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Despite an obvious demand for a variety of statistical tests adapted to classification images, few have been proposed. We
argue that two statistical tests based on random field theory (RFT) satisfy this need for smooth classification images. We
illustrate these tests on classification images representative of the literature from F. Gosselin and P. G. Schyns (2001) and
from A. B. Sekuler, C. M. Gaspar, J. M. Gold, and P. J. Bennett (2004). The necessary computations are performed using

the Stat4Ci Matlab toolbox.
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Introduction

In recent years, vision research has witnessed a tre-
mendous growth of interest for regression techniques ca-
pable of revealing the use of information (e.g., Ahumada,
1996; Eckstein & Ahumada, 2002; Gosselin & Schyns, 2004b).
Reverse correlation, one such technique, has been em-
ployed in a number of domains ranging from electroretino-
grams (Sutter & Tran, 1992), visual simple response time
(Simpson, Braun, Bargen, & Newman, 2000), single pulse
detection (Thomas & Knoblauch, 1998), vernier acuity
(Barth, Beard, & Ahumada, 1999; Beard & Ahumada, 1998),
objects discrimination (Olman & Kersten, 2004), stereop-
sis (Gosselin, Bacon, & Mamassian, 2004; Neri, Parker,
& Blakemore, 1999), letter discrimination (Gosselin &
Schyns, 2003; Watson, 1998; Watson & Rosenholtz, 1997),
single neuron’s receptive field (e.g., Marmarelis & Naka,
1972; Ohzawa, DeAngelis, & Freeman, 1990; Ringach &
Shapley, 2004), modal and amodal completion (Gold,
Murray, Bennett, & Sekuler, 2000), face representa-
tions (Gold, Sekuler, & Bennett, 2004; Kontsevich &
Tyler, 2004; Mangini & Biederman, 2004; Sekuler et al., 2004)
to temporal processing (Neri & Heeger, 2002). Bubbles, a
related technique (Gosselin & Schyns, 2001, 2002, 2004b;
Murray & Gold, 2004), has revealed the use of information for
the categorization of face identity, expression, and gender
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(Adolphs et al., 2005; Gosselin & Schyns, 2001; Schyns,
Bonnar, & Gosselin, 2002; Smith, Cottrell, Gosselin, &
Schyns, 2005; Vinette, Gosselin, & Schyns, 2004), for the
categorization of natural scenes (McCotter, Sowden, Gosse-
lin, & Schyns, in press), for the perception of an
ambiguous figure (Bonnar, Gosselin, & Schyns, 2002),
and for the interpretation of EEG signals (Schyns,
Jentzsch, Johnson, Schweinberger, & Gosselin, 2003;
Smith, Gosselin, & Schyns, 2004).

Both the Bubbles and the reverse correlation
techniques produce large volumes of regression
coefficients that have to be tested individually. As
we will shortly discuss, this raises the issue of false
positives: the risk of accepting an event that occurred
by chance. Surprisingly, few classification image re-
searchers have taken this into account (for exceptions,
see Abbey & Eckstein, 2002; Kontsevich & Tyler, 2004;
Mangini & Biederman, 2004). Here, we argue that two
statistical tests based on random field theory (RFT) satisfy
this need for smooth classification images. The core
ideas of RFT are presented. In particular, the main
equations for the tests are given. Finally, the usage of
a Matlab toolbox implementing the tests is illustrated
on two representative sets of classification images from
Gosselin and Schyns (2001) and Sekuler et al. (2004). But
first, in order to identify the critical properties of the
proposed statistical tests, we shall discuss some limitations
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of the two statistical tests that have already been applied
to classification images.

Multiple comparisons

In a typical classification image experiment, an ob-
server has to classify objects partially revealed by additive
(reverse correlation) or multiplicative (Bubbles) noise fields.
The calculation of the classification image amounts quite
simply to summing all the noise fields weighted by the
observer’s responses (Ahumada, 2002; Murray, Bennett,
& Sekuler, 2002). By doing this, the researcher is actu-
ally performing a multiple regression on the observer’s
responses and the noise fields (see Appendix). A sta-
tistical test compares these data against the distribution
of a random process with similar characteristics. Classi-
fication images can thus be viewed, under the null hypoth-
esis, as expressions of a random N-dimensional process
(i.e., a random field). The alternate hypothesis is that a
signal—known or unknown—is hidden in the regression
coefficients.

So far, researchers have used two statistical tests to
achieve this end: the Bonferroni correction and Abbey
and Eckstein’s (2002) Hotelling test. We will argue that
these tests are not adapted to some classification images.
The former is too conservative when the elements of the
classification images are locally correlated, and the latter
is not suitable in the absence of a priori expectations
about the shape of the signal hidden in the classification
images.

Bonferroni correction

Consider a one-regression coefficient Z-scored classi-
fication image (see Appendix). If this Z score ex-
ceeds a threshold determined by a specified p value, this
regression coefficient differs significantly from the null
hypothesis. For example, a p value of .05 means that if
we reject the null hypothesis, that is, if the Z score ex-
ceeds a threshold #; = 1.64, the probability of a false
alarm (or Type I error) is .05. Now consider a classi-
fication image comprising 100 regression coefficients:
the expected number of false alarms is 100 x 0.05 = 5.
With multiple Z tests, such as in the previous example,
the overall p value can be set conservatively using the
Bonferroni correction: pgon = p(Z > tgon)N, with N the
number of points in the classification image. Again, con-
sider our hypothetical 100-point classification image. The
corrected threshold, tgon, associated with pgon = .03, is
3.29. Such high Z scores are seldom observed in classi-
fication images derived from empirical data. In a clas-
sification image of 65,536 data points (typical of those
found in the literature, like the 256 x 256 classification
images from Gosselin & Schyns, 2001, reanalyzed in the
last section of this article), fgon becomes a formidable
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4.81! For classification images of low (or reduced) di-
mensionality such as those of Mangini and Biederman
(2004) or Kontsevich and Tyler (2004), the Bonferroni
correction prescribes thresholds that can be (and have
been) attained.

A priori expectations

Two possibilities should be considered: either these
classification images really do not contain anything statis-
tically significant (which seems unlikely given the robust-
ness of the results obtained with no Bonferroni correction;
e.g., Gosselin & Schyns, 2001; Schyns et al., 2002, 2003),
or the Bonferroni correction is too conservative. Do we
have a priori expectations that support the latter and can
we use these expectations to our advantage? Abbey and
Eckstein (2002), for example, have derived a statistical
test far more sensitive than the Bonferroni correction for
classification images derived from a two-alternative forced-
choice paradigm when the signal is perfectly known. Al-
though we often do not have such perfect a priori knowledge
about the content of classification images, we do expect
them to be relatively smooth.

The goal of Bubbles and reverse correlation is to reveal
clusters of points that are associated with the measured
response; for example, the mouth or the eyes of a face
(Gold et al., 2004; Gosselin & Schyns, 2001; Mangini &
Biederman, 2004; Schyns et al., 2002; Sekuler et al., 2004),
illusory contours (Gold et al., 2000), and so on. In other
words, it is expected that the data points of classification
images are correlated, introducing “smoothness” in the
solutions. The Bonferroni correction, adequate when data
points are independent, becomes far too conservative (not
sensitive enough) for classification images with a corre-
lated structure.

In the next section, we present two statistical tests based
on RFT that provide accurate thresholds for smooth, high-
dimensional classification images.

Random field theory

Adler (1981) and Worsley (1994, 1995a, 1995b, 1996)
have shown that the probability of observing a cluster
of pixels exceeding a threshold in a smooth Gaussian
random field is well approximated by the expected Euler
characteristic (EC). The EC basically counts the number
of clusters above a sufficiently high threshold in a
smooth Gaussian random fields. Raising the threshold
until only one cluster remains brings the EC value to 1;
raising it still further until no cluster exceeds the thresh-
old brings it to 0. Between these two thresholds, the
expected EC approximates the probability of observing one
cluster. The formal proof of this assertion is the centerpiece
of RFT.



Journal of Vision (2005) 5, 659-667

Next we present the main equations of two statistical
tests derived from RFT: the so-called pixel and cluster
tests, which have already been successfully applied for
more than 15 years to brain imaging data. Crucially, these
tests take into account the spatial correlation inherent to
the data set, making them well suited for classification
images.

Pixel test

Suppose that Z is a Z-scored classification image (see
Appendix). In RFT, the subset of Z searched for un-
likely clusters of regression coefficients—e.g., the face
area—is called the search space (S). The probability of
observing at least one regression coefficient exceeding t is
well approximated by

P(max Z>t) ~ iReselsd(S) “ECy(t) (1)
d=0

where D is the dimensionality of S; EC,(r) is the
d-dimensional EC density that depends partly on the type
of statistic (for EC densities of other random fields, see
Cao & Worsley, 2001; Worsley, Marrett, Neelin, Vandal,
Friston, & Evans, 1996); Resels,(S) is the d-dimensional
Resels (resolution elements), which varies with the size
and the shape of S. The EC densities of a D = two-
dimensional Gaussian random field Z are

ECo(1) = / 2m) b Sdu = p(Z>1), 2)
EC)(1) = 421:(2) e, (3)
and
EC,(1) _ 4 (22 te s, (4)
27)?

The Resels is given by

Resels;(S) = #ﬁ& , (5)

where V,(S) = 1 for a connected search region, V(S) =
half perimeter length of S, V»(S) = caliper area of S (a
disk of the same area as S gives a good approximation and
allows to derive the volumes of the lower dimension; see
Cao & Worlsey, 2001). The FWHM is the full width at
half maximum of the filter f used to smooth the inde-
pendent error noise in the image. If the filter is Gaussian
with standard deviation o}, then

FWHM = 0,\/81n2. (6)
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The filter f should be chosen to give the best discrimi-
nation, or in other words to maximize the detection of sig-
nal in Z. There is a classic theorem in signal processing,
the matched filter theorem, which states that to detect sig-
nal added to white noise, the optimum filter should match
the shape of the signal. This implies that to optimally
detect, say 10 pixel features, we should smooth the data
with 10 pixels FWHM filter. But if for instance it was felt
that larger contiguous areas of the image were involved in
discrimination, then this might be better detected by using
a broader filter at the statistical analysis stage (see Worsley
et al., 1996).

This dependency of the pixel test on the choice of an
adequate filter has led to a generalization of the test in
which an extra dimension, the scale of the filter, is added
to the image to create a scale space image (Poline &
Mazoyer, 1994; Siegmund & Worsley, 1995). The scale
space search reduces the uncertainty of choosing a filter
FWHM but at the cost of higher thresholds.

Cluster test

The pixel test computes a statistical threshold based
on the probability of observing a single pixel above the
threshold. This test has been shown to be best suited for
detecting focal signals with high Z scores (Poline, Worsley,
Evans & Friston, 1997). But if the region of interest in the
search space (the mouth in a face for example) is wide, it
has usually a lower Z score and cannot be detected. We
could improve detection by applying more smoothing to
the image. The amount of smoothing will depend on the
extent of the features we wish to detect (by the matched
filter theorem), but we do not know this in advance.

Friston, Worsley, Frackowiak, Mazziotta, and Evans
(1994) proposed an alternative to the pixel test to improve
the detection of wide signals with low Z scores (for a
review, see Poline et al., 1997). The idea is to set a low
threshold (¢ > 2.3—in the next section, we used ¢ = 2.7)
and base the test on the size of clusters of connected
pixels above the threshold. The cluster test is based on the
probability that, above a threshold ¢, a cluster of size K (or
more) pixels has occurred by chance that is calculated in
the D = 2 case as follows (Cao & Worsley, 2001; Friston
et al., 1994):

P(K> k) ~1 — e(—Reselsz(S)ECZ(t)p)’ (7)
where
p= e(*(\/Z_ﬂECz(t)k)/(FWHMZP(Z >1))) (8)

Cluster versus pixel test

The cluster and the pixel test presented above pro-
vide accurate thresholds but for different types of signal.
The pixel test is based on the maximum of a random field
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Cluster
=== Pixel

Z-score

Figure 1. Regions revealed by the cluster (red) versus the pixel
(green) test. See text for details.

and therefore is best adapted for focal signal (optimally
the size of the FWHM) with high Z scores (Poline et al.,
1997; Siegmund & Worsley, 1995). The cluster test is based
on the size of a cluster above a relatively low threshold
and therefore is more sensitive for detecting wide regions
of contiguous pixels with relatively low Z scores. The
two tests potentially identify different statistically signif-
icant regions in smooth classification images. Figure 1
illustrates this point with a one-dimensional classification
image comprising 257 pixels convolved with a Gaussian
kernel with an FWHM of 11.8 pixels. For a p value of .05,
the pixel test gives a threshold of 3.1 (green line) whereas
the cluster test gives a minimum cluster size of 6.9 above
a threshold of 2.7 (red line).

Furthermore, the interpretation of the results following
the application of the pixel and the cluster test differs
drastically. On the one hand, the cluster test allows the
inference that the clusters of Z scores larger than the
minimum size are significant, not that the individual Z
scores inside these clusters are significant. On the other
hand, the pixel test allows the conclusion that each
individual Z score above threshold is significant (Friston,
Holmes, Poline, Price, Frith, 1996; Friston et al., 1994,
Poline et al., 1997).

Accuracy

Since the late 1980s, RFT has been used to analyze pos-
itron emission tomography (PET) images, galaxy density
maps, cosmic microwave background data, and functional
magnetic resonance imaging (fMRI) data. In fact, the RFT
is at the heart of two popular fMRI data analysis pack-
ages: SPM2 (Frackowiak et al., 2003) and FMRISTAT
(Worsley, 2003).

Not surprisingly, the accuracy of RFT has been ex-
amined extensively. An accurate statistical test must be
both sensitive (i.e., high hit rate) and specific (i.e., high
correct rejection rate). In particular, RFT has been eval-
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uated in the context of so-called “phantom” simulations
(Hayasaka, Luan Phan, Liberzon, Worsley, & Nichols,
2004; Hayasaka & Nichols, 2003; Poline et al., 1997;
Worsley, 2005). A “phantom” simulation basically consists
of generating a lot of smooth random regression
coefficients, hiding a “phantom” in them (i.e., a known
signal—usually a disc or a Gaussian), attempting to detect
the “phantom” with various statistical tests, and deriving,
per statistical test, a measure of accuracy such as a
d-prime or an ROC area. We singled-out “phantom”
simulations for a reason: If we were to compare the
accuracy of various statistical tests for the detection of a
“phantom” template (e.g., used by a linear amplifier model)
in a smooth classification images, this is exactly what we
would have to do. In other words, these “phantom”
simulations inform us just as much about the accuracy of
RFT for fMRI data than about its accuracy for classification
images.

To summarize these assessments, the p values given by
RFT appears to be more accurate than those given by the
Bonferroni, the Hochberg, the Holm, the Sidak, and the
false discovery rate, provided that the size of the search
space is greater than about three times that of the FWHM
(Hayasaka & Nichols, 2003), that the FWHM is greater
than about five pixels (Taylor, Worsley, & Gosselin,
2005), and that the degree of freedom is greater than about
200. Also, the cluster test is more sensitive and less
specific than the pixel test.

Reanalyzing representative

classification images

In the final section of this article, we apply the pixel
and cluster tests to classification images representative of
the literature from Gosselin and Schyns (2001) and Sekuler
et al. (2004). We give sample commands for the Stat4Ci
Matlab toolbox throughout.

Matlab implementation

A mere four pieces of information are required for the
computation of the significant regions using the pixel and
the cluster tests: a desired p value, a threshold ¢ (only used
for the cluster test), a search space, and the FWHM—or,
equivalently, the sigma—of the Gaussian kernel used to
smooth the classification image. The main function from
the Stat4Ci Matlab toolbox—StatThresh.m—inputs this
information together with a suitably prepared classifica-
tion image (i.e., smoothed and Z-scored), performs all the
computations described above, and outputs a threshold for
the pixel test as well as the minimum size of a significant
cluster for the cluster test. The StatThresh.m function makes
extensive use of the stat_threshold.m function, which was
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t size resels Zmax Xx y
C [2.70] 970 0.44 4.17 122 129
[2.70] 917 0.41 3.95 162 129
P 3.30 -
p-value = 0.05
FWHM = 47.1

Minimum cluster size = 861.7

Figure 2. Sample summary table produced by DisplayRes.m
(from the reanalysis of classification images from Gosselin &
Schyns, 2001; see next section). The numbers between brackets
were set by the user. C = cluster test; P = pixel test; t = threshold;
size = size of the cluster; Zax, X, and y = maximum Z score and
its coordinates.

originally written by Keith Worsley for the FMRISTAT
toolbox.

Other functions included in the Stat4Ci toolbox perform
a variety of related computations; for example, ReadCid.m
reads a classification image data (CID) file; BuildCi.m con-
structs classification images from a CID file; SmoothCi.m
convolves a raw classification image with a Gaussian
filter; ExpectedSCi.m computes the expected mean and
standard deviation of a smooth classification image
(see Appendix); ZscoreSCi.m Z-scores a smoothed
classification image (see Equation 9 and Appendix); and
DisplayRes.m displays the thresholded Z-transformed
smooth classification image and outputs a summary table
(see Figure 2). All of these functions include thorough help
sections.

Sekuler et al. (2004)

Sekuler et al. examined the effect of face inversion
on the information used by human observers to resolve
an identification task. Four classification images extracted
using reverse correlation are reanalyzed: one for each com-
bination of two subjects (MAT and CMG) and two con-
ditions (UPRIGHT and INVERTED). Each classification
image cumulates the data from 10,000 trials. We will not
further describe this experiment. Rather we will limit the
presentation to what is required for to application of the
pixel and cluster tests.

First, the raw classification images must be convolved
with a Gaussian filter (i.e., smoothed). The choice of
the appropriate Gaussian filter depends essentially on the
size of the search space (for a discussion, see Worsley,
2005). We chose a Gaussian filter with a standard de-
viation of o, = 4 pixels; its effect are similar to those of
the filter used by Sekuler et al. (2004). Second, the
smooth classification images must be Z-scored. This can
sometimes be achieved analytically (see Appendix). How-
ever, if the number of trials is greater than 200—as is
usually the case with classification images—the transforma-
tion can be approximated as follows:

SCi = double(imread('GenderCi.tiff"));
sigma_b = 20; %std of smoothing filter
S_r = double(imread('faceMask.tif'))/255;

vecSCi = SCi(eq(S_r,0));

ZSCi = ZTransSCi(SCi,...
[mean(vecSCi(:)),std(vecSCi(:))D);

Z5GCI=s7SGlnisSap

p = .05; %p-value
IC =207 othieshold (fer €1as1el est)
Res = StatThresh(ZSCi,p,sigma_b,tC,S_n);

background = double(imread('w1H.JPG");
tCi = DiplayRes(Res,background);

Figure 3. Sample commands for the Stat4Ci Matlab toolbox (from the
reanalysis of classification images from Gosselin & Schyns, 2001).

ZSCi:SCl_SCl, (9)
O58Ci
where the mean and standard deviation are estimated di-
rectly from the data, preferably from signal-less regions
of the classification images (e.g., regions corresponding
to a homogeneous background). In the Stat4Ci toolbox,
classification image preparation can be done as illus-
trated in Figure 3.
Once the classification image has been smoothed and
Z-scored, it must be inputted into the StatThresh.m func-
tion together with the four additional required pieces

CMG MAT

Pixel

Cluster

Figure 4. Sekuler et al.’s (2004) classification images reanalyzed
using the Stat4Ci Matlab toolbox.
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GENDER EXNEX

Pixel

Cluster

Figure 5. Two of Gosselin and Schyns’ (2001) classification images
reanalyzed using the Stat4Ci Matlab toolbox.

of information: a p value (p < .05), the sigma of the
Gaussian filter used during the smoothing phase (o, = 4
pixels for this reanalysis), a threshold for the cluster test
(equal to 2.7 for this reanalysis), and a search space (i.e., the
face region).

The statistical threshold obtained using the pixel test is
very low compared with that obtained using the Bonferroni
correction (i.e., 3.67 rather than 4.5228; see Bonferroni
correction). In fact, the stat_threshold.m function outputs
the minimum between the Bonferroni and the pixel test
thresholds. Figure 4 displays the thresholded classifica-
tion images for both the pixel and cluster tests. For
the cluster test, only the clusters larger than the
minimum size (i.e., 66.6 pixels) are shown. Red pixels
indicate the regions that attained significance in the
UPRIGHT condition; green pixels, in the INVERTED
condition; and yellow pixels, in both. A face background
was overlaid to facilitate interpretation.

Gosselin and Schyns (2001)

Gosselin and Schyns (Experiment 1) examined the in-
formation used by human observers to resolve a GENDER
and an expressive versus not expressive (EXNEX) face
discrimination task. They employed the Bubbles techni-
que to extract two classification images per observer, one
per task. Each of the two classification images reana-
lyzed in this section combines the data from 500 trials
executed by subject FG. The classification images can be
built either from the opaque masks punctured by Gaussian
holes and applied multiplicatively to a face on each trial,
or from the center of these Gaussian holes. The former
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option naturally results in smooth classification images;
and the latter option calls for smoothing with a filter,
just like the classification images of Sekuler et al. (2004).
For this reanalysis, we used a Gaussian filter identical
to the one used to sample information during the actual
experiment (o, = 20 pixels). In this case, both options
are strictly equivalent. These smooth classification im-
ages (see SCi in Figure 3) were Z-scored using Equation 9
with estimations of the expected means and standard de-
viations based on the signal-less pixels outside the search
region.

Next, the Z-transformed smooth classification image
(see ZSCi in Figure 3) is inputted into the StatThresh.m
function with the four additional required pieces of infor-
mation: a p value (p <.05), the sigma of the Gaussian fil-
ter used during the smoothing phase (o, = 20 pixels for
this reanalysis), a threshold for the cluster test (equal to
2.7 for this reanalysis; see tC in Figure 3), and a search
space (see S_r in Figure 3). See Figure 3 for all the rel-
evant Stat4Ci toolbox commands.

Again, the statistical threshold obtained using the pixel
test is extremely low compared with that obtained using
the Bonferroni correction: 3.30 rather than 4.808 (see
Bonferroni correction). Figure 5 displays the thresholded
classification images for both the pixel and cluster tests.
For the cluster test, only the clusters larger than the
minimum size (i.e., 861.7 pixels) are shown. Red pixels
indicate the regions that attained statistical significance. A
face background (see background in Figure 3) was
overlaid to facilitate interpretation.

Take-home message

We have presented two statistical tests suitable for
smooth, high-dimensional classification images in the ab-
sence of a priori expectations about the shape of the sig-
nal. The pixel and the cluster tests, based on RFT, are
accurate within known boundaries discussed in the article.
These tests require only four pieces of information and
their computation can be performed easily using the Stat4Ci
Matlab toolbox. We expect these tests to be most useful
for researchers applying Bubbles or reverse correlation
to complex stimuli.

Appendix: The construction of
a classification image

In a reverse correlation or Bubbles experiment, an ob-
server is presented with a noise field on trial i (i =1, ..., n)
and produces the response Y;.
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At a particular pixel v, we suppose that some feature of
the noise field, X;(v), is correlated with the response. In a
reverse correlation experiment, X;(v) might be the added
noise at pixel v; in a Bubbles experiment, X{(v) might be
the actual bubble mask at pixel v. We aim to detect those
pixels where the response is highly correlated with the
image feature of interest. The sample correlation at pixel v

1S
(Xi(v) = X()(¥; - 7)
cw) = . (A1
Z \/;Ori(v) —)?(v))z\/;m ~7)

where bar indicates averaging over all » trials. It is straight-
forward to show that if there is no correlation between
image features and response, then

20 = Y1 =2€0) - o) (A2)
1 —C(v)?

has a Student-¢ distribution with n — 2 degrees of freedom
provided X;(v) is Gaussian, but in any case n is usually
very large so the standard normal distribution will be a
very good approximation, by the Central Limit Theorem.

Provided that >X; = 0 and >Y; = 0, the ZTransSCi.m
function from the Stat4Ci toolbox implements Equation Al.
In this case, the numerator is simply the sum of all the
noise fields weighted by the observer’s responses. The
remaining term in C(v) can be approximated if X;(v) is
white noise Wy(v) (i.e. independent and identically dis-
tributed noise at each pixel) convolved with a filter f(v),
that is if

Xi(v) = f(v—u)Wi(u). (A3)

In the case of reverse correlation, W;(v) is usually a
Gaussian random variable and often there is no filtering,
so f(v) is zero except for f(0) = 1. In the case of Bubbles,
W:(v) is a binary random variable taking the value 1 if
there is a bubble centered at v, and 0 otherwise. The

DX =XW) na? Y fV) (A4)

i

where ¢” is the variance of the white noise. For reverse
correlation, o is the variance of the Gaussian white noise.
For Bubbles, it is the Binomial variance

&:%(1—%):%, (AS)

where N, is the number of bubbles and N is the number of
pixels.

The central limit theorem ensures that, at the limit, Z(v)
is a Gaussian random field with an effective FWHM equals
to the FWHM of the filter f(v). The rate of convergence
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toward Gaussianity depends partly on the predictive
variable and partly on the total number of bubbles per
Resels. Worsley (2005) has examined the exactness of the
p values given by the Gaussian procedures presented in
this article in function of these two factors: At 10,000
bubbles per Resels, the p values given by the Gaussian
procedures depart from the true p values by less than
+0.04 logarithmic unit; at 500 bubbles per Resels,
a figure more often encountered in practice (e.g.,
Gosselin & Schyns, 2001), the discrepancy can be as
much as +0.3 logarithmic unit. If the predictive variable
has a positively skewed distribution, the Gaussian pro-
cedure is liberal; and if it has a negatively skewed distri-
bution, as is usually the case in practice (e.g., Gosselin &
Schyns, 2001), the Gaussian procedure is conservative.
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