core MainWindow extension allows for

rapid development of a CAMI application GUI. It can be done by subclassing

MainWindow or by adding elements to the default application main window. It is

also possible to build pure console or text-based applications, although, considering

the goal of CamiTK, it should be a rare need. Subclassing CamiTK MainWindow

also provides a way to add menus, application settings and preferences.

Thanks to the framework specific architecture, there is no need for a main con-

troller or presenter as each viewer is managing its own Presenter/View interaction.

Therefore there are no connections to be made between the viewers and the com-

ponent instances. As soon as a CamiTK component is instantiated, all the viewers

are aware of its existence. Some viewers may automatically display the component

(e.g., the explorer viewer), and other may follow the component policy (e.g., the

medical image viewer).

We defined some basic main window components that can be used to build

MainWindow extensions: a text console where all output and errors can be automat-

ically redirected, application logs (to be saved in a file or displayed on the output

stream), and application settings (see Figure 7).

(a) Console for standard output and error

redirection

(b) Application setting widget showing

all the included viewers preferences, and

loaded component extension plugins

Fig. 7 Low-level GUI elements available to build a CamiTK MainWindow.

Figure 8 shows a very basic example code where the axial 2D interactive viewer

is added to the default CamiTK MainWindow and a test UNC Meta Image (mha) is

loaded. Note that there is no need to tell which component extension is to be used to

load the MHA file format and no need to tell the axial viewer to display the image.

Three example applications are distributed with CamiTK (see Figure 9): the de-

fault imp that is used daily at TIMC-IMAG lab, a very simple application with only a



CamiTK 15

(a) Basic application code (b) Basic application GUI

Fig. 8 Very basic example to add an axial slice viewer in the default MainWindow.

medical image viewer, and fancy that demonstrates that CamiTK can also generates

non-traditional GUI.

2.6 Use-cases and Tutorials

Table 2 describes CamiTK extension use cases, that is a list of situations where

you should consider using CamiTK and how it can be done in CamiTK. It gives

an overview of CamiTK possibilities from the developer point of view. For each

use case, the situation is described, examples are given and a quick how-to program

it using CamiTK is briefly described. Each use case refers to a type of CamiTK

extension or component customization. Tutorials are available for each extension

on the CamiTK website.

3 MML: an Environment for Physical Model Comparison and

Evaluation

Soft tissue simulation is one of the main application fields of CamiTK. Using the

CamiTK framework we built an environment for evaluation and comparison of soft

tissue models. This section describes the main objectives of this environment and

its integration into CamiTK.



16 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

Viewer Extension

Description Examples Solutions

New type of interaction with

the data or a new way of vi-

sualizing the data

Volume rendering Program a new viewer extension

Fly camera in 3D using a path and

timer

Or inherit from an existing one

and add/redefine a behavior

Take regular screenshots to create

a movie

Component Extension

Description Examples Solutions

View a new mesh, graph

scene or image format

Import .obj format Program a new component exten-

sion

View 3D Ultrasound images Or combine existing components

in a new one

View a SOFA scene

Connect a new device to view

its data, control its parame-

ter/action

Connect a medical robot or sen-

sor

Program a new component exten-

sion

Connect a motion tracker device

to interact with the 3D viewer

Or a new generic component

Component or Action Parameters

Description Examples Solutions

Interact with a specific pa-

rameter of an algorithm or a

data

Numbers (int, double...), boolean Choose which component/action

is concerned and

2D/3D Position, Rectangle Program a new property (10-20

lines of code)

Color, Font, Time, Date, Key se-

quence...

Optionally add a new user set-

tings (5 lines of code) to keep the

value between two runs

Action Extension

Description Examples Solutions

New algorithm to process

some data

Image filter, volume reconstruc-

tion

Choose which component is con-

cerned and

Biomechanical simulation using

a specific method

Program a new action extension

Export a data to a specific format

Mesh/image registration

MainWindow Extension

Description Examples Solutions

You need a specific applica-

tion with specific elements

No 2D/3D interaction, just data

explorer and property viewer

Program a new MainWindow ex-

tension

Specific application to test on a

group of user (including log /

trace)

Use the default CamiTK empty

MainWindow and add only the

needed elements

Table 2 CamiTK extension use cases.



CamiTK 17

(a) simple (b) fancy

(c) imp

Fig. 9 Three examples of CamiTK MainWindow extension.

3.1 Comparison and Evaluation of Soft Tissue Modeling

The evolution of modeling techniques and the improvement of computer hardware

have lead to an increasing number of new algorithms which try to describe the me-

chanical motion of soft tissues. Lots of heterogeneous modeling techniques have



18 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

been developed since the adaptation of traditional mechanical engineering tech-

niques to medical simulation: soft tissue models using continuous mechanics equa-

tions and a numerical resolution method (e.g., Finite Element Method, thereafter

FEM), discrete models (e.g., mass-spring networks) or meshless models. Further-

more, numerous implementations of these models have been developed in-house,

by communities of scientists (e.g., SOFA [5] or ArtiSynth [8]) or by commercial

software developers (e.g.,ANSYS, Comsol, Abaqus). In the remaining, such soft-

ware and libraries where soft tissue models are implemented are generically named

“simulation engine”. The heterogeneity of modeling techniques and the number of

existing implementations lead to a wide variety of available algorithms. It is very

challenging to compare them because models may not have the same structure (e.g.,

discrete, continuous, meshless) and may be implemented in different simulation

engines. However, comparisons between algorithms are crucial to determine their

relevance for a particular medical application depending of the targeted level of

compromise between computational efficiency and calculation accuracy.

Evaluation is another challenge in soft tissue modeling. If these algorithms are

to be used for clinical purpose, they have to prove that their predictions are cor-

rect. These evidences can be gathered only by performing a large amount of val-

idation tests. Validation is the process to determine the level to which a verified

computational model accurately represent the reality of interest [12]. In soft tis-

sue simulation, validation is often performed by comparing simulation results with

in-vitro or in-vivo experiments. These experiments are quite difficult to perform

because boundary conditions are difficult to control, in particular during in-vivo

experiments. Therefore, validation studies often rely on a limited amount of tests

which only implies partial validation.

We propose an environment, called MML framework, to ease the communication

between different simulation engines and to allow comparisons between algorithms

built from different modeling techniques. The second main objective is to propose a

generic and sharable description of validation experiments in order to fill the lack of

validation references. This framework is implemented as an external and indepen-

dent library, and is introduced in CamiTK as a new type of component and actions

(see section 3.6).

3.2 Environment Overview

The main concepts of the MML framework are (see Figure 10):

1. Constitutive elements of a simulation and simulation results are described by a

set of generic languages.

2. Simulation calculations are computed by different simulation engines thanks to

a plugin mechanism.

3. A set of quantitative metrics can be automatically computed.

4. A database stores the simulation descriptions, as well as simulation and real ex-

periment metric values for further comparisons.



CamiTK 19

These key concepts are discussed in the next sections.

�����������	A	B	C��

��������������	ABC

���������	 A	B��CD��EF�	���

���E	
�������C��D����	���

�������C

��DEF	D
�������C��D����	���

�����	ABC

DE
F�B�������������

���A��B�	���������

�E���B�����
�	��AB�B�	�

�� ��

��

���
���������

�� �

!�D"D !�	�D"�	B

���

Fig. 10 MML framework overview

3.3 Generic Description

In order to achieve interoperability between different simulation engines and differ-

ent modeling techniques, we use a generic XML description of a simulation. Other

scientific domains tried to define standard formats for sharing models using XML

description. This kind of XML description is for example widely used in biological

system modeling (e.g., CellML [7], SBML [3] and many other [14]).

In our framework we use the two languages defined in [2]: PML and LML. PML

stands for Physical Model markup Language. It aims at describing the geometry and

physical structure independently of the modeling technique used (discrete or con-

tinuous). PML includes an easy way to freely label any individual or set of nodes

and degrees of freedom, any geometric or logical structures. LML stands for Load

Markup Language. It aims at describing constraints and boundary conditions ap-

plied to a physical model.

We extended these descriptions with a third language called MML which stands

for Monitoring Markup Language. MML description is divided in two parts: MM-

Lin and MMLout.



20 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

MMLin describes a reproducible simulation by integrating PML and LML de-

scription together with the list of data to monitor, simulation parameters (e.g., in-

tegration step) and stability criteria. Monitored data can be standard measurements

(e.g., positions, velocities, stress) or comparison metrics (see section 3.5). The use

of a stability criterion to decide when a simulation is considered finished is dis-

cussed in section 3.5.2 In section 4, an example of an MMLin description for a

simple simulation is given. Having a simulation described by a MMLin document

allows one to reproduce the same exact simulation on different simulation engines

so that comparisons can be made between them.

MMLout is a description of both simulation and real experiment results. MMLout

describes monitored data and stability criterion values for each step of the simula-

tion. MMLout can be stored after simulation in order to be used as a comparison

reference for other simulations. MMLout can also be created from real experiments

in order to test the accuracy of simulations and make validation assessments. In this

case, the MML framework takes advantage of the integration into CamiTK where

medical imaging taken from real experiments can be processed (e.g., segmentation,

3D reconstruction) and converted into MML description (see section 4 for an ex-

ample of the workflow from medical images to MML description using CamiTK).

Once stored, MMLout documents can be used for automatic comparison with fu-

ture simulations of the same problem using the corresponding MMLin document

as input. The use of this kind of experiment description can help to reduce the lack

of reference for validation by facilitating sharing of experimental results between

research teams.

3.4 Simulation Engines

Our framework aims to help scientists to compare algorithms from different simu-

lation engines by wrapping a comparison layer on top of them. A simulation engine

plugin describes the interface between the simulation engine and the MML frame-

work. Simulation engine plugins are simply named “simulator” in this section. Their

roles are:

• to export an MML description into a specific simulation engine,

• to drive the simulation engine in order to compute the simulation steps, and

• to import back the computed data into the framework in order to compute the

metrics.

Simulation generic parameters (e.g., integration step) are directly stored in the

MMLin document. For simulation engine specific parameters, default configuration

is used by the plugin. These specific parameters can also be manually changed be-

fore or during simulation.

There is two kinds of simulators: interactive and non-interactive. Interactive sim-

ulators are based on pluggable C++ simulation libraries (e.g., SOFA) which allows

our framework to have a complete control during each step of the simulation. Non-

interactive simulators are designed for other simulation engines run directly in a



CamiTK 21

standalone application (e.g., ANSYS). In non-interactive simulators, all calculations

are generally made in one big step by the simulation engine and post-processed af-

terward.

Fig. 11 Partial UML class diagram of the simulation engine plugins structure

Figure 11 shows a partial UML class diagram for simulators. Simulation engine

specific simulation is generated from simulation context containing the MMLin de-

scription. An optional QWidget item can be specified to provide user interaction. For

example a specific widget acts as a SOFA .scn editor that let the user interactively

modify parameters and apply changes to the current simulation. Interactive simula-

tors have a doMove() method which makes the simulation engine compute one step

of simulation. This method is replaced by the doAllCalculations() method in

non-interactive simulators which launch the calculations that can be post-processed.

A set of methods (only getPosition() method is represented in Figure 11) allows

to retrieve computed data for a given step from simulation engine.

In order to simplify the development of new plugins we try to keep the interac-

tion with the simulation engines the easiest possible, so that no extra code has to

be written within the simulation engine. To achieve this goal, all metrics are com-

puted inside the MML framework and only basic data are extracted from the simu-

lation engine. For example only positions are needed to compute velocity-based or

distance-based metrics. Therefore, only the getPosition() method has to be im-

plemented in a plugin in order to compute a large amount of metrics, as described

in the section 3.5. Other metrics based on different data (e.g., force or stress) can be

also implemented.

We have currently developed three simulators for SOFA, ANSYS and ArtiSynth.

The SOFA plugin is an interactive simulator and is the most complete simulation en-



22 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

gine developed so far. It can not only launch simulations computed by SOFA from

MML description but also import SOFA .scn documents into MML compatible

descriptions. While in ArtiSynth the user can interact with the simulation at each

step using Controllers or Monitors, in the current version of MML, the Artisynth

plugin is considered as a non-interactive simulator because we did not have im-

mediate access to a C++ API. ANSYS and ArtiSynth non-interactive plugins, even

though not as complete as SOFA one, can still be used for simple interactions with

those applications.

3.5 Metrics

Comparison metrics are used to quantitatively compare models against themselves

or against references. As explained before, soft tissue models used for a CAMI

application have to be tested in terms of accuracy (section 3.5.1) and computational

efficiency (section 3.5.2).

Metrics are computed from basic data taken from simulation context (e.g., current

time), from simulator (e.g., nodes position) and from references if needed (e.g., ref-

erence’s nodes position for Relative Energy Norm computation, see section 3.5.2).

We developed a first set of metrics which are mostly position based. New metrics

based on other extracted data can be defined. The metrics can be a simple output

of values calculated in a simulator (e.g., velocities, stress and strain values) or a

more or less complex combination of these data. As the overall performance during

validation is not an issue, the best practice is to compute all values again exter-

nally in the MML library from basic extracted data (e.g., positions and forces). This

avoids to maintain a complex interaction with the simulator and simplifies simula-

tion plugins, as explained in section 3.4. For example velocities can be computed

from node positions and time step. This section illustrates this principle and gives

some position-based metric examples.

3.5.1 Accuracy Metrics

Accuracy can be assessed by comparing the simulation results with a reference.

Reference values can be measured on real experiments or calculated by other simu-

lation engines. There are only few papers which deal with the problem of the choice

of metrics [10, 1]. Soft tissue models are often a collection of 3D nodes (degrees

of freedom) linked together in a mesh. Depending on the structure of the simulated

model and the reference used, different types of metrics are available.

If models and reference have the same structure (a node of the model corresponds

to a node of the reference) node to node comparisons can be computed. This is for

example the case when a simulation is compared to a previous version of the same

model in order to test the influence of a parameter. Node to node metrics include for

example, distances or Relative Energy Norm (REN) [1].



CamiTK 23

If the models and reference do not have the same structure (e.g., the reference

has more nodes than the model) node set comparisons can be used. This is the case

with references obtained from experiments which are often composed by sets of

3D points generated by surface segmentation. Node set comparisons include for

example, point to set distance or Hausdorff distance.

If the model and reference are made of a mesh, volume and surface comparisons

are possible.

All the metrics given here as examples only need the node positions of the model

at a given time and then can be computed if the getPosition method is imple-

mented.

3.5.2 Computational Efficiency Metrics

A classical way of evaluating the computational efficiency is to measure the number

of frames per second (FPS) the simulation engine can compute.

Another interesting measurement, especially for CAMI, is the stability criterion.

Indeed, even if computations are fast (i.e., if the FPS is high), a model cannot be

used in an interactive simulation if it requires a large number of iterations to reach

equilibrium.

By stability criterion we do not mean a specific measurement of an algorithm

convergence, but the global dynamic behavior of the simulation, that is the defi-

nition of the state of dynamic equilibrium. The stability criterion is defined by a

boolean expression using tests on basic data extracted from simulation (e.g., posi-

tions) or computed externally from these data (e.g., velocities or kinetic energy).

This boolean expression can be a complex combination of tests (e.g., a decreasing

global kinetic energy and all nodal kinetic energy under a given threshold value).

The stability criterion is defined in the MMLin document so that the same criterion

can be used for all the simulations based on the same experiment.

3.6 Implementation and CamiTK Integration

3.6.1 Independent Library

The XML structure of MML documents is described using the WC3 standard XML

Schema (XSD)1. XSD documents are formal representations of the XML document

format, including type definitions, possible values and content model organization.

The open source software xsdcxx from CodeSynthesis2 is used to validate MML

documents and to generate a C++ library for unmarshalling and marshalling MML

1 http://www.w3.org/XML/Schema
2 http://www.codesynthesis.com/products/xsd



24 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

documents. Using automatic C++ code generation simplifies the extension of MML

description, for example when a new monitor or stability criteria is added.

The MML library is built on top of the generated I/O library. It supports simu-

lation management and metrics calculation. This library can be used independently

of CamiTK to build standalone applications, for example to build an optimization

application that can use the computed metrics in order to optimize any model pa-

rameters (including mesh or rheology), or a sensitivity analysis application that can

automatically explore the parameter spaces. In section 4, a specific standalone ap-

plication is used to optimize the stiffness of a mass-spring model.

3.6.2 CamiTK Integration

A component extension is dedicated to interface the MML library into CamiTK. It

can load any MMLin document in CamiTK Core. The MML component reuses the

PML component which can load and manipulate PML documents and display their

3D representation in the interactive viewer. A specific action was added to interact

with the simulation engines and display computed metrics as color code or vectors

in the interactive viewer (see Figure 12).

Fig. 12 MML framework into CamiTK. The specific action widget is shown on the right of the

3D interactive viewer. Its simulation tab can be used to interact with the simulation parameters

(integration step, PML and LML documents,...). Other tabs are used to display, modify and add

monitors and stability criteria. The “simulator” tab is used to display the simulation engine plugin

specific widget (if available). This screenshot shows the comparisons of two SOFA simulations

presented in [10].



CamiTK 25

4 Example : Brain-Shift Modeling, From the Images to the

Simulation

This section presents an example of a CAMI application which can be performed

with CamiTK from image volume opening and display to deformation model com-

parison2.

The chosen application is the brain shift phenomenon. During neurosurgeries,

when the surgeon opens the patient’s skull, the brain deforms due to physical

changes among which are the loss of cerebrospinal fluid, surgical tool interactions

and resections, as well as physiological changes due for example to inflammation,

drugs and anesthesia.

As the tissues have moved or deformed, the brain structures during the operation

are not where they can be seen on the preoperative images. It is especially true

when one considers the targeted tissues or zones: a tumor region for example may

be displaced or the cortex may be compressed compared to pre-operative images. A

soft tissue simulation may therefore be used to estimate the deformations due to the

brain shift.

4.1 Image Analysis and Mesh Generation

To obtain a patient-specific model of the brain deformation, lets start from a patient-

specific MR Image.

4.1.1 Image Volume Visualization

Volume medical image I/O are handled by component extension inheriting from

ImageComponent. This component implements the InterfaceBitMap inter-

face. A specific ImageComponentExtension is dedicated to manage the DICOM

format. Loading any kind of MR Image is therefore possible in CamiTK (see Figure

13).

On the initial MR Image (see Figure 13), the voxels belonging to the brain can

be extracted in order to be define a biomechanical mesh. Once the volume image

is loaded in the CamiTK application, any action extension designed to work on

ImageComponent can be applied (independently of the specific original file format).

The Look Up Table action can therefore be used to enhance the luminosity and

the contrast of an image, as illustrated Figure 14 Using this action shows that the

choice of a unique threshold to only segment all the voxels belonging to the brain is

impossible: voxels of the same gray level are present in the brain as well as in other

tissues.

2 videos of the different steps are available as supplementary material on http://camitk.imag.fr



26 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

Fig. 13 Visualization of a MR Image in a CamiTK application (here imp).

(a) Look Up Table

action widget

(b) Axial view with a rather

large LUT window

(c) Axial view with a small

LUT window

Fig. 14 Use of the Look Up Table action to visualize an image component and choose between

several luminosities and contrasts

4.1.2 Segmentation of the Brain

In this textbook example, a simple but yet efficient way can be used to segment

the brain with ITK algorithms available as CamiTK actions. This example is freely

inspired from [9]. Of course, one can imagine more precise, robust or efficient ways

to segment this tissue thanks to ITK or other algorithms. The integration of such

algorithms in CamiTK framework would only need a few lines of code and only

requires one to interface the algorithm with vtkImageVolume. Table 3 illustrates

the different segmentation steps.

4.1.3 Mesh Generation

The triangular mesh obtained by marching cube reconstruction needs some clean-

ing. It can be done automatically by merging nearby nodes and eliminating result-



CamiTK 27

Step 1 Step 2

Preprocessing: automatic threshold using

the Otsu method.

A binary erosion is applied to disconnect

voxels of the brain from those of other

tissues.

Step 3 Step 4

Labeling of the connected components Selection of the largest connected compo-

nent.

Step 5 Step 6

Dilatation to retrieve the brain original size,

mirroring the erosion of Step 2.

Creation of a MeshComponent by apply-

ing the marching cubes VTK implementa-

tion integrated as a CamiTK action exten-

sion.

Table 3 Automatic brain segmentation from MR Image in six steps.



28 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

ing invalid triangles. Tetrahedralization is achieved thanks to a CamiTK action that

encapsulates TetGen3 mesh modeler. The resulting mesh is described in a PML doc-

ument and has 336 nodes and 1.184 tetrahedrons, see Figure 15 (a). Note that this is

a very rough representation, only suitable for this textbook example.

4.2 Model Comparisons

In this section, comparison tests between different modeling techniques from differ-

ent simulation engines are performed using the MML framework. Using the brain

tetrahedral mesh obtained after segmentation and reconstruction in the previous sec-

tion, a set of brain shift simulations is performed. To clarify, we do not aim to

build an accurate simulation of the phenomenon but to show an example of how

our framework can help scientists to compare different approaches when modeling

soft tissue.

4.2.1 Generic Description Set-Up

In order to make a comparison study, we need:

• a PML description of the geometry, as obtained in section 4.1,

• a LML description of the loads and boundary conditions,

• a MMLin description which encapsulates PML and LML description and adds

simulation parameters, stability criterion and monitored data.

For the brain shift simulation the chosen boundary conditions are composed by a

set of fixed nodes at the bottom of the brain (opposite to the skull opening) and a

gravity field. We described these loads in a LML document, see Figure 15 (b).

We choose to use an ANSYS simulation as reference for our simulations. AN-

SYS is a commercial FEM software widely used as reference for continuum me-

chanics simulation because of its well established verification procedure. Therefore,

the ANSYS simulation is performed first, in order to obtain a reference. In order to

fit the brain material, FEM parameters are a young modulus of 1,440 Pa, a Poisson

ratio of 0.45 and a density of 1kg/m3 [13]. The chosen integration step is 0.01s. The

specific ANSYS parameters for this simulation are shown in Table 4 (e). The mon-

itored data are the brain total volume and node positions. The MMLin document

uses the previously introduced PML and LML document alongside the monitored

data (Figure 15 (c)). Stability criterion cannot be specified for ANSYS simulation as

the equilibrium is determined inside the software. Once ANSYS simulation are per-

formed, the MMLout description is saved and considered as the reference (Figure

15 (d)).

3 http://tetgen.berlios.de



CamiTK 29

Fig. 15 Simplified visualization of the MML description of the ANSYS reference simulation

(MMLin) and its results (MMLout)

4.2.2 Tested Models

We perform a set of simulations using different modeling techniques. The same

MMLin document is used (same integration step and material parameters), except

that the distance between nodes and reference nodes, and REN errors against AN-

SYS are added to the monitored data and a stability criterion is specified. We choose

a threshold on nodal displacement of 0.1 mm as the stability criterion. Models, sim-

ulation engines and specific parameters are summarized in Table 4. For the mass-

spring model, a spring is placed at each edge of the tetrahedral mesh. The best

stiffness for the springs is determined by a small standalone optimization program

based on the MML library. This standalone program repeatedly computes the av-

erage distance between the ANSYS reference and the simulated positions obtained

by SOFA. It automatically creates and runs a SOFA simulation in order to explore a

given stiffness interval and to minimize the distance metric.

Engine Model Ref. Solver Specific parameters

(a) SOFA Corotational FEM [11] Euler implicit Large deformation

(b) SOFA Tensor-Mass [4] Euler implicit

(c) SOFA Mass-Spring Euler implicit Spring stiffness: 430

(d) ArtiSynth Linear elasticity FEM [8] Euler implicit Large deformation

(e) ANSYS Linear elasticity FEM Default solid285 element and large deformation

Table 4 Models and specific parameters used for comparisons



30 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

4.2.3 Results

Results of the simulations and monitoring are shown in Figure 16 and Table 5. The

time to reach stability represents the time to reach the stability criterion defined

in section 3.5.2. The computation time is the total time needed by the simulation

engine to compute every steps of the simulation. REN and distance refer to ANSYS

reference. Volume ratio is the ratio between final and initial brain volume. Let us

emphasis that the results shown in Table 5 are not a comparison with a gold standard

or ground truth, but with the ANSYS reference, including all the probable errors

and approximations induced by the simple assumptions presented in Table 4. The

metrics are given here to illustrates how scientists can use our framework to compare

different models from different simulation engines.

Fig. 16 3d colored shape displaying distance between the four models and ANSYS simulation

Model FPS
Time to reach

stability (s)

computation

time (s)

REN (%) Distance (mm) Volume ratio

(%)min. max. avr. min. max. avr.

(a) 96 57.46 58.44 1.97 32.85 12.76 0.21 1.86 0.78 96.7

(b) 143 55.86 38.54 3.70 32.60 13.49 0.17 2.15 0.87 96.4

(c) 947 70.21 7.25 7.14 105.42 44.06 0.64 4.76 2.60 94.5

(d) n/a n/a n/a 5.13 27.73 12.98 0.24 1.78 0.83 96.2

(e) n/a n/a 764 n/a n/a n/a n/a n/a n/a 96.7

Table 5 Summary of the quantitative values of the computed metrics.



CamiTK 31

Results table 5 shows that both FEM based model (from SOFA and ArtiSynth)

are closer to reference. These two simulations are quite similar even if SOFA is

slightly closer to ANSYS. However, ArtiSynth has a better maximum distance

which can be an important criterion to consider when some critical value can not

to exceed.

Mass-spring model is the fastest (almost ten times higher FPS than FEM) but

has the highest distance from reference : average distance to reference is three times

more important than SOFA FEM, and maximum is near 5 mm, which would be a

critical problem for neurosurgery if we consider the ANSYS simulation close to

reality. This model also needs the longest time to reach stability.

The Tensor-Mass model shows a compromise between FEM models and mass-

spring. This model succeed to be 50% faster than the FEM model but is nearly as

close to reference with an average 0.1 mm.

For a more realistic simulation, a mesh convergence study should be performed

to select the proper mesh refinement; constitutive law and parameters should also be

studied more intensively. For example, a non-linear model could be used as brain is

often considered non-linear [13].

5 Conclusion

Our framework could be seen as a linking module that can fill the gap between

highly specialized software covering different CAMI research fields.

The first public version of CamiTK was published in October 2011 (version 2.0).

Anybody wanting to contribute and join the effort is welcome. The current work

is focusing on simplifying the scripting of actions and on software quality (test,

packaging, continuous integration).

We are interested in participating to any workgroup in order to increase interop-

erability between CAMI software.

Acknowledgements The authors wish to acknowledge the support of the French ministry of re-

search (PhD grant) and of ECCAMI (Excellence Center for Computer Assisted Medical Interven-

tions, www.eccami.com), a community of practice bringing together clinicians, researchers and

manufacturers. CamiTK was build over many years and we wish to thank all the students, PhD

students, researchers and engineers for their work.

References

1. Alterovitz, R., Goldberg, K.: Comparing algorithms for soft tissue deformation: accuracy met-

rics and benchmarks. Tech. rep., UC Berkeley: Alpha Lab (2002)
2. Chabanas, M., Promayon, E.: Physical model language: Towards a unified representation for

continuous and discrete models. Lecture notes in comuter science 3078, 256–266 (2004)
3. Cornish-Bowden, A., Hunter, P., Cuellar, A., Mjolsness, E., Juty, N., Dronov, S., Takahashi,

K., Nakayama, Y., Gilles, E., Kasberger, J., et al.: The systems biology markup language



32 Céline Fouard and Aurélien Deram and Yannick Keraval and Emmanuel Promayon

(sbml): a medium for representation and exchange of biochemical network models. Bioinfor-

matics 19(4), 524–531 (2003)

4. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deforma-

tions, and force feedback for surgery training and simulation. The Visual Computer 16(8),

437–452 (2000)

5. Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courte-

cuisse, H., Bousquet, G., Peterlik, I., Cotin, S.: SOFA, a Multi-Model Framework for Interac-

tive Physical Simulation, chap. 11. Springer (2012)

6. Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Professional

(2003)

7. Hedley, W., Nelson, M., Bellivant, D., Nielsen, P.: A short introduction to cellml. Philo-

sophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences 359(1783), 1073–1089 (2001)

8. Lloyd, J.E., Stavness, I., Fels, S.: ArtiSynth: A Fast Interactive Biomechanical Modeling

Toolkit Combining Multibody and Finite Element Simulation, chap. 13. Springer (2012)

9. Malandain, G.: Filtrage, topologie et mise en correspondance d’images médicales multidi-

mensionnelles. Thèse de sciences, Ecole Centrale de Paris (1992)

10. Marchal, M., Allard, J., Duriez, C., Cotin, S.: Towards a framework for assessing deformable

models in medical simulation. Lecture Notes in Computer Science 5104, 176–184 (2008)

11. Nesme, M., Marchal, M., Promayon, E., Chabanas, M., Payan, Y., Faure, F.: Physically re-

alistic interactive simulation for biological soft tissues. Recent Research Developments in

Biomechanics (2) (2005)

12. Oberkampf, W., Trucano, T., Hirsch, C.: Verification, validation, and predictive capability in

computational engineering and physics. Applied Mechanics Reviews 57, 345 (2004)

13. Schiavone, P., Chassat, F., Boudou, T., Promayon, E., Valdivia, F., Payan, Y.: In vivo measure-

ment of human brain elasticity using a light aspiration device. Medical Image Analysis 13(4),

673–678 (2009)

14. Stromback, L., Hall, D., Lambrix, P.: A review of standards for data exchange within systems

biology. Proteomics 7(6), 857–867 (2007)

15. Toussaint, N., Sermesant, M., Fillard, P.: vtkinria3d: A vtk extension for spatiotemporal data

synchronizationvtkinria3d: A vtk extension for spatiotemporal data synchronization, visual-

ization and management. In: Proc. of Workshop on Open Source and Open Data for MICCAI

(2007)


