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Abstract. This paper focuses on the modeling and the implementation
as a multi-objective optimization problem of a Pittsburgh classification
rule mining algorithm adapted to large and imbalanced datasets, as en-
countered in hospital data. We associate to this algorithm an original
post-processing method based on ROC curve to help the decision maker
to choose the most interesting rules. After an introduction to problems
brought by hospital data such as class imbalance, volumetry or inconsis-
tency, we present MOCA-I - a Pittsburgh modelization adapted to this
kind of problems. We propose its implementation as a dominance-based
local search in opposition to existing multi-objective approaches based
on genetic algorithms. Then we introduce the post-processing method
to sort and filter the obtained classifiers. Our approach is compared to
state-of-the-art classification rule mining algorithms, giving as good or
better results, using less parameters. Then it is compared to C4.5 and
C4.5-CS on hospital data with a larger set of attributes, giving the best
results.

1 Introduction

Data mining on real datasets can lead to handling imbalanced data. It occurs
when many attributes are available for each observation, but only a few are
actually entered. This is especially the case with medical data: ICD-10 4 – a
medical coding system – allows encoding up to 14,199 diseases and symptoms.
However in hospital data, for each patient, only a very small subset of these codes
will be used: up to 100 symptoms and diseases. This implies that most frequent
symptoms, like high blood pressure, are found on at best 10% of the patients. For
less common diseases, like transient ischemic stroke it can be lower to less than
0.5% of patients. This can also happen with market-basket data: many different
items are available in the store but only a few are actually bought by a single
customer. Additionally, more and more information is available and collected

4 International classification of diseases; http://www.who.int/classifications/

icd/en/
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nowadays: algorithms must be able to deal with larger datasets. According to
Fernández et al. dealing with large datasets is still a challenge that needs to be
addressed [1]. This work is a part of the OPCYCLIN project – an industrial
project involving Alicante company, hospitals and academics as partners – that
aims at providing a tool to optimize screening of patients for clinical trials.

Different tasks are available in datamining, this paper focuses on the clas-
sification task, useful to predict or explain a given class (e.g.: cardiovascu-
lar risk) on unseen observations. Classification will use known data, composed
of a set of N known observations i1, i2, ..., iN to build a model. Each obser-
vation can be described by M attributes a1, a2, ..., aM and a class c. There-
fore each observation i is associated with a set of values vi1, vi2, ..., viM where
vij ∈ Vj{val1, val2, . . . valp}; Vj being the set of possible values for attribute aj .
In the same manner, each observation i is associated to a class value ci ∈ C, C
being the set of all possible values for the class. A classification algorithm will
be able to generate a model that describes how to determine cv on an unseen
observation v, using its values vv1, vv2, ..., vvM . This paper focuses on models
able to give a good interpretability: they allow medical experts to give a feed
back about them. Decision trees and classification rules give easy-to-interpret
models, by generating trees or rules — like “aj = valj and ag = valg ⇒ class”,
where valj ∈ Vj , valg ∈ Vg and class ∈ C; using combinations of attributes
a1, a2, ..., aM and one of their possible values val1, val2, ..., valM to lead to the
decision.
Decision trees – like C4.5 [2] or CART (classification and regression trees) – are
popular and efficient solutions for knowledge extraction. However the tree repre-
sentation is composed of conjunctions, not allowing expressing classes explained
by different contexts (e.g.: presence of overweight or high blood pressure implies
an increased cardiovascular risk, having both increases the risk more). Separate
and conquer strategy, frequently implemented in tree algorithms often contribute
to miss rules issued from different contexts: each sub-tree is constructed using
a sub-part of data (observations not corresponding to the top of the tree are
removed from learning). To avoid this problem we will focus on classification
rule mining approaches.
The majority of state-of-the-art classification algorithms will have trouble to
deal with imbalanced data because they use Accuracy to build their predictive
model [1]. Accuracy focuses on counting good classifications obtained by a given
algorithm: true positives and true negatives. However, when predicting a class
available on only 1% of the observations, an algorithm can get a very good classi-
fication Accuracy – 99% – while predicting each observation as negative (99% of
observations) and missing each positive observation. Some resampling methods
exist to pre-process the data and convert it into balanced data, an overview can
be found in [3]. Jo and Japkowicz showed that combining data resampling and
an algorithm able to deal with class imbalance is more effective than using re-
sampling alone [4]. Moreover, in addition to class imbalance and a huge amount
of data, hospital data is subject to uncertainty. When data is missing on one pa-
tient, two cases can happen: the patient does not have the disease or the patient
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has the disease but was not diagnosed yet (or the diagnosis was not entered in the
system). This is difficult to predict the consequences of resampling on such data.

The remaining of this paper is organised as follows: Section 2 will introduce
some common rule interestingness measures, and will show how the classification
rule mining problem can be seen as a multi-objective problem. Section 3 will
propose the modeling as a multi-objective local search optimization problem.
Then, the Dominance-based local search algorithm will be presented, as well as
the associated implementation details such as neighborhood. This section will
conclude by the description of an original post-processing method to select rules
based on ROC curve. In section 4, we will assess the performance of our approach.
At first we will compare our results to those gathered by Fernandez et al. with
22 state-of-the-art classifiers in the context of imbalanced data [1], showing our
approach can be applied on more general datasets. Secondly, we will compare
our approach to C4.5 – a state-of-the-art decision tree algorithm – and C4.5-CS
– an adaptation of the C4.5 algorithm to imbalanced data – on real hospital
data. Finally, section 5 gives conclusions and perspectives for future works.

2 A Multi-objective Model to Discover Partial

Classification Rules in Imbalanced Data

This section will present some rule interestingness measures and their meaning.
Then it presents the 3 objectives that will be used to find rules.

2.1 Rule Interestingness Measures

When mining rules, an important question will raise: how can we assess that
a rule is better than another? Over 38 common rule interestingness measures
are referenced by Geng and Hamilton in their review [5], while Ohsaki et al.
studied measures used in medical domain [6] and Greco et al. studied Bayesian
confirmation measures [7].

Table 1. Confusion matrix

P P

C TP FP

C FN TN

N

The majority of rule interestingness measures are based on a confusion ma-
trix, like the one provided in Table 1. For a given rule C → P , TP (true
positives) will represent count of observations having both C and P; TN (true
negatives) count of observations not having C and not having P. FN (false neg-
atives) and FP (false positives) count observations on which C and P do not
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match. When dealing with imbalanced data

P = FP + TN >> P = TP + FN, (1)

therefore problems may rise with some measures like previously seen with the
Accuracy.
To ease the conception of a rule mining algorithm we must focus on a subset of
these measures. Indeed, handling too many measures will add complexity and
will increase computational time. An analysis of these measures showed that
Confidence and Sensitivity

Confidence =
TP

TP + FP
, Sensitivity =

TP

TP + FN
, (2)

are two interesting complementary measures. Increasing Confidence decreases
the number of false positives while increasing Sensitivity decreases the number
of false negatives. However, increasing Confidence often decreases Sensitivity
while increasing Sensitivity decreases Confidence. To the medical domain point
of view, only rules having both good Confidence and Sensitivity are interest-
ing. Moreover, Bayardo and Agrawal showed that mining rules optimizing both
Confidence and Support leads to obtain rules optimizing several other mea-
sures including Gain, Chi-squared value, Gini, Entropy gain, Laplace, Lift, and
Conviction [8]. Since in classification, Sensitivity and Support measures are pro-
portional, optimizing Confidence and Support will bring the same rules than
optimizing Confidence and Sensitivity.
When mining variable-length rules, bloat can happen: rules endlessly grow with
no predictive enhancement. Because of bloat, a rule R1: C ⇒ P can turn into
R2: C OR C ⇒ P , then R3: C OR C OR C ⇒ P , increasing computational
time and preventing the algorithm to stop. Most of all, R3 is needlessly complex
and harder to interpret than R1. Rissanen introduced the Minimum Descrip-
tion Length (MDL) principle that can be used to overcome this problem [9].
Given two equivalent rules, the simplest must be preferred. The addition of one
objective promoting simpler rules is a common solution, successfully applied in
Reynolds and Iglesia work [10]. In addition to this, Barcadit et al. used rule
deletion operators [11]. In application of this principle, we introduce a third
objective to promote simpler rulesets: minimizing the count of terms of each
solution. Finally, we choose to find rules optimizing the 3 following objectives:

– maximize Confidence
– maximize Sensitivity
– minimize number of terms

3 A Multi-objective Model to Discover Partial

Classification Rules in Imbalanced Data

In addition to class imbalance, our hospital data raises another problem: more
than 10,000 attributes are available for each patient. This implies a huge number
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of possible rules to explore. As a rule may be seen as a combination of pairs
<attribute, value>, the rule mining problem is a combinatorial one. Moreover,
regarding the large number of attributes, it requires methods dedicated to deal
with very large search spaces such as combinatorial optimization methods and
metaheuristics. Moreover, some datamining tasks contain NP-hard problems; in
their review, Corne et al. explain how operations research and metaheuristics
can help solving these problems that may be seen as combinatorial optimization
problems [12].
The three objectives identified in the previous section highlight the need of
methods able to deal with several objectives. Multi-objective optimization can
handle such problems; Srinivasan and Ramkrishnan made a review of rule mining
approaches using multi-objective optimization [13].

As explained later, in our work we will adopt a Dominance-based approach:
each objective will be treated separately. Metaheuristics working on a population
of solutions are particularly well suited for this type of problems [14] and we
will adopt one of them to our classification rules problem. In the following, the
solution modeling and the algorithm proposed are detailed.

3.1 Solution Modeling

Solution Representation Two main solution representations exist for rule
mining in metaheuristics: Michigan and Pittsburgh. Michigan is the widely used
one, where each solution represents a single rule. However algorithms using this
representation can miss some rules: an interesting rule will be removed if a
slightly better rule is found, even if that rule targets different observations from
the dataset.

This problem does not appear in Pittsburgh representation where each so-
lution is a set of rules. This more complex representation will impact the size
of the search space – now larger than the one of Michigan – and introduce new
problems such as rule redundancy or conflicts between rules: which prediction
must be chosen when different rules in the same ruleset have conflicting pre-
dictions? This is only an overview of problems that may happen. Casillas et al.
identified more possible inconsistencies risen by Pittsburgh modeling [15].
We propose to use a Pittsburgh representation where each solution is a ruleset.
Each ruleset is composed only of rules predicting the positive class, called partial
rules. A rule is a conjunction of terms; a term is the expression of a test made
on an attribute, for a given observation. Attributes can be binary (e.g: hasHigh-
BloodPressure? ), or associated to an operator (=,<,>) and a value, where the
value is taken from a list of values, ordered or not. Any observation that triggers
at least one rule from the ruleset will be labeled as positive class. Our repre-
sentation is designed to handle binary classes, thus observations not triggering
any rules are labeled as negative class. Since a ruleset groups together only par-
tial classification rules predicting the positive class, there is no need to store
the right part of each rule. Moreover, there are no inconsistencies since rules in
a same ruleset cannot predict different classes. Rule redundancy is avoided by
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minimizing the size of each ruleset. Thus, a rule will be added only if it improves
Sensitivity (true positives rate) or Confidence of the ruleset.

Evaluation Function Previously we saw three objectives can be used to find
rulesets: maximizing Confidence, maximizing Sensitivity and minimizing the
number of terms. The third objective corrects one drawback of Pittsburgh rep-
resentation that brings bloat. We use a dominance-based approach to handle
the different objectives, in opposition to some classification rule mining algo-
rithms like GAssist using scalar approaches [11]. Dominance-based approaches
use a dominance relation to compare solutions over several objectives, avoiding
searching the good adjustment of weights to combine the different objectives,
needed in scalar approaches. Moreover, with a weighted fitness function two so-
lutions having different objective values can have the same fitness score. Our
method is based on Pareto Dominance. This will generate a population of rule-
sets, in our case rulesets with very high Confidence but relatively low Sensitivity,
rulesets with middle Confidence and Sensitivity, rulesets with high Sensitivity
and relatively low Confidence, etc. These rule sets are stored in an archive, thus
we need an algorithm able to handle populations.

3.2 DMLS Algorithm

Dominance-based multi-objective local search (DMLS) is a local search algorithm,
based on a dominance relation [16]. It needs the definition of a neighborhood
function that associates to each solution a set of solutions – called neighbors –
by applying a small modification on it. A neighborhood of a rule can be, for
example, all rules having one more or one less term.
Most of multi-objective rule mining contributions presented in the review of
Srinivasan and Ramkrishnan are based on the metaheuristic NSGA-II (genetic
algorithm dedicated to multi-objective problems) [13]. DMLS has previously
proven to give at least as good results as NSGA-II on several problems [16].
Moreover, DMLS is easier to parameter than a genetic algorithm as we only
have to define a neighborhood operator. Therefore we used DMLS implemented
by Liefooghe et al. [16] in ParadisEO framework [17], with an unbounded archive,
using the natural stopping criterion. DMLS algorithm is detailed in Algorithm 1.
It evolves a population of non dominated rulesets. At first, all rulesets are marked
as unvisited. While unvisited rulesets exist, DMLS will chose randomly one of
them from the archive, visit its neighborhood and add all the non-dominated
neighbors to the archive for future visits.

Initialization DMLS is initialized with a population of 100 rulesets. Each is
made of two rules, whose attributes are randomly picked in a same observation.
This ensures the chosen attributes appears together at least on one observation.
Then, one or two random attributes are replaced to add some diversity.
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Algorithm 1 Dominance-based multi-objective local search

generates 100 rulesets RSa, composed of 2 initial rules
RSa.setV isited(false)
archive.add(RSa)
while RScurrent ← archive.selectRandomUnvisitedSol() do

RSn ← generateNeighbors(RScurrent)
for RSneighbor ∈ RSn do

/** add non dominated neighbor to archive, for future visits **/
if !RScurrent ≻ RSneighbor then

RSneighbor.setV isited(false)
archive.add(RSneighbor)

end if

/** stops when a dominating neighbor is found **/
if RSneighbor ≻ RScurrent then

break
end if

end for

if all neighbors in RSn were visited then

RScurrent.setV isited(true)
end if

end while

Neighborhood The neighborhood function is defined as a generator of all rule-
sets having a one-term difference: one term removed, one term added or one term
modified. They are randomly visited. The neighborhood size is important, since
a term addition can happen on each rule of the ruleset, for each available at-
tribute. To reduce the neighborhood size on attributes taking values in ordered
lists, we designed a simplified term neighborhood where only boundaries (adja-
cent values) are visited. Table 2 indicates for each operator (=,<,>) the list of
possible neighbors, assuming values are ordered (vi−1 < vi < vi+1). Ø means
remove the term.

Table 2. Neighborhood of list-valued terms

a = vi a < vi a > vi

Ø Ø Ø
a > vi−1 a = vi−1 a = vi+1

a < vi+1 a < vi−1 a > vi+1

a = vi−1 a < vi+1 a < vi+2

a = vi+1 a > vi−2 a > vi−1

On a dataset with mixed attributes (ordered and not) (heart dataset, intro-
duced in results section), this simplified neighborhood decreases computational
time (in average by 14%), while not degrading too much the classification perfor-
mance (less than 1%). Another optimization on the neighborhood exploration is
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done on rules with Confidence = 1: adding one term can only result in decreasing
Sensitivity because the obtained rule will be more specific and will concern less
observations. In this case, we restrict neighbors to modification or removing of
one random term.

3.3 Post-processing Using ROC Curve

Multi-objective optimization finds a population of rulesets, corresponding to
compromise solutions between the different objectives. Some datasets may ob-
tain up to 400 rulesets after one single run. As it is hard to choose one ruleset,
we propose a post-processing method based on ROC curve which combines all
obtained rules to take advantage of the diversity issued from the multi-objective
algorithm, and a tool to help choosing rules. Then we present how the result
can be used by the decision maker to choose the final ruleset. In addition, we
propose a method to determine automatically the final ruleset.

ROC Curve is often used in data mining to assess the performance of classifi-
cation algorithms, especially ranking algorithms. It is plotted using true positive
rate (TPR) (known as Sensitivity) and false positives rate (FPR) (also called 1 -
Specificity) as axes and allows comparing algorithms. Fawcett presented different
ROC curve usages [18]. In our case, we use ROC curve to select which rules to
keep. Since the objective is to use the developed method in a medical context,
it can also be used to help our medical users to calibrate classifier or choosing
rules using a tool they are familiar with. Algorithm 2 describes how ROC curve
can be generated for a given ruleset. Rules are first ordered from the highest
Confidence score to the lower; rules having the same Confidence are ordered by
descending order according to Sensitivity. Then, TPR and FPR are computed
and drawn for each subruleset {R1},{R1, R2},. . . ,{R1, R2 . . . Ri}.

Algorithm 2 Draw ROC curve of a ruleset RS

order rules of RS by Confidence DESC, Sensitivity DESC
create an empty ruleset RSroc

for rule Ri ∈ RS {R1, R2, . . . , Rn} do
/* get TPR and FPR for sub-rules-set R1, R2, ..., Ri */
RSroc.add(Ri)
tpr ← RSroc.computeTruePositiveRate()
fpr ← RSroc.computeFalsePositiveRate()
plot(fpr,tpr)

end for
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Rule Selection Using ROC Curve One drawback of dominance-based meth-
ods lies in obtaining a set of compromise solutions, that are difficult to handle by
the decision maker. The following post-processing method is proposed to cope
with this problem. Figure 1 shows on the right, one sample ruleset containing
rulesR1 . . . R10, ordered from the highest Confidence to the lower and in descend-
ing order of Sensitivity for rules having the same Confidence score. On the left the
matching ROC curve is drawn. Each point on this curve depicts the performance
of a subruleset, e.g.: R1, R2, R3. The higher is the point, the more observations
of positive class it detects. Additionally, the more a point is on the right, the
more false positive it brings. Consequently, point (0, 1) is the ideal point where
all positive observations are found, without bringing any false positive. This fig-
ure shows the performance of the ruleset when cut at different places, allowing
to choose the subruleset giving the most interesting performance according to
decision maker’s needs. On this curve we can see that between point a and point
b, and after point c there is only a small improvement of True positives rate, but
it brings much more false positives. Performance is more interesting before point
a, matching ruleset R1, R2, R3. Subruleset R1 . . . R4 (cut b) does not seem to be
a good choice because it brings much more false positives than positives cases.
Point c brings more true positives cases, giving ruleset R1, R2, ..., R7. Cutting
at point d finds a ruleset able to detect all positive observations: R1, R2, ..., R9,
keeping rule R10 is useless and will only increase false positives. Depending on
how many false positive are tolerable, the cut point can be changed. In medical
context, cut points bringing less false positives will be preferred (like cut a). To
the contrary, an advertising campaign will accept more false positives, to deal
with a larger audience. In fraud detection, the cut point can be moved until a
given number of positive observations are found.
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Fig. 1. Example of ROC curve obtained from one ruleset
R1 . . . R10 is one ruleset obtained after the post-processing. a, b, c and d represent

different cuts and their associated position on the roc curve.



10 J. Jacques, J. Taillard, D. Delerue, L. Jourdan, C. Dhaenens

Ruleset Post-processing Regarding the OPCYCLIN project, the decision
maker will have to deal with up to 30 different predictions for each clinical trial,
leading to 30 rulesets and 30 ROC curves. It makes the manual rule selection
harder. In addition to the previous rule selection method, we propose a solution
to determine automatically the best cut point. Thus, we can obtain a classifier
with good performance without the intervention of the decision maker. A final
ruleset classifier is generated from all obtained rulesets coming from archive,
as described in Algorithm 3. After merging all rules into one ruleset, the ROC
curve is drawn. The subruleset giving the point closest to the ideal point (0,1)
according to the Euclidean distance is chosen. All rules after this point are
removed (or disabled if we want to allow the decision maker to change the
Sensitivity accordingly to his needs). Once this ruleset is obtained, common data
mining measures can be computed on the entire ruleset: Confidence, Support,
etc. Diverse cut conditions have been tested but only the above presented one
gives classifiers with interesting performance. An improvement of this condition
could consist in weighting true positives rate and false positives rate according
to decision maker’s needs, since false positives can be more or less important
than true positives, depending on the context.

Algorithm 3 Obtain a ruleset RSall from a set of rulesets RSi

create an empty ruleset RSall

/* merge all obtained rules into RSall */
for obtained ruleset RSi do

for each rule Rj ∈ RSi {R1, R2, . . . , Rn} do
/* avoid duplicates */
if Rj /∈ RSall then

RSall.add(Rj)
end if

end for

end for

rocCurve← RSall.plotROCcurve()
/* best point of ROC curve is (0,1) */
i← rocCurve.getIndexOfPointClosestToBestPoint()
RSall.removeRules(i+1,N)

4 Experiments and Results

This section first introduces the protocol used in all our experiments. Both bench-
marks and real datasets were used for experiments; the first part presents results
obtained on benchmarks and compares them to the ones obtained by algorithms
of literature. In the last part we compare C4.5 and C4.5-CS decision tree algo-
rithms and our approach on a real dataset having an important imbalance and
a large number of attributes.
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4.1 Protocol

According to the protocol proposed by Fernandez et al., our algorithm was run
25 times for each dataset. We use 5-fold cross-validation: datasets are split into
5 parts, each containing 20% of observations. Then 4 parts are used for train-
ing, 1 for evaluation. For each available partition, as the algorithm contains some
stochastic components, it was run 5 times. So we obtain for stochastic algorithms
25 Pareto fronts for each dataset. For each partition, solutions are evaluated on
both training and test partitions. In our case, the objective is to maximize the
results on test data, because it shows the ability of the algorithm to handle
unseen data. A discretization of data was applied with Weka when necessary
(weka.filters.unsupervised.attribute.Discretize ; bins=10, findNumBins=true) to
allow our algorithm to handle datasets containing continuous attributes.
Generally accuracy measure is used to assess the performance of classification.
Previously we saw that accuracy is not effective to handle class imbalance. There-
fore Fernandez et al. proposed to use Geometric mean of the true rates (GM):

GM =

√

TP

TP + FN
×

TN

FP + TN
. (3)

In order to have a good score, a classifier has now to classify correctly both
classes: positive and negative. GM has one drawback though: when a classifier is
not able to predict one class, score is worth 0. Here, when two classifiers failed
to predict the negative class, there is no difference between the classifier able
to find 50% of positive observations and an other classifier predicting 70% of
positive observations: both have a score of 0.

For each dataset we computed the average of GM values obtained in each 25
runs. In order to get a single GM value from the rulesets proposed by our algo-
rithm, we generated a ruleset, its ROC curve and cut it automatically as shown
previously. Then we computed GM on the resulting ruleset: if an observation
matches a rule from the ruleset it is considered as positive class. Observations
not matching any rule are considered as negative class.

Tests were carried out on a computer with a Xeon 3500 quad core and 8 GB of
memory, under Ubuntu 12. We used Weka software version 3.6 for discretization
of datasets and for running C4.5 tests. Our approach is implemented in C++,
using metaheuristics from ParadisEO framework [17]. In our experimentations
we set MOCA-I max ruleset size = 5, max rule size = 9 for each dataset.

4.2 Experiments on Imbalanced Benchmarks Datasets

Fernandez et al. performed a comparison of 22 classification rule mining algo-
rithms on imbalanced datasets and provided material to compare to their results
[1]. Since our algorithm is designed to handle discrete attributes, datasets with
less continuous attributes were preferred. We selected 6 imbalanced datasets in
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those proposed by Fernandez et al. Their details are available in Table 3. The
degree of class imbalance varies from 0.77 % to 27.42 %: in the abalone19 dataset
the positive class happens on only 0.77% of observations. In addition to these
datasets, tia dataset - a real dataset - will be used in the next experiments. The
tia dataset comes from hospital data. It is composed of 10,000 patients taking
values in 10,250 available attributes: medical procedures and diagnoses. The ob-
jective is to predict the presence of the diagnosis Transient cerebral ischemic
attack, available on 0.74% of the observations. In order to allow some state-of-
the-art algorithms processing this dataset, the number of attributes is reduced.
Only attributes available on at least one observation having the class are kept,
leading to 699 attributes.

Table 3. Datasets main attributes

#ind.: count of observations; #feat.: count of attributes; % repar.: Percentage of
observations having the class to be predicted

name #ind. #feat. % repar.

haberman 306 3 27.42
ecoli1 336 7 22.92
ecoli2 336 7 15.48
yeast3 1484 8 10.38

yeast2vs8 482 8 4.15
abalone19 4174 8 0.77

tia 10,000 699 0.74

Results are available in Table 4. Our approach is denoted MOCA-I (Multi-
Objective Classifier Algorithm for Imbalanced data). We compared only to al-
gorithms giving the best results regarding the average of GM over the 25 runs.
In addition, we will also compared to C4.5-CS – a cost-sensitive version of C4.5
available in KEEL Framework [19]. For each dataset the best average of GM is
recorded. Then we computed relative error to the obtained best: a score of 0
indicates the algorithm got the best result on the dataset. As an indication, the
last line indicates the average of the relative errors, over the 6 datasets.

We can observe that the majority of algorithms had some difficulties to handle
abalone19 dataset, which has a high imbalance. Our model outperforms other
algorithms on 3 datasets. On the 3 remaining datasets, C4.5-CS outperforms all
algorithms. However, when outperformed the model still gives interesting results.

4.3 Experiments on a Real Dataset

In addition to literature datasets, we tested the scalability of our method on one
real large dataset: the previously presented tia dataset. We compared to results
obtained by J48 – the C4.5 algorithm implementation of Weka; well-known by
some medical users. Since C4.5 may encounters trouble to deal with imbalanced
data, we compared to results obtained by C4.5-CS algorithm that obtained good
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Table 4. Relative error to the best average of GM: algorithms with 0 ob-

tained the best average of GM

MOCA-I: Multi-Objective Classifier Algorithm for Imbalanced data; SIA: Supervised
Inductive Algorithm, O-DT: Oblique Decision Tree, CORE: CO-Evolutionary Rule

Extractor, GAssist: Genetic Algorithms based claSSIfier sySTem, OCEC:
Organizational Co-Evolutionary algorithm for Classification, DT-GA: Hybrid

Decision Tree - Genetic Algorithm, HIDER: HIerarchical DEcision Rules
MOCA-I XCS O-DT SIA CORE GAssist OCEC DT-GA HIDER C4.5 C4.5-CS

haberman 0.00 0.41 0.04 0.16 0.40 0.27 0.27 0.42 0.48 0.42 0.19
ecoli1 0.05 0.04 0.10 0.19 0.03 0.05 0.36 0.07 0.16 0.06 0.00

ecoli2 0.00 0.66 0.06 0.05 0.15 0.04 0.42 0.15 0.35 0.07 0.03
yeast3 0.01 0.81 0.10 0.10 0.23 0.06 0.01 0.10 0.43 0.07 0.00

yeast2vs8 0.11 0.18 0.18 0.88 0.14 0.26 0.16 0.88 0.18 0.88 0.00

abalone19 0.00 1.00 0.88 1.00 1.00 1.00 0.03 1.00 1.00 1.00 0.52

err. average 0.03 0.52 0.40 0.23 0.32 0.28 0.21 0.44 0.43 0.42 0.12

Table 5. Comparison to C4.5 and C4.5-CS on the real dataset tia

GM on Training GM on Test

MOCA-I 0.92 ± 0.02 0.74 ± 0.07

C4.5 0.58 ± 0.03 0.52 ± 0.11
C4.5-CS 0.99 ± 0.0009 0.47 ± 0.11

results on the benchmark datasets. Each algorithm was run 5 times using 5-fold
cross-validation to obtain 25 Pareto fronts for MOCA-I. C4.5 and C4.5-CS uses
default parameters provided by Weka and KEEL.

As observed in Table 5, reporting average and standard deviation of GM, on
training and test data, our approach obtains a better GM score than C4.5 and
C4.5-CS, on test datasets. C4.5-CS is more effective than C4.5 and MOCA-
I on training data but is subject to over-fitting: it encounters problems when
dealing with unknown observations, like on the test data. In addition to its
best performance on test data, MOCA-I uses the previously presented post-
processing method to output a ruleset with different cut possibilities. In Table 5
the ruleset is cut to improve GM; Table 6 shows results obtained with different
cut points over the ROC curve. Cut 1 is a cut where there is no false positive.
Cut 3 is the cut presented previously in our post-processing method. Cut 2
is between these two cuts on the ROC curve. The cut point can be adapted
depending on the cost of a false positive. When no error is tolerable, cut points
bringing less false positives will be preferred (like Cut 1 or Cut 2 in Table 6).

5 Conclusion and Further Research

We proposed and implemented a Pittsburgh classification rule mining system us-
ing partial classification rules, adapted to imbalanced data. Our method based
on a multi-objective local search using Confidence, Sensitivity and rule length
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Table 6. Impact of rule selection

Confidence (Cf), Sensitivity (Se) and Geometric mean of the true rates (GM) on one
fold, with different cuts after ROC post-processing. Tra=training data, Tst=test data

Cf tra Cf tst Se tra Se tst GM tra GM tst

MOCA-I cut 1 1 1 0.36 0.14 0.60 0.38
MOCA-I cut 2 1 0.75 0.53 0.21 0.72 0.46
MOCA-I cut 3 0.10 0.06 0.86 0.71 0.90 0.81

C4.5 1 0.75 0.39 0.21 0.62 0.46

was shown to be effective in this context, compared to state-of-the-art rule min-
ing classification algorithms. Moreover, it was proven to be more effective than
C4.5 and C4.5-CS on real hospital data to predict unknown observations. The
use of partial classification rules avoids some common inconsistencies brought
by Pittsburgh modeling, simplifying the conception of neighborhood operators.
Thanks to DMLS algorithm, parameters are easier to configure than in other
approaches based on genetic algorithm, while giving best results. To overcome
one of the drawback of dominance-based algorithms, obtaining an archive of 400
and more compromise solutions, we proposed two methods based on ROC curve.
The first helps the final user to choose the rules to keep, while the second auto-
matically generates one single solution without the intervention of the user.
Further research may include the development of new neighborhood operators,
like a covering operator that introduces rules concerning uncovered individuals.
Operators dealing with attribute granularity can be interesting, like the one pre-
sented in Plantevit et al. work [20]. They will allow generalizing or specializing
rules, defining new rule neighbors:

– R1 : juvenile diabetes → increased risk of stroke
– R1′ : diabetes → increased risk of stroke

With enhanced computational power another interesting approach would be to
use the area under the ROC curve (AUC) as an optimization criterion, instead of
Sensitivity and Confidence. Or the left-most portion of the area under the curve
(LAUC) as defined by Zhang et al. [21], if we want to allow a fixed number of
false positives.
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