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ABSTRACT

We study the problem of finding a degenerate scale for Laplace equation in a half-plane. It is shown that
if the boundary condition on the line bounding the half-plane is of Dirichlet type, there is no degenerate
scale. In the case of a boundary condition of Neumann type, there is a degenerate scale, which is shown
to be the same as the one for the symmetrized contour with respect to the boundary line in the full
plane. We show next a formula for obtaining the degenerate scale of a domain made of two parts, when
the components are far from each other, which allows to obtain the degenerate scale for the
symmetrized contour. Finally, we give some examples of evaluation of the degenerate scale both by
an approximate formula and by a numeric evaluation using integral methods. These evaluations show
that the approximate solution is still valid for small values of the distance between symmetrized

contours.
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1. Introduction

One considers for a given contour S all contours obtained by
any scaling of S. Early results by Jaswon [21], based on the work of
Muskhelishvili [23], showed that for any boundary S of a plane
domain, there is one and only one degenerate scale which leads to
the non-invertibility of the integral operator: g y,(x)=
—Js Inlix=ylq(y) dSy. More precisely, it can be shown that there
is a distribution g(x) such that the application v,(x) is null for any
x. Hayes and Kellner [17] have shown using complex variables
that a degenerate scale is reached when the “transfinite diameter”
of the outer domain, defined from a conformal mapping of the
domain from the outer unit circle, is equal to 1. From another
point of view, the transfinite diameter defined in the complex
plane is equal to the logarithmic capacity as shown by Hille [19].
The logarithmic capacity, whose definition is recalled in Section 5,
is defined without using a conformal mapping, which makes it
easier to handle. Yan and Sloan [29] give a review of the main
properties of the logarithmic capacity. It is possible to derive
analytically the logarithmic capacity of some domains by using
conformal mapping, for example for regular N-gon domains [22].
The numerical calculation of the logarithmic capacity has been
studied by Dijkstra and Hochstenbach [16] and Chen et al. [5].

* Corresponding author. Tel.: +33 164153521.
E-mail addresses: corfdir@cermes.enpc.fr (A. Corfdir),
Guy.Bonnet@univ-mlv.fr (G. Bonnet).

The degenerate scale problem is still investigated by different
authors: Yan and Sloan [29] have studied the case of an open
boundary, Coscia and Russo [14] have studied the case of a
Lipschitz boundary. The problem has been extended to multiply
connected domains [6,8]. Many authors have discussed how to
eliminate this problem by scaling [12], by adding a constant to the
fundamental solution [12,5], by adding an unknown and an
additional equation [11,20], by adding an additional collocation
point [4] or by using an hypersingular formulation as noted by
Chen et al. [5]. Practically, a 2D problem can be very often
considered as an approximation of a 3D problem at the vicinity
of a finite line source. In this case, a specific kernel depending of
the geometry of the 3D problem can be defined [1]. This kernel
ensures that the scale of the 2D problem is smaller than the
degenerate scale if a condition ensuring that 2D modeling is well
adapted to the original 3D problem is satisfied. A more extended
review on the problem of degenerate scale for Laplace equation
can be found in Chen [3]. More generally, some authors have
studied the degenerate scale for other equations having a loga-
rithmic term in the Green function: elasticity in the plane
[18,13,26,27,9,10], biharmonic equation in the plane [15,6]. These
equations exhibit similar though more complicated behaviors,
with generally several degenerate scales.

This paper is devoted to the study of degenerate scales for
problems in a half-plane, which seems, from our knowledge, not
having been studied with as much extent as the problem in a full
plane. Elementary solutions of the Laplace equation for the half-
plane is based on the method of images. This method has been



found very early by Thomson [25] and is still the object of
research (see e.g. [8,7]). In this paper, we use the results
established for the plane and draw next basic results for the case
of the half-plane, either for Dirichlet or Neumann boundary
conditions at the boundary of the half-plane. An approximate of
the degenerate scale for the exterior problem is given, when the
diameter of the inner boundary is small compared with the
distance between this inner boundary and the boundary line of
the half-plane.

2. Relation between the degenerate scale in a half-plane
and an associated problem in the full plane

We first recall the link between the loss of unicity of the
integral boundary equation and the existence of a non-trivial
solution of the equation

/S G(x—y)q(y) dS, =0, xeS ™

where G(x,y)= —In lIx—yll/2n. Assuming the loss of unicity for
Dirichlet condition, making the difference between two solutions,
we get a function u(x) with q(x) = du/én satisfying the following
boundary equation, )+ [((3G/an)x—y)u(y) dSy = [;G(x—
Y)q(y) dSy with u(x)=0 for xeS and g being a non-null function
on S. The boundary integral equation then gives [;G(x—
Y)q(y)dS, =0 for x e S. Conversely, if there exists g a non-trivial
solution of (1), then the function u(x)= [;G(x—y)q(y) dS, is a non-
null solution of the Laplace equation which vanishes on S.

The above argument for the plane can be applied for the half-
plane using the appropriate kernel. Then, the degenerate scale in
the half-plane is related to the non-invertibility of the operator
G g(X) = — [Gu(x~y)q(y) dSy where G, is the Green's function
associated with conditions applied to the boundary line of the
half-plane. We can consider two different problems in the half-
plane according to the type of the condition at the line A
bounding the half-plane: Neumann condition if the normal
derivative is null on A or Dirichlet conditions if the function is
null on 4 (Fig. 1).

We consider the standard Green solution for Laplace equation
in the plane: G(x,y) = —In lx—yll/27. For the half-plane, the image
method gives the following Green function:

Ga(x,y) = G(x,y)+€G(X.y) (2)

where X is the image of x, =N and ¢ = 1 for Neumann condition
and =D and ¢ = —1 for Dirichlet condition on line A. Consider-
ing that many results are found in the literature on the degen-
erate scale in the plane, we intend to build a relation between the
degenerate scale in the half-plane for a given boundary and the
degenerate scale for an associate problem in the full plane.

Theorem 1. If a problem in the half-plane is at a degenerate scale,
then an associate problem can be built, which is at a degenerate scale
in the full plane.
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Fig. 1. The image method (left) and the symmetrization of the boundary (right).

Proof. We extend the function g defined on S, to a function g,
defined on S; US; in the following way:

) ifyeS
qxtv)={q0' yeu

ifyes, 3

«qy)
with 2 =N and ¢ = 1 for Neumann condition and z =D and ¢ = —1
for Dirichlet condition on line A. Using G(X,y) = G(x,y), we can
write

. /S Galxa) ds, = /S (G +GERYNW) 6,
= /s ‘ G(x.y)q(y) dSy + /S ‘ G(x,y)eq(y) dSy
= /s . G(x.y)q(y) dSy + /s ! G(X,y)q,(y) dSy
= /S 5 Sy s, @)

If the domain S, is at a degenerate scale, the integral operator is
not invertible for the problem in the half-plane with Neumann or
Dirichlet condition on the A line; therefore, there is a non-null
function g such that: [5 G,(x,y)q(y) dSy = 0.

Then, the extended
Js,us,GX.Y)q(y) dSy = 0.

Hence S; US; is at the degenerate scale for the problem in the
plane. This proves Theorem 1. [}

This result is particularly useful, because it allows to apply all
results obtained in the plane for the symmetrized domain S; U S,.

Before to use this associate domain in Section 5, two general
results on the degenerate problems associated with Dirichlet or
Neumann boundary conditions will be established.

function g, is such (4) that

3. The Laplace problem in the half-plane with a Dirichlet
condition on the boundary line

In this section, we assume that a null Dirichlet condition is
applied on the boundary line. In this case, we establish the
following theorem:

Theorem 2. There is no degenerate scale for the Laplace problem in
the half-plane with Dirichlet condition on the boundary line.

Proof. AssumebycontradictionthattheboundaryS;isatthedegenera-
tescalefortheLaplaceprobleminthehalf-planewithDirichletconditi-
ononthelineboundingthehalf-plane. Thereexistsanon-nullfunction-
gsuchthat: [g Gp(x.y)q(y) dSy =0.

If we change the scale of the problem by a factor 4 (Fig. 2), we
define
a0=a(%) ©)

/.

From the definition of Gp(x,y), we get Gp(/x,4y) = Gp(x,y). Hence,
we can write

/ Gp(x.Y)q;(y) dSy = 4 / Gp(/x,2y)q(y) dSy
Jis, /5

X

y Ay
X
X
S, »
ASy

Fig. 2. Change of scale.
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=1 A Goxy)q(y) dSy =0 6)
1

From this equation and from the conclusion of the preceding
section, we conclude that the symmetrized problem on the
boundary S;US, in the plane would have an infinity of degen-
erate scales. There is a contradiction with the known fact that this
degenerate scale is unique. This proves finally Theorem 2. [
This result shows that the search of the solution of the
boundary problem in a domain within the half-plane associated
with a null Dirichlet condition on the boundary line can be
effected without worrying about a possible degenerate scale.

4. The Laplace problem in the half-plane with Neumann
condition on the boundary line

Now, the half-plane is studied when applying a Neumann
condition on the boundary line. It is shown in this case that the
situation is analogous with the full plane:

Theorem 3. There is one and only one degenerate scale for the

Laplace problem in the half-plane with Neumann condition on the
boundary line.

Proof. We consider a boundary which is symmetric with respect
to a line A; its two symmetric components are S; and S,. If the
scale is degenerate, there is a non-null function such that

/ G(x,y)q(y)dSy =0 (7)
Js,us,

The above equation is true for all x, so we can write:

fs‘ U5, CEYAY) dSy=0. As G(x,y)=G(x,y), we have: fs| 15,6®.Y)

q) dSy = [5,.5,GXIGW) dSy = [5 .5, Gx.y)q(¥) dSy. So, we get
G(x,y)q(y)dSy =0 (8)

Jsyus,

Turning y into y in Eqgs. (6)-(7), we get

/ G 7)) dSy =0 ©

Jsyus,

1

G(x,y)q(y)dSy =0 (10

Jsus,

Adding Eqs. (7), € (8), (9), € (10), with ¢ = + 1 we get

/s s (CXY)+€GxQY)+€q(y)) dSy =0 (11)
JS,uS,
We define
qs =qy)+q9y)
qq =qy)—q) (12)
Rewriting (11) for ¢ = 1 and —1, we have
/ GN(X,Y)qs(y) dSy =0 (13)
J$1US,

Gp(X,¥)qq(y) dSy =0 (14)
J§US,

As Gn(x,Y)q5(y) = Gn(x,Y)qs(Y) and Gp(X,¥)qq(Y) = Gp(X.¥)qq(Y), we
can now write

/ Gr(xy)a,(y) dS, =0 (15)
JS

/ Go(X.Y)qa(y) dSy =0 (16)
JS

From (16) we deduce that g,=0 as there is no degenerate scale for
the Laplace problem in the half-plane with Dirichlet condition on the
bounding line. Then q(y) = q(¥), and as q(y) is a non-null function
qs(y) is also a non-null function, and S, is at the degenerate scale. This
proves finally Theorem 3, which shows that the problem in the half-
plane with a condition of Neumann's type on the boundary line is
completely similar to the problem in the full plane, leading to the
need to evaluate the degenerate scale. [

The following section is therefore devoted to an evaluation of
the degenerate scale in the case of Neumann's boundary
condition.

5. Approximate of the logarithmic capacity for a domain with
two connected components

It has been shown in Section 2 that the problem of the
degenerate scale for the half-plane with Neumann condition on
the bounding line reduces to the problem of the degenerate scale
of the symmetrized domain in the plane. We will now pay
attention to a particular class of domains made of two compo-
nents as in Fig. 3(left) and we will also consider a slightly more
general problem of two components far from each other and not
necessarily symmetric as in Fig. 3(right). Each component S; has a
circumscribed circle of radius r;, the distance between the centers
of the two circumscribed circles is denoted by d. Some authors
have investigated the related problem of two equal cylindrical
conductors with equal charge and have given rather complicated
solutions using elliptic functions or series [28,2]. In this section,
we focus on simple approximate of the logarithmic capacity in the
case of two distant components; each component is a simple
curve and not necessary a circle.

The logarithmic capacity is equal to 1 for the degenerate scale.
We recall the definition of the logarithmic capacity Cs,s, of
S, US,

—In(Cs,us,) = inf /

1
In ——q(x dS, dsS 17
SNSI/S‘LS2 Tx—yl q(x)q(y) dSyx dSy 17)

with ¢ >0 and fsl&q(x) dSx=1. The integral in (17) can be split
into four parts

L 1
_LJSZ Ldsz In 57 a0aw) dscdsy = | | l In J57a00a0) dS. ds,

1 1
+_/s,/sz In =57 9099) S, ds,+/sz/s, In =57 900a) dS, dS,

1
+./sz./sz In Wq(x)q(y) dSy dSy (18)

We consider the second integral [, fs2 In (1/1x=ylHgx)q(y) dSx dSy

T

r {2
s
s, 2

|

Fig. 3. Degenerate scale for two components when d > r: symmetric case (left),
general case (right).



2 d

Fig. 4. The case of a segment.

in (18). If xe S, and y €S, hence (d—2r) < Ix—yll < (d+2r) with
r=sup (ry,r2). So we have the following inequalities:

1
/51/52 In —(d+2r)q(x)q(y) ds, ds,
1
< /s../sz In Wq(x)q(y) dS, ds,

1
< /S‘. L, In Mq(x)q(y) ds, ds, (19)

Denoting by Q= [5q(y)dSy and Q= [,q(x)dSy=1-Q,, we
deduce from (19)
1 1 1
In g7 [ /s In 570000 dS dSy < In =010
(20)
From Eq. (18) and from the right inequality of (20), we deduce the

following inequality:

1 1
In ' _qx deSs//In—x ds, ds.
./S,JS;./S,L.Gz Ty 10W) G Gy < [N Ropaeaw) doe Gy

1 1
+2Q,Q; In @ +-/Sz~/$2 In _\Ix—yu q(x)q(y) dS, dS, 21)

We note that for i=1, 2
inf

q=0
J5,a(x) dSy=Q;

1
/S/S In G370 dS S, = —Qf IG5, (22)

Taking the inf of the two parts of the inequality (21) and using
(22), we get
H 2 1 2
—In(Cs,s,) < o *lg£= I(—Q, In Cs, +2Q,Q; In M—Qzln Cs,
(23)

Substituting 1—-Q for Q,, the right part of the above inequality is

a quadratic polynomial of Q; and is extremal for
In (d—2r)—In(Cs,)

2 In(d-2r)—In(Cs,)—In(Cs,)

Q= (24)

and the extremum is

2
Ao In“(d—2r)—In(Cs,)In(Cs,) (25)
2 In(d—2r)—In(Cs,)—In(Cs,)

The radius of the circumscribed circle satisfies r > Cs, for i=1,2
[29]. It can be checked for d > r = Cs, that A is a minimum and that
the corresponding value of Q, € 10,1].
As d > r, we have: In(d—r)= In(d)+O(r/d). We deduce
11n?(d)—In(Cs,)In(Cs,)

A=s—mg—————1 2 d
2 m@-in/G G, o0/

(26)

This leads to
1+In? /C5 7Cs, /(n*d-In? . /T3 Cs)

Cs,us, </ dy/Cs,Cs, (1+O(§)) @n

Using also the left inequality of (20) in the same way, we finally
conclude

1+In? /Z;, /Cszlllnzd~|nZ

Cs,us, = |/ dy/Cs,Cs, (H'O(g)) @8

If Cs, and Cs, are equal, we get the simpler formula

r
Cs|u52 = dC5| +O(ﬁ)
These relations have been established under the condition
d > r. This simple closed form of the logarithmic capacity of S; U
S, will be compared with other values of this capacity, obtained
either in closed form or numerically, for configurations where
distance between S; and S, will be not necessarily very large.

s, Cs,))

(29)

6. Comparison of the approximate value of the logarithmic
capacity with closed forms and numerical evaluations
6.1. Case of a domain having the shape of a segment
We test our approximate of the logarithmic capacity for two
cases which do not satisfy the condition d > r. We consider first a
segment of d length S;, Cs, denotes its logarithmic capacity (Fig. 4).
We consider the symmetric segment S,. The new segment S; U
S, has its logarithmic capacity twice larger than S,. As the
logarithmic capacity is scale proportional, we have:
Cs,us, = 2Cs,. The approximate gives: Cs,us, ~ /dCs,. Eliminating
Cs,us, from these two relations we get

Cs, ~d/4 (30

In that case, the approximate turns out to be the exact value, even
if both domains are not apart from each other.

6.2. Case of a rectangle

We consider the rectangle of S; whose sides are d,v/2d (Fig. 5).
We consider also the symmetric rectangle S,. The new rectangle
logarithmic capacity Cs,.s, is equal to ﬁcs,. The approximate
formula gives: Cs,us, ~ /dCs,. Eliminating Cs, s, from these two
relations we get

Cs, ~0.5d 31

This can be compared with a numeric evaluation using boundary
elements (see Appendix A) which gives a not too far value:
0.7102d.

d
d
i d
-«
\"[7}(1

Fig. 5. The case of a rectangle with sides d, v2d and its symmetrized.
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Fig. 6. The cases of two disjoint circles of radius one and of two disjoint squares of
side one.
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Fig. 7. Comparison of numerical evaluation and of approximate formula.

6.3. Case of two disjoint circles and squares

We consider two equal circles of radius one, the length
between their centers being denoted by d (Fig. 6). For a circle,
the logarithmic capacity is equal to its radius and the approx-
imate formula reduces to v/ for circles of radius one. Similarly,
for two distant squares of side one, the approximate formula
reduces to v/0.59017d as the logarithmic capacity of a square of
side one is ~0.59017 [24].

Fig. 7 shows comparison between the numerical evaluation of
the logarithmic capacity by the method of Appendix A and the
approximate formula for both cases, squares and circles. The
results are displayed only for d < 20, because for higher values,
numerical results are identical with the approximate solution.
However, it can be seen that the approximate formula produces
satisfying results even when both domains are at very close
positions, similarly with the results obtained in both previous
applications.

7. Conclusion

We have considered the degenerate scale for the Laplace
problem in the half-plane with Dirichlet or Neumann boundary
condition on the straight boundary line. Using symmetry proper-
ties, we have shown that for the first case, there is no degenerate
scale and that for the second case the degenerate scale is the same
as the one obtained for the symmetrized problem in the plane.
We have established an asymptotic formula for the logarithmic

[18] Heise U. The spectra of some integral operators for plane elastostatical
boundary value problem. ] Elasticity 1978;8(1):47-79.

[19] Hille E. Analytic function theory, vol. 2. Ginn, Boston; 1962.

[20] Hsiao G. On the stability of integral equations of the first kind with
logarithmic kernels. SIAM Rev 1986;4(2):179-82.

[21] Jaswon MA. Integral equation methods in potential theory. Proc. R. Soc.
London Ser. A Math. Phys. Sci. 1963;275(360):23-32.

[22] Kuo S-R, Chen J-T, Lee J-W, Chen Y-W. Analytical derivation and numerical
experiments of degenerate scale for regular N-gon domains in BEM. Appl
Math Comput 2013;219:5668-83.

[23] Muskhelishvili N. Singular integral equations: boundary problems of function
theory and their application to mathematical physics. Noordhoof, Groningen;
1953.

capacity of a set of two distant components from the logarithmic
capacity of the original domain and from the distance between
the components. In addition, it was shown that the asymptotic
formula is very efficient even if a domain and its symmetrized are
not too far apart. This turns out to be an efficient way for
obtaining a satisfying evaluation of the logarithmic capacity of
the symmetrized domain, leading to the degenerate scale in the
half-plane with Neumann condition on the boundary line.

Appendix A. Numerical computation of the logarithmic
capacity by boundary elements

One considers a domain whose boundary is S. The discretiza-

tion of S in boundary elements leads to the matrix [G] containing
the elements Gy defined by

1 a
Gij:/ijE In(—”xi_y”)dSy
where x; are collocation points on S and y is a current integration
point on S, N; being the interpolation function related to node x;.

(32)

The logarithmic capacity is found by looking for the value of a

producing a matrix [G] which is singular. The studied examples
have shown that the value of a is estimated with an approximation
around 10~ for a discretization of the contour made of 400 points.
This method is simple to program when [G] is already evaluated;
some authors have suggested more elaborate methods [16,5].
A more computationally economical option would be to search
for the generalized eigenvalue of (Gy,B) where Gp=G(a=1) et
Bj=C®D with C=(1,1,1,...) and D; = 1/2x [;N; dS,.
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