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HIGHER BIFURCATION CURRENTS, NEUTRAL CYCLES AND THE

MANDELBROT SET

THOMAS GAUTHIER

Abstract. We prove that given any θ1, . . . , θ2d−2 ∈ R\Z, the support of the bifurcation
measure of the moduli space of degree d rational maps coincides with the closure of classes
of maps having 2d − 2 neutral cycles of respective multipliers e2iπθ1 , . . . , e2iπθ2d−2 . To
this aim, we generalize a famous result of McMullen, proving that homeomorphic copies
of (∂M)k are dense in the support of the kth-bifurcation current T kbif in general families
of rational maps, where M is the Mandelbrot set. As a consequence, we also get sharp
dimension estimates for the supports of the bifurcation currents in any family.

1. Introduction.

Given d ≥ 2, the bifurcation locus of any holomorphic family (fλ)λ∈Λ of degree d rational
maps (or of the moduli space Md of degree d rational maps) is the closure of the set of
discontinuity of the map λ 7→ Jλ, where Jλ is the Julia set of fλ. DeMarco [De1] has
shown that the bifurcation locus of Λ is the support of a closed positive (1, 1)-current
Tbif which is called the bifurcation current of the family (fλ)λ∈Λ. When (fλ)λ∈Λ is with
2d − 2 marked critical points c1, . . . , c2d−2, the current Tbif coincides with

∑

i Ti, where
Ti is the bifurcation current of the critical point ci (see [De2]). Bassanelli and Berteloot
[BB1] initiated the study of the self-intersections T kbif, 1 ≤ k ≤ min(2d − 2,dimΛ), of
the bifurcation current. Those currents give a natural stratification fo the bifurcation
locus by loci of stronger bifurcations and are well-adapted to the study of the complex
geometric properties of the bifurcation locus. We refer the reader to the survey [Du1]
or the lecture notes [B] for a report on recent results involving bifurcation currents and
further references.

Several different descriptions of the currents T kbif have been provided by various authors.
Let us mention some known results. The set Pern(w) of parameters λ ∈ Λ for which fλ has
a cycle of multiplier w ∈ C and exact period n is a complex hypersurface of Λ. Bassanelli
and Berteloot [BB2] proved that the kth bifurcation current T kbif is actually the limit of
integration currents of the form

d−(s1(n)+···+sk(n))

(2π)m

∫

[0,2π]k

k
∧

j=1

[Persj(n)(re
iθj )]dθ1 · · · θk ,

for any r > 0 and a suitable choice of increasing functions sj : N −→ N. In the family
of all degree d polynomials, they give in [BB3] a much stronger result when k = 1: they
prove that the hypersurfaces d−n[Pern(re

iθ)] converge to Tbif for fixed r ≤ 1 and θ ∈ R.
Regarding Bassanelli and Berteloot’s work, one can expect the current T kbif to be the limit
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of currents of the form d−(s1(n)+···+sk(n))[Pers1(n)(re
iθ1)] ∧ · · · ∧ [Persk(n)(re

iθk)] for fixed
θi ∈ R and r. Recently, Favre and the author [FG] gave an affirmative answer to this
question in the case when r < 1 and k = d− 1 in the family of all degree d polynomials,
using a Theorem of equidistribution of small points due to Yuan. This question remains
wide open when r > 1.

In this paper we focus on a weaker question of topological nature, namely, whether
parameters possessing k distinct neutral cycles of given multipliers are dense in the support
of T kbif. Our first result can be formulated as follows.

Theorem 1. Let Tbif be the bifurcation current of the moduli space Md of degree d rational
maps. For any 1 ≤ k ≤ 2d− 2 and any Θk = (θ1, . . . , θk) ∈ (R \ Z)k,

supp
(

T kbif
)

= Zk(Θk) = Prerep(k),

where Prerep(k) := {[f ] ∈ Md ; f has k critical points preperiodic to repelling cycles} and
Zk(Θk) := {[f ] ∈ Md ; f has k distinct cycles of resp. multipliers e2iπθ1 , . . . , e2iπθk}.

Let us mention that the equality supp(T kbif) = Prerep(k) is known (see [BE, BG, DF]
for the case when k is maximal). Dujardin [Du2, Corollary 5.3] proved it in the general
case, using a transversality Theorem concerning laminar currents.

Let us now describe how we prove Theorem 1. The main point is to generalize Mc-
Mullen’s universality of the Mandelbrot set: McMullen [M2] proved that in any one-
dimensional family of rational maps, the bifurcation locus contains quasiconformal copies
of the Mandelbrot set M. We prove here that under some mild assumptions, the loci
of stronger bifurcations contain also copies of products of the Mandelbrot set with itself.
Relying on [M2] and [G], we prove the following.

Theorem 2. Let (fλ)λ∈Dm be a holomorphic family of degree d rational maps with simple
marked critical points c1, . . . , ck with k ≤ m. Assume that c1, . . . , ck are transversely
preperiodic to repelling cycles of f0. Then, for any ǫ > 0, there exists a compactly contained
continuous embbeding Φ : Mk × D

m−k →֒ D
m and integers n1, . . . , nk ≥ 1 such that

(1) for any (ζ1, . . . ζk, t) ∈ Mk × D
m−k, if λ = Φ(ζ1, . . . , ζk, t), there exists k disjoint

compact sets K1, . . . ,Kk ⊂ P
1 such that fniλ : Ki → Ki is hybrid conjugate to

z2 + ζi.
(2) the set Φ

(

(∂M)k × D
m−k

)

is contained in supp(T1 ∧ · · · ∧ Tk) and
dimH Φ

(

(∂M)k × D
m−k

)

≥ 2m− ǫ.

This generalization of McMullen’s Theorem is done in section 3. To prove Theorem
2, we use McMullen’s universality for each critical point separately to produce k “tubes”
of Mandelbrot set homeomorphic to M × D

m−1 and which are tranverse to each other.
We then construct Φ as a map from Mk × D

m−k to the intersection of those tubes. Let
us stress out that the dimension estimate uses Shishikura’s famous result [Sh] concerning
the Hausdorff dimension of the Mandlebrot set and Hölder regularity properties of Φ (see
Theorem 3.1). Using [G, Theorem 6.2], we then prove that the copy of (∂M)k × D

m−k

given by Φ actually lies in the support of T1 ∧ · · · ∧ Tk (see Proposition 3.4).
Let us also mention that Inou and Kiwi [IK] and Inou [I] have already obtained strength-

ened versions of McMullen’s unversality of the Mandelbrot set in a different setting and
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given an explicit condition for the related embedding to be not continuous. On the other
hand, Buff and Henriksen [BH2] proved that some parameter spaces contain quasiconfor-
mal copies of Julia sets.

In [G], the author obtained sharp dimension estimates for the strong bifurcation loci
of the space Ratd of all degree d rational maps. Using Theorem 2, we actually get sharp
estimates for the Hausdorff dimension estimate for the strong bifurcation loci of a general
family. This is the subject of our third result.

Theorem 3. Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps. Assume that
there exists λ0 such that fλ0 has simple critical points and let 1 ≤ k ≤ 2d − 2 be such

that T kbif 6= 0. Then supp(T kbif) \ supp(T k+1
bif ) 6= ∅ and for any open set Ω ⊂ Λ such that

Ω ∩ supp(T kbif) \ supp(T k+1
bif ) 6= ∅, we have

dimH

(

Ω ∩ supp(T kbif) \ supp(T k+1
bif )

)

= 2dimC Λ.

Let us also remark that our results strongly rely on [G, Theorem 6.2] and that Theorems
1 and 3 also rely on [Du2, Theorem 0.1]. The main difference with the proof of Theorem
1.1 of [G] is the transfer phenomenom which is performed. Instead of transferring directly
“big” sets from the dynamical space to the parameter space, we transfer a complete
“simplified” parameter space into our actual parameter space.

Section 4 is devoted to explaining how to apply results from the previous sections to
the particular case of the space Ratcmd of all critically marked degree d rational maps in
order to obtain Theorem 1. We also give a similar result for the case of the moduli space
Pcm
d of critically marked degree d polynomials, which is based on a simpler argument.

Aknowledgements. The author would like to thank François Berteloot, Xavier Buff,
Arnaud Chéritat, Romain Dujardin, Charles Favre and Carsten Petersen without whose
precious advices and knowledge this paper would never have appeared. The author would
also like to thank the IMS and Stony Brook University which he was visiting during the
automn 2012 and where he finished the elaboration of the present work.

2. Preliminaries.

Let us begin with introducing some tools and recalling known results we will need.

2.1. The hypersurfaces Pern(w).

To understand the geometry of the bifurcation locus of a holomorphic family of rational
maps, one can investigate the geometry of the set of rational maps having a cycle of given
multiplier and period. The following result describes the set of such parameters (see [Si]):

Theorem 2.1 (Silverman). Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps.
Then for any n ∈ N

∗ there exists a holomorphic function pn : Λ× C −→ C such that :

(1) For any w ∈ C \ {1}, pn(λ,w) = 0 if and only if fλ has a cycle of exact period n
and of multiplier w,
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(2) pn(λ, 1) = 0 if and only if fλ has a cycle of period n and multiplier 1 or fλ has a
cycle of period m and multiplier a r-th root of unity with n = mr,

(3) for any λ ∈ X, the function pn(λ, ·) is a polynomial of degree Nd(n) ∼ 1
nd

n.

Moreover, if Λ is a quasi-projective variety, the functions pn are polynomials in (λ,w).

For n ≥ 1 and w ∈ C we set Pern(w) := {λ ∈ Λ / pn(λ,w) = 0}. We will say that a
neutral periodic point of fλ0 is persistent in Λ if it can be perturbed as a neutral periodic
point of fλ for any λ in a neighborhood of λ0 in Λ, i.e. that Pern(e

iθ) = Λ for some n, θ.

2.2. Bifurcation current of a critical point.

Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps. We say that c is a marked
critical point if c : Λ −→ P

1 is a holomorphic map satisfying f ′λ(c(λ)) = 0 for every λ ∈ Λ.
If deg(fλ, c(λ)) = 2 for any λ ∈ Λ, we will say the the marked critical point c is simple.

Definition 2.2. We say that a marked critical point c is passive at λ0 in Λ if (fnλ (c(λ)))n≥0

is a normal family in a neighborhood of λ0. Otherwise we say that c is active at λ0 in Λ.

Let ω be the Fubini-Study form on P
1 and denote by cn(λ) := f◦nλ (c(λ)). Dujardin and

Favre prove in [DF, Section 3.1] that the sequence d−nc∗nω converges to a positive closed
(1, 1)-current Tc with local continuous potential, which support coincides with the activity
locus of the marked critical point c.

Definition 2.3. Tc is called the bifurcation current of the marked critical point c.

As Tc has local continuous potential, the self-intersections of Tc are well-defined in the
sense of Bedford and Taylor (see [BT]). The bifurcation current of a critical point never
has self-intersections (see [DF, Proposition 6.9] for polynomial families and [G, Theorem
6.1] for the general case).

Lemma 2.4 (Dujardin-Favre, Gauthier). Let (fλ)λ∈Λ be a holomorphic family of degree
d rational maps with a marked critical point c, then Tc ∧ Tc = 0.

Assume that (fλ)λ∈Λ is with 2d− 2 marked critical points c1, . . . , ck and dimΛ ≥ k and

let us set Hi(ki, pi) :=
{

λ ∈ Λ / f
◦(ki+pi)
λ (ci(λ)) = f◦piλ (ci(λ)) and f

◦pi
λ (ci(λ)) is repelling

}

,
for 1 ≤ i ≤ k.

Definition 2.5. If λ0 ∈ ⋂1≤i≤kHi(ki, pi), we say that c1, . . . , ck fall transversely onto
repelling cycles at λ0 if the hypersurfaces Hi are smooth at λ0 and intersect transversely
at λ0. If they only intersect properly, we say that c1, . . . , ck fall properly onto repelling
cycles at λ0.

Dujardin [Du2] proved the following which we will use for proving Theorems 1 and 3.

Theorem 2.6 (Dujardin). Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps
with 2d−2 marked critical points c1, . . . , ck and let T1, . . . , Tk be their respective bifurcation
currents. Then

supp(T1 ∧ · · · ∧ Tk) = {λ ∈ Λ /c1, . . . , ck fall transversely onto repelling cycles}.
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2.3. The bifurcation currents of a holomorphic family.

Every rational map f of degree d ≥ 2 on the Riemann sphere admits a unique maximal
entropy measure µf . The Lyapunov exponent of f with respect to this measure is defined
by

L(f) =

∫

P1

log |f ′|µf .

It turns out that, for any holomorphic family (fλ)λ∈Λ of degree d rational maps, the
function L : Λ −→ L(fλ) is p.s.h and continuous on Λ (see [BB1]).

Definition 2.7. The bifurcation current of the family (fλ)λ∈Λ is the closed, positive (1, 1)-
current on Λ defined by Tbif := ddcL.

The support of Tbif coincides with the bifurcation locus of the family (fλ)λ∈Λ in the
sense of Mañé-Sad-Sullivan. This actually follows from the so-called DeMarco’s formula
(see [De2, Theorem 1.1] or [BB1, Theorem 5.2]), which, for families with 2d − 2 marked
critical points c1, . . . , c2d−2, may be stated as follows:

Tbif =
2d−2
∑

i=1

Ti.

Definition 2.8. Let 1 ≤ k ≤ min(2d−2,dimΛ). The kth-bifurcation current of the family
(fλ)λ∈Λ is the closed positive (k, k)-current defined by T kbif := (ddcL)k.

Lemma 2.4 directly gives for 1 ≤ k ≤ 2d− 2:

T kbif = k!
∑

i1<···<ik

Ti1 ∧ · · · ∧ Tik .(1)

The locus supp(T kbif) can thus be interpretted as the set of parameters for which at least
k critical points are active in an “independent” manner.

2.4. Quadratic-like maps.

Let U, V ⊂ C be discs such that U ⋐ V . We say that f : U −→ V is a quadratic-like map
if it is a degree 2 branched cover. The filled-in Julia set K(f) of f is the set

K(f) :=
⋂

n≥1

f−◦n(V )

of points z ∈ U such that f◦n(z) ∈ V for any n ≥ 1. We say that the map f is hybrid
conjugate to a quadratic polynomial pζ(z) := z2+ζ if there exists a quasi-conformal map ϕ
from a neighborhood of Kζ := K(pζ) to a neighborhood of K(f) which satisfies ϕ◦pζ = f◦ϕ
and ∂ϕ = 0 on Kζ .

Douady and Hubbard proved that for any holomorphic family of quadratic-like maps,
the Mandelbrot set plays the role of a good model. Les us summarize here the properties
of quadratic-like maps established by Douady and Hubbard (see [DH, Proposition 13 and
Chapter IV]).

Theorem 2.9 (Douady-Hubbard). Let (fλ)λ∈Λ be a holomorphic of quadratic-like maps
parametrized by a complex manifold Λ. Let MΛ := {λ ∈ Λ / K(fλ) is connected}. There
exists a continuous map χ : MΛ −→ M such that:
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(1) χ is holomorphic from M̊Λ to M̊,
(2) for any λ ∈ MΛ, if χ(λ) = ζ, the map fλ is hybrid conjugate to z2 + ζ on K(fλ),
(3) for all ζ ∈ M, the set χ−1{ζ} is an analytic hypersurface,
(4) if dimΛ = 1 and λ0 ∈ MΛ, then there exists a neighborhood V ⊂ Λ of λ0 such that

either χ is constant along V or χ(V ) contains a neighborhood of χ(λ0) in M.

The map χ defined in Theorem 2.9 is called the straightening map of the family (fλ)λ∈Λ.
Denote by ♥ the main cardioid of the Mandelbrot se M. Combined with the fact that
the multiplier of the non-repelling fixed point parametrizes ♥, Theorem 2.9 gives (see also
[BB3, Section 3.2] for a proof based on potential theoretic arguments):

Corollary 2.10 (Bassanelli-Berteloot, Douady-Hubbard). For any θ ∈ R, the set of ζ ∈ C

for which pζ has a cycle of multiplier e2iπθ is dense in ∂M.

Let gζ(z) := pζ(z) + h(ζ, z) be a holomorphic family of maps defined for (ζ, z) ∈
D(0, R)×D(0, R), where R > 10 and g′ζ(0) = 0. Denote by Mg the set of ζ ∈ D(0, R) such

that the orbit (g◦nζ (0))n remains in D(0, R) for any n > 0. In what follows, we will use the

following Lemma which is due to McMullen (see [M2, Lemma 4.2]):

Lemma 2.11 (McMullen). There exists δ > 0 such that if sup(ζ,z) |h(ζ, z)| = ǫ < δ then
there exists a homeomorphism ϕ : M −→Mg such that:

(1) gφ(ζ) is hybrid conjugate to pζ for any ζ ∈ M,
(2) |ϕ(ζ)− ζ| < O(ǫ),
(3) ϕ extends to a (1 + ǫ/δ)-quasiconformal homeomorphism of C.

3. The Mandelbrot set is universal, revisited.

Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps. In the present section, we
want to prove that, under some reasonnable condition on the family, the parameter space
Λ contains homeomorphically embedded copies of Mk × D

dimΛ−k, which generalizes the
work The Mandelbrot set is universal [M2] of McMullen. The main result of this section
is the following.

Theorem 3.1. Let (fλ)λ∈Dm be a holomorphic family of degree d rational maps with
marked simple critical points c1, . . . , ck with k ≤ m. Assume that c1, . . . , ck fall transversely
onto repelling cycles at 0. Then, for any ǫ > 0, there exists a homeomorphic embedding
Φ : Mk × D

m−k −→ D
m and a continuous family {ϕζ,t,i : P1 −→ P

1}(ζ,t)∈Mk×Dm−k,1≤i≤k

of (1 +O(ǫ))-quasi-conformal homeomorphisms satisfying the following properties:

(1) Φ(ζ, ·) : Dm−k −→ D
m is holomorphic for any ζ ∈ Mk,

(2) Φ is holomorphic on (M̊)k × D
m−k,

(3) dimH

(

Φ((∂M)k ×D
m−k)

)

≥ 2m−O(ǫ),
(4) for any 1 ≤ i ≤ k, there exists ni ≥ 1 such that ϕζ,t,i ◦ pζi = f◦niΦ(ζ,t) ◦ ϕζ,t,i on Kζi

and the conjugacy is hybrid.

This is the combination of that result with [G, Theorem 6.2] which will actually give
Theorem 2 (see Section 3.3).
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3.1. Technical lemmas.

To give Hausdorff dimension of estimates, we will need the two following Lemmas. The
first one is due to McMullen (see [M2, Lemma 5.1]) and a proof of the second one is
provided.

Lemma 3.2. Let Y be a metric space and X ⊂ Y × [0, 1]k. Denote by Xt the slice
Xt := {y ∈ Y / (y, t) ∈ X}. If Xt 6= ∅ for almost every t ∈ [0, 1]k, then

dimH

(

X
)

≥ k + dimH

(

Xt

)

, for almost every t.

Let us recall that a map h : (X, d) −→ (Y, d′) is α-bihölder with constant C > 0 if

C−1d′(x, x′)1/α ≤ d(f(x), f(x′)) ≤ Cd(x, x′)α, for any x, x′ ∈ X.

Lemma 3.3. Let E1, . . . , Ek ⊂ D and f : E1 × · · · × Ek −→ C
k be a map. Assume that

there exists C > 0 and 0 < α ≤ 1 such that for any 1 ≤ j ≤ k and any xi ∈ Ei with i 6= j,
for all x, x′ ∈ Xj ,

x 7−→ f(x1, . . . , xj−1, x, xj+1, . . . , xk)

is α-biHölder with constant C and

f({x1, . . . , xj−1} × Ej × {xj+1, . . . , xk}) ⊂ {a1, . . . , aj−1} × C× {aj+1, . . . , ak}
for some ai ∈ C, i 6= j only depending on f and the xi, i 6= j. Then f is α-biHölder with
constant C.max{k, k1/2α}. In particular,

dimH(f(E1 × · · · × Ek)) ≥ α
k
∑

j=1

dimH(Ej) .

Proof. Up to taking C ′ ≥ C, we can assume that C ≥ 1. Let E := E1 × · · · × Ek. Let
x, x′ ∈ E, then by assumption,

‖f(x)− f(x′)‖ ≤
k
∑

j=1

‖f(x′1, . . . , x′j, xj+1, . . . , xk)− f(x′1, . . . , x
′
j−1, xj , . . . , xk)‖

≤ C

k
∑

j=1

|xj − x′j|α ≤ C.k‖x − x′‖α.

Again, by hypothesis, we have

‖x− x′‖ ≤
√
k max
1≤j≤k

|xj − x′j | ≤ Cα
√
k max
1≤j≤k

‖f(x)− f(x1, . . . , xj−1, x
′, xj+1, . . . , xk)‖α.

By assumption, ‖f(x) − f(x1, . . . , xj−1, x
′, xj+1, . . . , xk)‖ = |(f(x))j − (f(x′))j | and thus

‖x − x′‖ ≤ Cα
√
k max
1≤j≤k

|(f(x))j − (f(x′))j |α ≤ Cα
√
k‖f(x) − f(x′)‖α. The Hausdorff

dimension estimate is classical (see e.g. [F]). �
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3.2. Embeddings of k-fold products of M: proof of Theorem 3.1

By assumption, for any 1 ≤ i ≤ k, there exists integers pi, ki ≥ 1 such that

f
◦(ki+pi)
0 (ci(0)) = f◦pi0 (ci(0)).

Denote by ai := f◦ki0 (ci(0)). As ai is a repelling cycle of f0, by the implicit function
Theorem, up to reducing D

m, we may assume that ai can be followed holomorphically on
the whole D

m as a pi-repelling cycle ai(λ) of fλ. Let us now set:

χ : Dm −→ C
k

λ 7−→
(

f◦p1λ (c1(λ)) − a1(λ), . . . , f
◦pk
λ (ck(λ))− ak(λ)

)

.

By assumption, up to reducing Dm, the map χ is a submersion onto its image Ω. The map χ
allows us to defined a system of coordinates (x1, . . . , xm) of for which {χi = 0} = {xi = 0},
so that {χ = 0} = {(0, . . . , 0)}×D

m−k in a neighborhood Ω1 of 0 ∈ D
m. Let us fix R = 20,

let δ > 0 be given by Lemma 2.11 and let us fix 0 < ǫ < δ. Let us denote by (Hj) the
following assertion:

(Hj): There exists ρj > 0 and a continuous embedding Φj : M
j × D

m−j
ρj −→ Ω1, and a

continuous family {ϕζ,x′,l : P1 −→ P
1}

(ζ,x′)∈Mj×D
m−j
ρj

,1≤l≤j
of (1 +O(ǫ))-quasi-conformal

homeomorphisms for which

(1) For any 1 ≤ l ≤ j, t ∈ D
m−j
ρj , ζ1, . . . , ζl−1, ζl+1, . . . , ζj ∈ Mj−1 the map

ζ 7−→ Φj(ζ1, . . . , ζl−1, ζ, ζl+1, . . . , ζj , t)

is locally 1/(1 +O(ǫ))-bihölder continuous. Moreover, the hölder constants are
independant of t, ζ1, . . . , ζl−1, ζl+1, . . . , ζj and

Φj({ζ1, . . . , ζi−1} ×M× {ζi+1, . . . , ζj}) ⊂ {a1, . . . , ai−1} × C× {aj+1, . . . , am}
for some ai ∈ C, i 6= l, depending only on Φj, ζi, i 6= l and t ∈ D

m−j
ρj .

(2) Φj is holomorphic on (M̊)j × D
m−j
ρj ,

(3) For any ζ ∈ Mj, the set Φj({ζ} × D
m−j
ρj ) is a holomorphic graph of the form

Φj({ζ} × D
m−j
pj ) =

{

x1 = u1(x
′), . . . , xj = uj(x

′), x′ ∈ D
m−j
ρj

}

.

(4) for 1 ≤ l ≤ j, there exists nl ≥ 1 such that ϕζ,t,l ◦ pζl = f◦nlΦ(ζ,t) ◦ ϕζ,t,l on Kζl and

the conjugacy is hybrid.

We want to prove (Hj) by finite induction on j. To cinclude, we just have to prove
assertion (3) of the Theorem. Let us begin with proving (H1). To this aim, let us set

Λ1 := {χ2 = . . . = χk = 0} ∩ {xk+1 = · · · = xm = 0} = {x ∈ Ω1 / x2 = . . . = xm = 0}.
Since χ is a local submersion at 0, χ1 6≡ 0 on Λ1. By [G, Lemma 3.1], the critical
point c1 is thus active at 0 in Λ1. Since c1(0) is preperiodic under iteration of f0, there
exists n ≥ 1 such that f◦n0 (c1(0)) is a periodic point of f0. Moreover, it is a repelling
periodic point. Up to multiplying n by the period of f◦n0 (c1(0)), we also may assume
that f◦2n0 (c1(0)) = f◦n0 (c1(0)), i.e. that f◦n0 (c1(0)) is a repelling fixed point for f◦n0 . By
a Theorem of McMullen (see [M2, Theorem 3.1]), there exists an integer n1 ≥ n and a
coordinate change on P

1, such that in this coordinate c1 ≡ 0 on Λ1 and

f◦n1
λ (z) = z2 + ζ + h(z, ζ),(2)
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whenever z, ζ ∈ D(0, 2R), with sup |h(z, ζ)| ≤ ǫ/2 and λ = ψ1(ζ) := t1(1 + γ1ζ) ∈ Λ1 and
0 < |t1|, |γ1| < ǫ. Therefore, for x′ ∈ D

m−1 close enough to 0′, in the coordinate given
by Theorem 3.1 of [M2], the map fλ satisfies (2) for z, ζ ∈ D(0, R), with sup |h(z, ζ)| ≤ ǫ
and λ = ψ1(ζ) := t1(1 + γ1ζ) + x′ ∈ Λ1 + x′. This means that there exists a family of
quadratic-like maps (f◦n1

λ )λ∈ψn(D(0,R))×D
m−1
ρ1

for some ρ1 > 0 parametrized by the open set

ψ1(D(0, R)) × D
m−1
ρ1 of Dm. The existence of a surjective map

φ1 :Mψ1(D(0,R))×D
m−1
ρ1

−→ M

follows from Theorem 2.9. Les us now set:

Ψ1 :Mψn(D(0,R))×D
m−1
ρ1

−→ M× D
m−1
ρ1

λ 7−→ (φ1(λ), λ2, . . . , λm).

By Lemma 2.11, the map Ψ1|Mψ1(D(0,R))+x′
:Mψ1(D(0,R))+x′ −→ M× {x′} is an homeomor-

phism which is the restriction of a (1 + O(ǫ))-quasiconformal, for any x′ ∈ D
m−1
ρ1 . The

assertions (1)− (4) of (H1) are then satisfied by Φ1 := Ψ−1
1 , after Theorem 2.9.

We now assume that for 1 ≤ j ≤ k− 1, we have already established assertion (Hj). Let

us consider ζ(j) ∈ (∂M)j be such that the critical point of z2 + ζ
(j)
i is preperiodic to a

repelling cycle and let us set

Λj+1 := Φj({ζ(j)} × D
m−j
ρj ) ∩ {xj+2 = · · · = xm = 0}

and let λ(j+1) ∈ Λj+1 ∩ {xj+1 = 0}. The critical points cj+2, . . . , ck are passive in the
family Λj+1 and, by the assumption (4) of the induction hypothesis (Hj), up to reordering
the critical points, we can assume that the critical points c1, . . . , cj are passive in the
family (ft)t∈Λj+1 . In addition, by assumption (3) of (Hj), the set Λj+1 is of the form

Λj+1 = {x1 = u1(x
′), . . . , xj = uj(x

′), x′ ∈ D
m−j
ρj } ∩ {xj+1 = · · · = xk = 0}.

Therefore, the analytic sets Λj+1 and {xj+1 = 0} intersect properly at λ(j+1). Therefore,

by [G, Lemma 3.1], the critical point cj+1 is active at λ(j+1) in Λj+1. Using again [M2,
Theorem 3.1], we find an integer nj+1 ≥ 1 and a coordinate change on P

1, such that in this

coordinate cj+1 ≡ 0 on Λj+1 and f
◦nj+1

t (z) = z2+ζ+h(z, ζ), whenever z, ζ ∈ D(0, 2R), with
sup |h(z, ζ)| ≤ ǫ/2 and t = ψj+1(ζ) := tj+1(1 + γj+1ζ) ∈ Λj+1 and 0 < |tj+1|, |γj+1| < ǫ.
We then proceed as in the previous step to find 0 < r ≤ ρj and to build a continuous
injection

Ψj+1 : D
j
r ×M× D

m−j−1
r −→ D

m(Φj(ζ
(j), 0′), r)

satisfying (H1). In particular, for any ζ ∈ M, the set Ψj+1(D
j
r × {ζ} × D

m−j−1
r ) is a

holomorphic graph of the form

Ψj+1(D
j
r × {ζ} × D

m−j−1
r ) =

{

xj+1 = uj+1(x
′, x′′), x′ ∈ D

j
r, x′′ ∈ D

m−j−1
r

}

.

We now may construct the map Φj+1, using Φj and Ψj+1. By a classical result of Douady
and Hubbard (see [DH], see also [M2, Theorem 4.1]), there exists (1 + ǫ)-quasiconformal
embeddings φi : M −→ M which images are respectively contained in arbitrary small

neighborhoods of ζ
(j)
i . Therefore, the maps φi ca be chosen so that

Φj
(

φ1(M)× · · · × φj(M)×D
m−j
ρj

)

∩Ψj+1(D
j
r × {ζj+1} × {0}) ⋐ Ψj+1(D

j
r × {ζj+1} × {0})

for any ζj+1 ∈ M. By continuity of Ψj+1, we thus can find 0 < ρj+1 ≤ r such that
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Φj
(

φ1(M)×· · · ×φj(M)×D
m−j
ρj

)

∩Ψj+1(D
j
ρj+1 ×{ζ}×{x′}) ⋐ Ψj+1(D

j
ρj+1 ×{ζ}×{x′}),

for any (ζj+1, x
′) ∈ M × D

m−j−1
ρj+1 . The hypothesis (3) of (Hj) guaranties that for any

ζ1, . . . , ζj+1 ∈ M and any x′ ∈ D
m−j−1
ρj+1 , the intersection

Φj
(

{(φ1(ζ1), . . . , φj(ζj))} × Dρj × {x′}
)

∩Ψj+1(D
j
ρj+1 × {ζ} × {x′})

is reduced to one point.
We define Φj+1(ζ, x

′) as this only intersection point. The properties of Φj and Ψj+1

respectively given by (Hj) and (H1) directly imply that the map Φj+1 satisfies the asser-
tions (2), (3) and (4) of (Hj+1). To conclude, it remains to remark that, by the regularity
properties of Φj and Ψj+1, the map Φj+1 obviously satisfies (1).

We have shown that Φ exists and satisfies (1), (2) and (4). It remains to justify the fact
that Φ satisfies (3). First, let us remark that assumption (1) of (Hk) combined with Lemma

3.3 implies that for any t ∈ D
m−k, the map Φ(·, t) : Mk −→ Ω1 is locally 1/(1 + O(ǫ))-

bihölder. Let now ζ ∈ (∂M)k and let ρ > 0 be such that Φ(·, t) is 1/(1 + O(ǫ))-bihölder
on D

k(ζ, ρ). Lemma 3.3 and [Sh, Theorem A] give

dimH

(

Φ
(

(∂M)k ∩D
k(ζ, ρ), t

))

≥ (1 +O(ǫ)) dimH((∂M)k ∩ D
k(ζ, ρ))

≥ (1 +O(ǫ))
k
∑

j=0

dimH((∂M) ∩D(ζj , ρ))

≥ 2k(1 +O(ǫ)).

Lemma 3.2 and assertion (3) of (Hk) then state that for almost every t ∈ D
m−k,

dimH

(

Φ
(

(∂M)k × D
m−k

))

≥ 2(m− k) + dimH

(

Φ
(

(∂M)k × {t}
))

≥ 2(m− k) + 2k(1 +O(ǫ)) = 2m−O(ǫ),

which ends the proof.

3.3. A consequence: Theorem 2.

We now prove that the homeomorphically embedded copies of (∂M)k ×D
dimΛ−k given by

Theorem 3.1 are contained in the support of the bifurcation currents. As a consequence, we
obtain optimal Hausdorff dimension estimates for the supports of the bifurcation currents.
Theorem 3.1 combined with [G, Theorem 6.2] yields the following key Proposition.

Proposition 3.4. Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps. Assume
that c1, . . . , ck are marked simple critical points and denote by T1, . . . , Tk their respective
bifurcation currents. Assume that k ≤ m = dimΛ and T1 ∧ · · · ∧ Tk 6= 0. Then, for any
ǫ > 0, the homeomorphic embeddings of the set (∂M)k × D

m−k given by Theorem 3.1 are
contained in supp(T1 ∧ · · · ∧ Tk).
Proof. Consider a dense sequence ζj ⊂ ∂M for which 0 is preperiodic to a repelling cycle for
z2+ ζj. Since ∂M is the bifurcation locus of the family (z2+ ζ)ζ∈C, the existence of such a
sequence is just an straight foward consequence of Montel’s Theorem (see for example [DF,
Lemma 2.3] or [M2, Lemma 2.1]). Set j := (j1, . . . , jk) and ζj := (ζj1 , . . . , ζjk). Let Φ be the

embbeding given by Theorem 3.1. Since the set {(ζj, x′) ∈ (∂M)k × D
m−k / j ∈ (Z+)

k}
is dense in (∂M)k × D

m−k, it is sufficient to show that Φ(ζj, x
′) ∈ supp(T1 ∧ · · · ∧ Tk)
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for all j ∈ (Z+)
k and all x′ ∈ D

m−k. By item (4) of Theorem 3.1, the critical points
c1, . . . , ck fall onto repelling cycles at Φ(ζj, x

′) for any x′ ∈ D
m−k. Since that c1, . . . , ck

fall properly onto repelling cycles for any j ∈ (Z+)
k. [G, Theorem 6.2] then states that

Φ(ζj, x
′) ∈ supp(T1 ∧ · · · ∧ Tk). �

Proof of Theorem 2. This is a direct consequence of Theorem 3.1 and Proposition 3.4. �

3.4. Hausdorff dimension of the support of bifurcation currents.

To end this section, we want to underline the fact that Theorem 3.1, Proposition 3.4 and
the work [Du2] of Dujardin directly give Hausdorff dimension estimates for the support of
T1 ∧ · · · ∧ Tk.
Proposition 3.5. Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps. Assume
that c1, . . . , ck are marked simple critical points and denote by T1, . . . , Tk their respective
bifurcation currents. Assume that k ≤ m = dimΛ and T1 ∧ · · · ∧ Tk 6= 0. Then, for any
ǫ > 0, the homeomorphic embeddings of the set (∂M)k×D

m−k of dimension at least 2m−ǫ
given by Theorem 3.1 are dense in supp(T1 ∧ · · · ∧ Tk).
Proof. Let λ0 ∈ supp(T1 ∧ · · · ∧ Tk) and ǫ > 0. By [Du2, Theorem 0.1], there exists a
sequence λn → λ0 such that c1, . . . , ck fall transversely onto repelling cyles at λn. Let
n ≥ 1 be such that λn ∈ B(λ0, ǫ). Then, by Theorem 3.1 and Proposition 3.4, there exists
an embedding

Φ : (∂M)k × D
m−k −→ B(λ0, ǫ) ∩ supp(T1 ∧ · · · ∧ Tk)

with dimH(Φ((∂M)k × D
m−k)) ≥ 2m− ǫ. �

Corollary 3.6. Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps. Assume
that c1, . . . , ck are marked simple critical points and denote by T1, . . . , Tk their respective
bifurcation currents. Then either

• T1 ∧ · · · ∧ Tk = 0, or,
• supp(T1 ∧ · · · ∧ Tk) is homogeneous and has maximal Hausdorff dimension 2m.

We are now in position to prove Theorem 3.

Proof of Theorem 3. Let k ≥ 1 be such that T kbif 6= 0. Up to taking a finite branched cov-
ering of the family (fλ)λ∈Λ, we can assume that it has marked critical points c1, . . . , c2d−2.
If Ti is the bifurcation current of the critical points ci, (1) gives

supp(T kbif) =
⋃

1≤j1<···<jk≤2d−2

supp

(

k
∧

i=1

Tji

)

.(3)

Let us now set

Ci,j := {λ ∈ Λ / cj(λ) = ci(λ)}
for 1 ≤ i 6= j ≤ 2d − 2. By assumption, Ci,j is a complex hypersurface of Λ. Let
Λ1 := Λ \⋃i 6=j Ci,j. Then the family (fλ)λ∈Λ1 is a family of degree d rational maps with
simple marked critical points. The key of the proof is the following Lemma.

Lemma 3.7. Let B ⊂ Λ1 be an open ball and let
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m := max{1 ≤ j ≤ 2d− 2 / T jbif 6= 0 in B}.
Then B ∩ supp(Tm−1

bif ) \ supp(Tmbif) 6= ∅.

To finish the proof of Theorem 3, it suffices to show that Λ1∩supp(T kbif)\supp(T k+1
bif ) 6= ∅

and then to apply Corollary 3.6 in any ball B ⊂ Λ1 such that B∩ supp(T kbif) ⊂ supp(T kbif)\
supp(T k+1

bif ).

By Lemma 3.7, ifm = max{j ≤ 2d−2 / T jbif 6= 0 on Λ1}, there exists λ0 ∈ supp(Tm−1
bif )\

supp(Tmbif). If B1 ⊂ Λ1 is a small enough ball centered at λ1, one has supp(Tmbif) ∩ B1 = ∅,
then applying again Lemma 3.7, we find λ1 ∈ B1∩supp(Tm−2

bif )\supp(Tm−1
bif ). In m−k+1

steps, we find λm−k+1 ∈ supp(T kbif) \ supp(T k+1
bif ). �

Proof of Lemma 3.7. This is a consequence of [Du2, Theorem 0.1]. Let λ0 ∈ supp(Tmbif)∩B,
then by (3), there exists 1 ≤ j1 < · · · < cjm ≤ 2d− 2 such that λ0 ∈ supp(Tj1 ∧ · · · ∧ Tjm).
By Theorem 2.6, there exists λ1 ∈ B such that cj1 , . . . , cjm fall transversely onto repelling
cycles (see Definition 2.5). Let now ni, ki ≥ 1 be such that

λ1 ∈ Xi := {λ ∈ B / f◦niλ (cji(λ)) = f
◦(ni+ki)
λ (cji(λ)) and f

◦ni
λ (cji(λ)) is repelling}

for any 1 ≤ i ≤ m. By [G, Lemma 3.1], the critical point cjm is active at λ1 in Xj1 ∩ · · · ∩
Xjm−1 . By Montel’s Theorem, there exists λ2 ∈ Xj1 ∩ · · · ∩Xjm−1 such that cjm(λ2) is a
periodic point of fλ2 . Therefore, there exists B1 ⋐ B a ball centered at λ2 such that cjm
is passive on B1 and Tj1 ∧ · · · ∧ Tjm−1 6= 0 on B1.

Assume now that Tmbif 6= 0 on B1. By the same procedure, we can find j′m 6= jm and a

ball B2 ⋐ B1 such that cj′m is passive on B2 and Tm−1
bif 6= 0 on B2. In finitely many steps,

we find a ball B′ ⋐ B with

(1) 2d− 2−m+ 1 critical points are passive on B
′,

(2) Tm−1
bif 6= 0 on B

′, i.e. supp(Tm−1
bif ) ∩ B

′ 6= ∅.
Since item (1) gives supp(Tm−1

bif )∩B′ ⊂ supp(Tm−1
bif )\supp(Tmbif), the proof is complete. �

4. Higher bifurcation currents and neutral cycles.

One of the interesting informations provided by the work [MSS] of Mañé, Sad and Sullivan
and the work [L] of Lyubich is the existing link between the existence of a non-persitent
neutral cycle and the non-persistent preperiodicity of a critical point. Namely, they show
that in any holomorphic family (fλ)λ∈Λ of degree d rational maps, the closure in Λ of
the set of parameters λ0 for which fλ0 possesses a non-persistent neutral cycle coincides
with the closure in Λ of the set of parameters λ0 for which one critical point of fλ0 is
non-persistently preperiodic to a repelling cycle. In this section, we want to establish an
equivalent of that result for higher bifurcation loci.

4.1. In the space Ratcmd of critically marked degree d rational maps.

We refer to [BE, Section 1.2] for a description of the set Ratcmd of critically marked rational
maps. The space Ratcmd is a quasiprojective variety of dimension 2d + 1, which is an
algebraic finite branched cover of Ratd. The degree of the natural projection π : Ratcmd −→
Ratd depends only on d. Moreover, there exists 2d − 2 holomorphic maps c1, . . . , c2d−2 :
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Ratcmd −→ P
1 such that C(f) = {c1(f), . . . , c2d−2(f)}, where the critical point are counted

with multiplicity. In what follows, we will need the following Lemma (see [M1, Lemma
2.1]).

Lemma 4.1 (McMullen). Any stable algebraic family of degree d rational maps is either
trivial or all its members are postcritically finite.

Recall that for n ≥ 1 and w ∈ C \ {1}, we denoted by Pern(w) the set of all ratio-
nal maps having a cycle of multiplier w and exact period n (see section 2.1). In the
quasiprojective variety Ratcmd , the set Pern(w) is an algebraic hypersurface. Let k ≥ 2, for

Θk := (θ1, . . . , θk) ∈ (R \Z)k and Nk := (n1, . . . , nk) ∈ (Z+)
k we define the set PerkNk(Θk)

as

PerkNk(Θk) := {f ∈ Ratcmd / f has k distinct neutral cycles of respective multipliers

e2iπθ1 , . . . , e2iπθk and respective period n1, . . . , nk}.
The set PerkNk(Θk) is a subvaritey of

⋂

1≤j≤k Pernj(e
2iπθj ).

Lemma 4.2. Let k ≥ 2, Θk = (θ1, . . . , θk) ∈ (R \ Z)k and Nk = (n1, . . . , nk) ∈ (Z+)
k.

If PerkNk(Θk) 6= ∅, then any irreducible component of the algebraic set PerkNk(Θk) has
codimension k in Ratcmd .

Proof. Let Γ be an irreducible component of PerkNk(Θk). Let us first treat the case k =
2d−2. If codim Γ < 2d−2, the family Γ is a non-trivial algebraic family of rational maps,
since dimΓ > 3 and it is slable, by the Fatou-Shishikura inequality. Lemma 4.1 asserts
that the family Γ is a family of postcritically finite rational maps. This is impossible, since
postcritically finite rational maps only have repelling or attracting cycles. This implies
that codim Γ = 2d− 2.

Assume now that k < 2d − 2. Then the family Γ is not stable. Indeed, if we assume
that Γ is stable, Lemma 4.1 again implies that Γ is a family of postcritically finie rational
maps. Therfore, there exists θk+1 ∈ R \ Z ∪ {θ1, . . . , θk}, an integer nk+1 and a map
f1 ∈ Γ ∩ Pernk+1

(e2iπθk+1). We thus reduce to proving that any irreducible component of

Perk+1
Nk+1

(Θk+1) has codimension k + 1, which in finitely many steps boilds down to the

case k = 2d− 2. �

Let 1 ≤ k ≤ 2d− 2. For Θk = (θ1, . . . , θk) ∈ (R \ Z)k, recall that we have set

Zk(Θk) =
⋃

Nk∈(Z+)k

PerkNk(Θk).

Recall also that we denoted by Prerep(k) the set of rational maps having k prerepelling
critical points. We still denote by T kbif the k-th bifurcation current of the family Ratcmd
which may be defined by

T kbif := π∗
(

(ddcL)k
)

= (ddc(L ◦ π))k .

Our main result of the present section may be stated as follows:

Theorem 4.3. Let 1 ≤ k ≤ 2d− 2 and let Θk = (θ1, . . . , θk) ∈ (R \ Z)k. Then in Ratcmd

supp(T kbif) = Zk(Θk) = π−1(Prerep(k)),
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Proof. By [Du2, Theorem 1], we already know that π−1Prerep(k) = supp(T kbif). The first

step of the proof consists in showing that Zk(Θk) is not empty and supp(T kbif) ⊂ Zk(Θk).

In a second time, we show that, when PerkNk(Θk) 6= ∅, it is contained in supp(T kbif).

Since T 2d−2
bif 6= 0, the current Tj1 ∧ · · · ∧ Tjk is non-zero for any j1 < · · · < jk and

Proposition 3.4 implies that there exists a family of homeomorphic embedding

Φn : (∂M)k × D
2d+1−k −→ supp(Tj1 ∧ · · · ∧ Tjk)

which images are dense in supp(Tj1∧· · ·∧Tjk). Let ζ1, . . . ζk ∈ ∂M be such that z2+ζj has

a cycle of multiplier e2iπθj . The conjugacy given by Theorem 3.1 being hybrid, Lemma 3 of
[BH2] ensures that the map fΦn(ζ,0) has k distinct neutral cycles of respectives multipliers

e2iπθ1 , . . . , e2iπθk and thus PerkNk(Θk) 6= ∅ for some Nk ∈ (Z+)
k. Moreover, Corollary 2.10

asserts that, for any 1 ≤ j ≤ k, the set of parameters ζ ∈ ∂M for which z2 + ζ has a cycle
of multiplier e2iπθj is dense in ∂M. Therefore, supp(Tj1 ∧ · · · ∧ Tjk) ⊂ Zk(Θk), for any

j1 < · · · < jk. By (1), this implies supp(T kbif) ⊂ Zk(Θk).

It thus remains to prove that PerkNk(Θk) ⊂ supp(T kbif), as soon as PerkNk(Θk) 6= ∅. To
this aim, we set for m > n ≥ 1 and 1 ≤ j ≤ 2d− 2:

Prerepj(n,m) = {f ∈ Ratcmd / f◦n(cj(f)) = f◦m(cj(f)) and f
◦(m−n)(cj(f)) is repelling}.

We proceed by induction. Let Nk = (n1, . . . , nk) ∈ (Z+)
k be such that PerkNk(Θk) 6= ∅

and let f0 ∈ PerNk(Θk). By Lemma 4.2, f0 has a non-persistent cycle of multiplier

e2iπθk in the family Perk−1
Nk−1

(Θk−1). Mañé-Sad-Sullivan’s Theorem asserts that f0 is a

bifurcation parameter in the family PerNk(Θk). Therefore, by Montel’s Theorem, there

exists f1 ∈ Perk−1
Nk−1

(Θk−1) aribrarily close to f0 so that f1 has one critical point preperiodic

to a repelling cycle, i.e.

f1 ∈ Perk−1
Nk−1

(Θk−1) ∩ Prerepj1(n1,m1)

for some 1 ≤ j1 ≤ 2d − 2 and m1 > n1 ≥ 1 and Perk−1
Nk−1

(Θk−1) ∩ Prerepj(n1,m1) has

codimension k. Assume now that we already have found

fj ∈
⋂

1≤i≤j

Prerepji(ni,mi) ∩ Perk−jNk−j
(Θk−j)

arbitrarily close to f0 and that codim
⋂

1≤i≤j Prerepji(ni,mi)∩Perk−jNk−j
(Θk−j) = k. Then,

the map fj has a non-persistent neutral cycle of multiplier e2iπθk−j in the family

Xj :=
⋂

1≤i≤j

Prerepji(ni,mi) ∩ Perk−j−1
Nk−j−1

(Θk−j−1).

Remark that the fact that a periodic point is repelling is an open condition. Thus, using
again Montel’s Theorem, we find integers mj+1 > nj+1 ≥ 1 and

fj+1 ∈ Prerepjj+1
(nj+1,mj+1) ∩Xj
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arbitrarily close to fj. Moreover, codim Prerepjj+1
(nj+1,mj+1) ∩Xj = k.

Iterating this process k times, we find fk arbitrarily close to f0 at which k critical points
fall properly onto repelling cycles. Theorem 6.2 of [G] states that, in these conditions, the
map fk belongs to the support of T kbif. As fk can be taken as close to f0 as we want, this
concludes the proof. �

Proof of Theorem 1. Recall that we denoted by π : Ratcmd −→ Ratd the natural projection,
which is a finite branched covering. The projection

Π : Ratcmd −→ Md

which, to f associates its class of conjugacy by Möbius transformations, is a principal
bundle on Ratcmd \ V , where V is a proper subvariety of Ratcmd (see e.g. [BB1] page 226).
Since the function L◦π : Ratcmd −→ R is continuous, the current (ddc(L◦π))k doesn’t give
mass to pluripolar sets. Therefore, Theorem 4.3 implies that the set Zk(Θk) \ V is dense
in supp((ddc(L ◦ π))k). The conclusion follows, since Π(supp((ddcL ◦ π)k)) = supp(T kbif),

where T kbif denotes the k
th-bifurcation current of the moduli space Md. �

4.2. In the moduli space Pd of degree d polynomials.

In the present section, we want to give a simpler argument for the proof of Theorem 4.3
in the case of polynomial families. This argument relies a fine control of the cluster set of
the bifurcation locus at infinity. To this aim, we will use the following paramtrization of
the moduli space Pd of all degree d polynomials. For any (c, a) = (c1, . . . , cd−2, a) ∈ C

d−1,
we set c = (c1, . . . , cd−2) and

P(c,a)(z) :=
1

d
zd +

d−1
∑

j=2

(−1)d−jσd−j(c)
zj

j
+ ad,

where σj(c) is the symmetric degree j polynomial in c1, . . . , cd−2. The critical points of the
polynomial P(c,a) are 0, c1, . . . , cd−2 and are holomorphic functions of the parameter. This
family has been introduced by Branner and Hubbard in [BH1] to prove the compactness
of the connectedness locus of Pd. It also has been used by Dujardin and Favre in [DF]
and by Bassanelli and Berteloot to study the bifurcation currents in [BB3].

The parameter space C
d−1 can be naturally compactified as P

d−1 by the following
natural injection:

(c, a) ∈ C
d−1 −→ [c : a : 1] ∈ P

d−1.

Finally, we denote by Ti the bifurcation current of the marked critical point ci. Let us set
Cd = {(c, a) : Jc,a is connected}. We summarize the interest of this parametrization in
the following proposition (see [BH1], [DF, Section 6] and [BB3, Section 4]):

Proposition 4.4. (1) The natural projection Π : Cd−1 −→ Pd is a degree d(d − 1)
analytic branched cover,

(2) The loci Bi := {(c, a) / (P ◦n
(c,a)(ci))n≥1 is bounded in C} accumulate at infinity of

C
d−1 in P

d−1 on codimension 1 algebraic sets Γi of the hyperplan P∞ = P
d−1\Cd−1

which intersect two-by-two transversely. As a consequence, Cd is compact in C
d−1,
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(3) The bifurcation measure µbif := T d−1
bif is a finite positive measure and its support

coincides with the Shilov boundary of Cd.
For any w ∈ C, the algebraic hypersurfaces Pern(w) of Cd−1 extend as algebraic hy-

persurfaces of Pd−1. Moreover, for w ∈ D, the hypersurface Pern(w) intersect the line at
infinity P∞ along the set

⋃

0≤j≤d−2 P∞ ∩ Bj, which has codimension 2 in P
d−1.

We use the same notations as in section 4.1. Let 1 ≤ k ≤ d− 1, for Nk = (n1, . . . , nk) ∈
(Z+)

k and Θk = (θ1; . . . , θk) ∈ (R \ Z)k, we denote by PerkNk(Θk) the set of parameters

(c, a) ∈ C
d−1 s.t. P(c,a) has k distinct neutral cycles of respective multipliers e2iπθj and

period nj. The set PerkNk(Θk) is a subvaritey of
⋂

1≤j≤k Pernj (e
2iπθj ). We also set

Zk(Θk) :=
⋃

Nk∈(Z+)k

PerkNk(Θk)

and Prerep(k) := {(c, a) ∈ C
d−1 / P(c,a) has k prereppelling critical points}. In the present

setting, Theorem 4.3 can be formulated as follows.

Theorem 4.5. Let 1 ≤ k ≤ d− 1 and let Θk = (θ1, . . . , θk) ∈ (R \ Z)k. Then, in C
d−1,

supp(T kbif) = Zk(Θk) = Prerep(k),

The proof is the same as in the case of the space Ratcmd . The only difference is in the
proof of the following Lemma.

Lemma 4.6. Let k ≥ 2, Θk = (θ1, . . . , θk) ∈ (R \ Z)k and Nk = (n1, . . . , nk) ∈ (Z+)
k.

If PerkNk(Θk) 6= ∅, then any irreducible component of the algebraic set PerkNk(Θk) has

codimension k in C
d−1.

Proof. Let Γ be a non-empty irreducible component of PerkNk(Θk). Then, there exists

irreducible componentsHi of Perni(e
2iπθi), such that Γ is a Zariski open set of H1∩· · ·∩Hk.

For any 1 ≤ i ≤ k, remark that Hi ⊂ ⋃

j Bj. By Proposition 4.4, this implies that

P∞ ∩⋂1≤i≤kHi has codimension k + 1. Since P∞ has codimension 1, we get codim H1 ∩
· · · ∩Hk = k. �

Remark. Dujardin and Favre proved that for a µbif−generic polynomial f , all critical
orbits are dense in Jf (see [DF, Corollary 11]). Therefore, the copies of (∂M)d−1 provided
by Theorem 2 have zero measure fo µbif, even though they form a homogeneous dense
subset of supp(µbif) of Hausdorff dimension 2(d − 1).
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