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RÉSUMÉ. Cet article présente d’une part une stratégie de modélisation dédiée à la simulation
micromécanique des interactions entre corps, et d’autre part, sa mise en œuvre numérique.
Cette stratégie repose sur une formulation de type décomposition de domaines d’une méthode
multicorps périodique dans le cadre de l’approche Non Smooth Contact Dynamics de Moreau
(Moreau, 1988). Les potentialités de cette méthode sont illustrées par la complexité des in-
teractions possibles: interactions entre éléments d’une discrétisation, entre corps discrétisés
ou rigides, en compression (contact) lente ou sous impact, en glissement (frottement) ou en
traction (fissuration-rupture), etc. La plateforme numérique associée, Xper, repose sur une ar-
chitecture orientée objet composée de bibliothèques indépendantes spécifiquement développées
pour: (1) la résolution des équations aux dérivées partielles, (2) la gestion des interactions sur-
faciques complexes et l’intégration en temps associée, (3) la modélisation des comportements
volumiques. La pertinence numérique de l’approche est illustrée sur des exemples de fissuration
de matériaux hétérogènes.
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ABSTRACT. This paper presents a micromechanical modeling strategy for complex multibody in-
teractions and the associated numerical framework. The strategy rests on a periodic multi-
body method in the framework of the Non Smooth Contact Dynamics approach of Moreau
(Moreau, 1988) extended to classical domain decomposition problems. Many complex inter-
actions can be taken into account : interactions between discrete elements, between discrete
or rigid bodies, (quasistatic) contact or impact, friction or adhesion, decohesion (cracking),
etc. The associated numerical platform, Xper, is composed of three independant libraries with
Object Oriented Programming. The libraries are specifically developed for : (1) the solution of
systems of partial differential equations (PDEs), (2) the modeling of complex interaction prob-
lems and the time discretization, (3) the integration of complex non linear constitutive models.
The ability of this computational approach is illustrated by two examples of fracture of hetero-
geneous materials.

MOTS-CLÉS : NonSmooth Contact Dynamics, Modèle de Zone Cohésive Frottante, Méthode de
Décomposition de Domaine, Structures Périodiques, Fissuration Dynamique, Matériaux Hété-
rogènes

KEYWORDS: NonSmooth Contact Dynamics, Frictional Cohesive Zone Model, Domain Decom-
position Method, Periodic Media, Dynamic Fracture, Heterogeneous Media
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1. Introduction

Dynamic crack propagation in heterogeneous materials is a complex problem and
has become a challenge in many engineering domains. Since the heterogeneities (mi-
crocavities, hard inclusions, brittle precipitates, ...) have major effects on the overall
dynamic fracture, a relevant way to investigate the problem is to consider models at
the scale of the heterogeneities. At this scale, the fracture can be described using mi-
cromechanical concepts, and recent advances in computer technologies make possible
the simulation of the overall nonlinear response of a given microstructure.

In this context, a new computational micromechanical approach is developed to
analyse the effects of the microstructure heterogeneity on the overall material be-
havior submitted to static or transient loadings. This approach is based both on the
concept of Frictional Cohesive Zone Model and on a multibody method in the context
of the NonSmooth Contact Dynamics (NSCD). In particular, the NSCD approach aims
to solve dynamic frictional contact problems without regularization nor penalization
techniques (Moreau, 1988; Jean, 1999). Since periodic formulations are well adapted
to micromechanical studies, a two field Finite Element is written and the framework
is extended to this formulation (Perales et al., 2006; Perales et al., 2008).

The scope of the NSCD framework can simply be extended to classical domain
decomposition problems. The domain decomposition methods (DDM) solve a stan-
dard boundary value problem by splitting it in smaller problems on subdomains
and managing “continuity” conditions between subdomains. Many techniques exist
to enforce continuity of the solution in quasi-static (Dodds et al., 1980; Magoules
et al., 2006; Glowinski et al., 1990) or dynamic (Herry et al., 2002; Gravouil et
al., 2001). In this paper, the NSCD framework is written as a dual Schur approach
where the continuity condition is replaced by any interaction law. The applications of
this method concern parallelism, multiphysics or multibody interactions.

Since the implementation of the micromechanical framework would involve a high
programming cost, the development strategy is to reuse and to extend existing specia-
lized libraries. The software developed here, called Xper, is based on the coupling of
three libraries (using Fortran90/C++ mixed programming) and thus takes advantage
of the ability of each of them. Each library has a clear meaning from the mechanical
point of view :

– LMGC90 is dedicated to the surfacic interaction part : model, solving method.
It relies on the NonSmooth Contact Dynamics approach (LMGC90, 2009),

– PELICANS is dedicated to the bulk part : periodic Finite Element modeling
(PELICANS, 2009),

– MatLib is dedicated to complex constitutive models (Stainier et al., 2003). It is
embeded in PELICANS.

The ability of the proposed strategy and of the platform is illustrated on the dyna-
mic fracture of metal matrix composite with brittle inclusions under transient loading
and on intergranular fracture in a periodic medium.
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The paper is organized as follows. In section 2, the main elementary classes of
multibody interactions that can summarize most of the complex interaction problems
are recalled. In section 3, the interactions modeling (multibody, NSCD, periodic and
DDM) is described. The aforementioned case study are presented in section 4.

2. The modeling strategy

The main purpose of this paper is to model and simulate divided and fractured me-
dia as a multibody system with interactions. From a mechanical point of view, these
interactions correspond to any compression-sliding-traction situation. In particular, we
have here in mind to model contact, impacts, dry or lubrificated friction, adhesion, de-
cohesion, multiple cracking, failure or any combinations as frictional contact with co-
hesion (Raous et al., 1999; Perales et al., 2006). Moreover these interactions can take
place between rigid or deformable media. From a geometrical point of view, any com-
plex interaction belongs to one of the three following situations : (1) the body-to-body
interaction, (2) the cluster-to-cluster interaction, (3) the body-to-cluster interaction. In
order to classify these three situations, the two first are detailed below.

– Body-to-body interaction. For example, this situation occurs when any surface
of a Finite Element mesh is susceptible to surface interaction with its surrounding (see
Figure 1). This class of interactions includes the failure of bulk materials or of hetero-
geneous materials, or transgranular failure. In this kind of applications, the framework
is known as the cohesive/volumetric finite element approach (Xu et al., 1994; Ca-
macho et al., 1996; Raous et al., 1999; Jean et al., 2001; Perales et al., 2006). This
concept is extended to any interaction of rigid bodies. Therefore, the body-to-body
interaction stands for mesh-to-mesh interaction, rigid-to-rigid interaction or mesh-to-
rigid interaction,

’Independent’ body
Surface behavior

Figure 1. body-to-body interaction : each finite element is a body.
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– Cluster-to-cluster interaction. The bodies can be cluster-meshed domains or ri-
gids. A surface behavior may be introduced between the bodies (for example, see
Figure 2 for meshed bodies). This class of interactions includes intergranular failure
(Zavattieri et al., 2001; Vincent et al., 2007; Vincent, 2007), inclusion/matrix interface
or granular media (Azema et al., 2006; Renouf et al., 2005; Chetouane et al., 2005).

Meshed body

Surface behavior

Figure 2. cluster-to-cluster : surface behavior between meshed bodies.

For the particular case of periodic media, the clusters can be subject to periodic
conditions (see Figure 3). This class includes the failure of periodic media or of Re-
presentative Volume Elements (Perales et al., 2008; Pelissou et al., 2009).

The overall behavior is then obtained by coupling the standard volumetric behavior
inside the meshes (or rigid bodies) and the surface properties between the bodies,
taking complex interactions into account. In this study, this coupling is based on the
NonSmooth Contact Dynamics (NSCD) framework (Moreau, 1988; Jean, 1999).

In the framework of the NSCD method, a two level resolution is carried out : the
standard or periodic volumetric problem is solved at global level - by PELICANS
(PELICANS, 2009) and MatLib (Stainier et al., 2003) - and the non smooth contact
problem is treated at a local level - by LMGC90 (LMGC90, 2009) -.

The corresponding two field modeling framework is detailed next.
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Same cluster

Figure 3. Periodic media : the clusters are reproduced by periodicity

3. A two field modeling framework

3.1. Global level and periodic problem

A specific bulk model is derived to model a dynamical system under periodic
conditions. Since the classical dynamic problem can be seen as a subproblem of the
periodic one, we focus on the formulation of the periodic problem. In what follows,
the main points of the formulation are described (see (Perales et al., 2008) for more
details).

Consider a periodic multibody medium Ω0 =
⋃
e

Ωe
0. At any boundary of a body

Ωe
0, mixed boundary conditions (given by the interactions depending on the dis-

placement jump) are introduced. In this framework, the deformation gradient field
F = ∇u + I and the first Piola-Kirchhoff stress field Π are assumed to be periodic
with the same period as the medium. The average fields over the periodic medium are
denoted by F̄, ∇̄u and Π̄. The fields F, ∇u and Π fluctuate around their average
values. The local deformation gradient field can be thus split into an overall field (the
field if the medium were homogeneous) and a fluctuation denoted ∇u#, which takes
the presence of heterogeneities into account. Since fracture is expected, the heteroge-
neities are not only due to the inclusions but also the cracks in the structure. The global
displacement field u admits the following decomposition : u = (F̄ − I) · X + u#

whereX is the initial position vector and I is the second-order identity tensor. The Fi-
nite Element formulation becomes a two field Finite Element formulation. The local
periodic dynamic problem can be written :

find the periodic displacement field u#, the deformation gradient field F and the
stress field Π verifying :
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– relations for each body Ωe
0 :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · Π = ρ
d2

dt2
u# in Ωe

0,

′Π(F)′ (Constitutive law),
F = F̄ + ∇u# in Ωe

0,

Π · N = T([u#]) on ∂Ωe
0,

[1]

– average relations in the medium Ω0 :{
F̄ij = F̄ imp

ij ,

Π̄kl = Π̄imp
kl ,

[2]

where T is a boundary force given by the considered interaction law, N is the unit
outward normal vector of the body, ρ is the density, the jump symbol [f ] = f+ − f− is
defined as the difference of a field f on the two facing surfaces (here the superscripts
+ and - denote the two opposite surfaces), F̄ imp

ij are the components of the prescribed
macroscopic transformation gradient and Π̄imp

kl are the components of the prescribed
macroscopic stress, with ij �= kl and {i, j, k, l} ∈ {1, 2, 3}.
Note that the classical dynamic problem can be obtained by replacing the periodic
displacement field u# by the standard displacement field u in the first equation of [1].

The framework is dedicated to the study of periodic problems embedding non re-
gular interactions. Considering the standard NSCD algorithm, the non smooth contact
problem is treated at the local level (Jean, 1999; Jean et al., 2001). At this level, two
main points have to be underlined in the writing of the periodic problem :

– dynamics are dedicated to the treatment of the non regular conditions and has to
be only introduced at the local level,

– the presence of the heterogeneities are taken into account only by the fluctuation
field u#.

After choosing the admissible spaces, the broken Sobolev space U# ={
v ∈

[
L2(Ω0)

]m
, v|Ωe

0
∈
[
H1(Ωe

0)
]m

∀Ωe
0, v periodic

}
and the space of linear

transformation V = L(Rm) (m is the space dimension) for the velocity field and its
periodic part respectively, and considering the kinematically admissible virtual velo-
city field v∗ = (v∗)# + ˙̄F∗ · X, the weak unit cell value problem is then obtained :
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find u# ∈ U# and F̄ ∈ V such that :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ∑
e=1

∫
∂Ωe

0

T([u#]) · (v∗)#dS

−

τ∑
e=1

∫
Ωe

0

Π(F) : ∇(v∗)#dx

=

τ∑
e=1

∫
Ωe

0

ρ
d2

dt2
u# · (v∗)#dx

∀(v∗)# ∈ U#;

τ∑
e=1

∫
Ωe

0

Π(F) : ˙̄F∗dx = |Ω0|Π̄ : ˙̄F∗ ∀ ˙̄F∗ ∈ V.

[3]

3.2. Non Smooth Contact Dynamics strategy and its extension to periodic problem

3.2.1. Standard dynamic equation and the extension to periodic

Considering that some discontinuities may appear in velocity time evolution, the
standard dynamic problems are written in a semi-discrete form for each body Ωe

0 :

M · dq̇ = F (q, q̇, t)dt + dp, [4]

q(t) = q(t0) +

∫ t

t0

q̇dt, [5]

where M is the mass matrix, q, q̇ and dq̇ are respectively the discrete displacement,
velocity and differential measure of velocity, dp represents the differential measure of
interaction impulse and F (q, q̇, t) represents the internal and external forces without
the contribution of interaction dp (Jean, 1999; Jean et al., 2001). The measure dpmay
contain both smooth and non-smooth contributions. In this framework, the derivatives
are written in a distribution sense.

Practically the differential measure equation [4] needs to be integrated over an ar-
bitrary time step (even reduced to a shock instant), which gives a momentum balance :

M · (q̇i+1 − q̇i) =

∫ ti+1

ti

F (q, q̇, t)dt + p, [6]

q(ti+1) = q(ti) +

∫ ti+1

ti

q̇dt. [7]

Using an implicit time integration scheme of [6] and [7] (θ-method) one obtains a
discrete form :
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M · (q̇i+1 − q̇i) = h(θF (qi+1, q̇i+1, t) + (1 − θ)F (qi, q̇i, t)) + p, [8]

qi+1 = qi + h(θq̇i+1 + (1 − θ)q̇i), [9]

where h = ti+1 − ti .

The linearized formulation of [8] is obtained through a Newton-Raphson method
(superscript k stands for iterations) (Jean, 1999; Jean et al., 2001) :

⎧⎪⎨
⎪⎩

M̃k(q̇k+1
i+1 − q̇k

i+1) = pk+1
free + pk+1

i+1

M̃k = M + hθ
∂F (qk

i+1,q̇k
i+1,t)

∂q̇
+ h2θ2 ∂F (qk

i+1,q̇k
i+1,t)

∂q

pk+1
free = −M(q̇k

i+1 − q̇i) + h[(1 − θ)F i + θF k
i+1]

[10]

which leads to :
{

q̇k+1
i+1 = q̇k+1

free + wk
i+1p

k+1
i+1

q̇k+1
free = q̇k

i+1 + wk
i+1p

k+1
free

[11]

where wk
i+1 denotes the inverse of the iteration matrix, h is the length of time

subinterval ]ti, ti + 1], subscript i the quantities at a time ti and i + 1 the quantities at
time ti+1, θ ∈ [0.5, 1] and pk+1

i+1 is the impulse value.

In a periodic case (see section 3.1 for the formulation), the semi-discrete form
[4]-[5] becomes for each body Ωe

0 (Perales et al., 2008) :

{
M · dq̇# = F (q#, q̇#+, d̄, ˙̄d, t)dt + dp,

0 = G(q#, q̇#+, d̄, ˙̄d, t) + K(t),
[12]

{
q(t) = q(t0) +

∫ t

t0
q̇dt,

d̄(t) = d̄(t0) +
∫ t

t0

˙̄ddt
[13]

where G(q#, q̇#, d̄, ˙̄d, t) and K(t) represents respectively the macroscopic stress
and the macroscopic prescribed stress, and d̄ and ˙̄d are respectively the discrete ave-
rage deformation gradient and the first time derivative.

The linearized formulation [10] is then rewritten as :
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̃k ·

{
(q̇#

i+1)
k+1 − (q̇#

i+1)
k

˙̄dk+1
i+1 − ˙̄dk

i+1

}
= Pk+1

free +

{
pk+1

i+1

0

}
,

M̃k =

⎛
⎜⎝M − hθ

∂F

∂q̇#
− h2θ2 ∂F

∂q#
−hθ

∂F

∂ ˙̄d
− h2θ2 ∂F

∂d̄

−hθ
∂G

∂q̇#
− h2θ2 ∂G

∂q#
−hθ

∂G

∂ ˙̄d
+ h2θ2 ∂G

∂d̄

⎞
⎟⎠

Pk+1
free =

{
−M · ((q̇#

i+1)
k − q̇

#
i ) + h[(1 − θ)F i + θF k

i+1]

h{(1 − θ)(Gi + Ki) − θ(Gk
i+1 + K

k
i+1)}

}

[14]

The unknowns of the periodic problem are q̇# and ˙̄d. A mapping P permits to
recover the standard discrete velocity q̇ from q̇# and ˙̄d :

q̇ = P−1

{
q̇#

˙̄d

}
, [15]

with P such that :

⎧⎪⎪⎨
⎪⎪⎩

P : R
Ndof

u −→ R
Ndof

u
+N

dof

F̄

q̇ �−→

{
q̇#

˙̄d

}
=

{
q̇ − Rel < ∇q̇ >d ·Xd

< ∇q̇ >d

}
,

[16]

where Rel ∈ R
Ndof

u × R
m is a discrete mapping such that the periodic velocity is

given by q̇# = q̇ − Rel < ∇q̇ >d ·Xd, Xd is the discrete position vector, < . >d:

R
Ndof

u × R
m −→ R

N
dof

F̄ is the discrete average mapping over Ω0, m is the space
dimension and Ndof

u and Ndof

F̄
are the number of degrees of freedom of the discrete

velocity q̇ and of the first derivative average deformation gradient ˙̄d respectively.

At the iteration k + 1, the discrete velocity and the discrete free velocity write :

q̇k+1
i+1 = P−1

{
q̇k+1

i+1
˙̄dk+1
i+1

}
, q̇k+1

free = P−1

⎧⎨
⎩
(
q̇

#
free

)k+1

˙̄dk+1
free

⎫⎬
⎭ . [17]

The local problem at the contact level is thus solved using the standard NSCD
algorithm without any modification. The two field periodic formulation can thus be
seen as a simple extension at the global level of the NSCD algorithm, that is to say the
resolution of the periodic Finite Element problem.
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3.2.2. Kinematic relations for frictional contact

Writing interaction behavior in a discrete form requires to define mappings H
between bulk unknowns (q̇, p) and interaction unknowns (see Figure 4) : relative
velocity (U̇) and impulse (R). Considering one interaction (index α) between two
bodies (c and a) and using classical kinematic relations, the relative velocity writes :

U̇α = HT
c

αq̇c − HT
a

αq̇a =
[
HT

c
α,−HT

a
α
]
·

(
q̇c

q̇a

)
[18]

Due to duality consideration, one may write the contribution of the interaction α to
the global impulse as :(

pc

pa

)
=

(
Hc

α

−Ha
α

)
Rα [19]

Using the linear mappings H , the dynamic system of equations is rewritten as :
{

U̇α = U̇α
free + WααRα

Wαα = HT
c

αwHc
α − HT

a
αwHa

α
[20]

One can generalize the previous form in case of a multi-interaction situation, simply
by including an additional contribution :

{
U̇α = U̇α

free + WααRα +
∑

β �=α WαβRβ

Wαβ = HT
c

αwHc
β − HT

a
αwHa

β
[21]

To close the problem, one needs an interaction law relating relative velocity
and impulse. Numerous choices are possible depending on the phenomenology
of the interaction , for example, unilateral condition (velocity Signorini condition
(Moreau, 1988)), friction (Coulomb’s law) or cohesion (Jean et al., 2001; Perales et
al., 2006) .

As detailed further, the general traction-sliding-compression interactions presented
in the ’modeling strategy’ (section 2) have to include sliding-compression relations
which are causing impulse conditions. For sake of clarity, unilateral frictional contact
laws of Signorini-Coulomb type are presented but other choices can be made (e.g.
Tresca friction law). These relations write :

−RN ∈ ∂IR+
(UN ), [22]

RT ∈ ∂U̇T

(
μ|RN |‖U̇T ‖

)
, [23]

where IK is the indicator function of the set K, μ is the Coulomb friction coefficient
and U is decomposed such as U = UNn + UT with n the unit normal vector of the
frictional contact zone.
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The principle of the global to local mapping and the associated variables are sum-
marized in a standard case and in a periodic case respectively in Figure 4 and in Fi-
gure 5. In particular, Figure 5 shows that the periodic mapping concerns only the
global level of the algorithm and that the kinematic relations and local NSCD solver
are not affected.

q̇

U̇ R

p

Dynamic equation

Non smooth contact problem

Global

Local

HT H

Figure 4. The standard NSCD algorithm

{
q̇#

˙̄d

}

q̇

U̇ R

p

{
p

0

}Dynamic equation

Non smooth contact problem

Global

Local

NSCD

periodic FE

HT H

P−1 P

Figure 5. The NSCD algorithm extended to the periodic formulation
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3.3. NSCD as a Domain Decomposition Method

In classical domain decomposition methods (DDM) one assumes contiguous
subdomains and tries to enforce continuity of primal (displacement) and/or dual
(force) interface unknows. Considering quasi-static problems, there exist various
techniques to ensure this continuity which differ in the treatment of the interface
between subdomains. In the following, we consider techniques without overlapping
between subdomains. Among them one can consider primal Schur-type approaches
(where continuity of the displacement field is enforced at the interfaces) (Dodds
et al., 1980), dual Schur-type approaches (where equilibrium of interface forces is
enforced through Lagrange multiplier) (Magoules et al., 2006) and mixed approaches
where one tries to achieve both conditions (Glowinski et al., 1990). Considering
dynamical problems one can potentially use the three previous approaches. But as
mentioned by Gravouil et al. (Herry et al., 2002; Gravouil et al., 2001), in dynamics,
the choice of which kinematic quantity is continuous at the interface (displacement,
velocity or acceleration) is difficult.
In the case of contact problems various possibilities exist. Dureissex et al. (Dureisseix
et al., 2001) propose an extension of a dual approach (FETI). Alart et al. (Alart
et al., 2003) propose an approach where contact is embedded in a continuous
domain. More recently, in Nineb (Nineb et al., 2007) and Icéta (Iceta et al., 2009),
domain decomposition approaches are proposed for non smooth problems, where the
continuity condition is enforced through the bulk model.

Our purpose in this part is to show that the NSCD method may be written as a
dual-Schur approach where the basic continuity condition may be replaced by any in-
teraction law. In that case the continuity condition between subdomains is not written
on the bulk part but through an interaction law.

For the sake of simplicity we will only consider in the following two domains in
interaction. In the context of the dual Schur formulation one may rewrite the standard
discrete problem ([10] and [18]) involving two subdomains (a and c) :⎛

⎝ M̃k+1
a 0 Ha

0 M̃k+1
c −Hc

HT
a −HT

c 0

⎞
⎠
⎛
⎝ q̇k+1

a

q̇k+1
c

Rk+1

⎞
⎠ =

⎛
⎝ M̃k+1

a q̇k
a + pk+1

a,free
M̃k+1

c q̇k
c + pk+1

c,free
−U̇k+1

⎞
⎠ [24]

where the basic continuity condition of DDM written in velocity (U̇k+1 =
HT

a q̇k+1
a − HT

c q̇k+1
c ) is replaced by a more general implicit interaction law

(law(Uk+1,Rk+1) = true).

One can compute the solution splitting the problem in two stages :

1) free motion⎛
⎝ M̃k+1

a 0 0

0 M̃k+1
c 0

0 0 0

⎞
⎠
⎛
⎝ q̇k+1

a,free
q̇k+1

c,free
Rk+1

⎞
⎠ =

⎛
⎝ M̃k+1

a q̇k
a + pk+1

a,free
M̃k+1

c q̇k
c + pk+1

c,free
0

⎞
⎠ [25]
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The free motion is computed at the global level and is independent of interaction
conditions. It can be computed by any classical FEM library such as PELICANS.

2) interaction motion⎛
⎝ M̃k+1

a 0 Ha

0 M̃k+1
c −Hc

HT
a −HT

c 0

⎞
⎠
⎛
⎝ q̇k+1

a,inter
q̇k+1

c,inter
Rk+1

⎞
⎠ =

⎛
⎝ 0

0

(HT
c q̇k+1

c,free − HT
a q̇k+1

a,free) − U̇k+1

⎞
⎠

[26]

The interaction motion can be computed at the local level solving two subproblems
(omitting k+1) :{

U̇ = U̇free + WR

law(U,R) = true
[27]

where U̇free = HT
c q̇c,free − HT

a q̇a,free and W = HT
c M̃−1

c Hc − HT
a M̃−1

a Ha,
and

q̇a,inter = M̃−1
a HaR [28]

q̇c,inter = M̃−1
c HcR [29]

The local solver needs the projection of the free velocity on the boundary of the
subdomains and the projection of the inverse of the pseudo mass matrix M̃a or M̃c.

The resulting velocity is :

q̇k+1
a = q̇k+1

a,free + q̇k+1
a,inter [30]

q̇k+1
c = q̇k+1

c,free + q̇k+1
c,inter [31]

Note that the DDM problem can simply be extended to the periodic formulation
using the relations [14] and the mapping [16].

3.4. Multi domain solver

The classical NSCD approach, and its periodic extension, rely on a Non Linear
Gauss Seidel (NLGS) algorithm to solve the problem.
The spirit of the method is the following. Considering, one by one, the local systems
to solve for each contact α :{

U̇α = U̇α
free + WααRα +

∑
β �=α WαβRβ

Law(gα,Uα,n,Uα,t,Rα,n,Rα,t) = true
[32]
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the contributions due to other contact (β �= α) are frozen taking updated values if
β < α or old values if β > α.

The α block of equations can be solved using :

2D context

– An explicit uncoupled resolution if Wαα is diagonal
– A coupled (n, t) graph intersection (Jean, 1999)
– A pseudo-potential approach (bi-potential) (De Saxcé et al., 1991)
– Linear Complementarity Problem (LCP) as local solver

3D context

– An explicit resolution if Wαα is diagonal (Renouf, 2004)
– A pseudo-potential approach (De Saxcé et al., 1991)
– A Generalized Newton algorithm (Alart et al., 1991)
– Linear Complementarity Problem (LCP) as local solver

3.5. Global-to-local strategy and dedicated platform

The corresponding global-to-local strategy is summarized for one iteration of the
Newton-Raphson algorithm in Figure 6.

The strategy rests on the local/global levels :

– at the global level, the Finite Element method (including the periodic extension)
is taken into account,

– at the local level, the standard non smooth contact framework is used.

For lower programming cost, the software strategy development retained here was
not to develop the entire software from scratch but to reuse and extend existing libra-
ries. It permits to take advantages of each library update while developing the whole
software.

The software platform, called Xper (’eXtended cohesive zone model and PERiodic
homogenization’), respects the two levels strategy (Figure 6) :

– at the global level, the extended Finite Element method is managed by the PELI-
CANS library (PELICANS, 2009). This software, developed by the French ’Institut de
Radioprotection et de Sûreté Nucléaire’ (IRSN) is a toolbox for the implementation of
various numerical methods dedicated to the solution of systems of partial differential
equations (PDEs). To take into account complex non linear constitutive models, the
library is coupled with the MatLib library, developed by Stainier (Stainier et al., 2003),

– at the local level, the complex interactions between bodies are taken into account
by the LMGC90 library (LMGC90, 2009), developed by Dubois and Jean (Dubois et
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Local

contact increment α

calculation : (Wαγ)
k

calculation : (U̇α)k+1
i+1

calculation : (Rα)k+1
i+1

Global

build : M̃k+1

free velocity calculation

periodic : mapping

condensation

periodic : mapping

calculation : q̇k+1
i+1

update : qk+1
i+1

q̇k+1
free

H,HT

(Wαγ)
k

Local solver

pk+1
i+1

Figure 6. Global-to-Local coupling : one iteration of Newton-Raphson. In dashed
boxes : periodic case.
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al., 2003). LMGC90 is a platform for the modeling interaction problems including
multi-physics.

For more details concerning the implementation of the software, see the appen-
dix A.

In the following, both the abilities of the numerical strategy and the Xper software
are illustrated on fracture of heterogeneous media.

4. Application to the fracture of heterogeneous materials

4.1. Cohesive zone interaction law

Examples presented deal with fracture of heterogeneous materials. The fracture
model is based on a cohesive-volumetric micromechanical approach involving Fric-
tional Cohesive Zone Models (FCZM). These models rest on coupling traction-
separation interaction law to some frictional contact model. The cohesive-friction
coupling is a key concept of fracture of heterogeneous media : whatever the overall
loading of such a media (including pure mode I loadings), interfaces between phases
with different Poisson ratio are locally subjected to combination of shear and tensile
loading.

The interaction law relating the displacement jumpU to the stressR, used to close
the NSCD framework, is obtained introducing a cohesive stress, called Rcoh, in the
Signorini-Coulomb problem [22]-[23] (Perales et al., 2006) :

−(RN + Rcoh
N ) ∈ ∂IR+

(UN ), [33]

(RT + Rcoh
T ) ∈ ∂U̇T

(
μ|RN + Rcoh

N |‖U̇T ‖
)

. [34]

Rcoh = β

(
CNn ⊗ n + CT

UT ⊗ UT

‖UT ‖2

)
· U [35]

where n is the unit normal vector of the cohesive zone, IK is the indicator function of
the set K, μ is the Coulomb friction coefficient, CN and CT denote respectively the
initial normal and tangential stiffness of the perfect interface (MPa/m).

The surface variable β, initially introduced by Fremond (Fremond, 1987), plays
the role of a surface damage variable. The evolution law of this variable is governed
by eqs. [36] and [37], where the function g describes the weakening process leading
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from perfect interface to crack (β = 1 : the interface is undamaged, 0 < β < 1 : the
interface is partially damaged and β = 0 : the interface is fully damaged) :

β = min(g(‖U‖), g(‖U‖max)), [36]

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β0 if x ≤ δ0,

β0
δ0

x

(
1 −

(
x − δ0

δc − δ0

)2
)

if δ0 < x < δc,

0 if x ≥ δc,

[37]

where δ0 =
Rmax

2

(
1

CN

+
1

CT

)
, δc =

3

2

(
w

Rmax
+

δ0

6

)
, 0 ≤ β0 ≤ 1 is an initial

surface damage, w is a reference fracture energy (J /m2), Rmax is the maximum value
of the cohesive stress (MPa), ‖U‖max is the maximum value reached by ‖U‖ during
the fracture process. In a 2D case, Figure 7 shows respectively (a) the normal behavior
(with ‖UT ‖ = 0) and (b) the tangential behavior (with RN constant) associated with
the FCZM [33]-[37].

0
RN

Rmax

UN

δ0 δc

(a)

0

‖RT ‖

Rmax

‖UT ‖

δ0 δc

μRN

(b)

Figure 7. The 2D FCZM : (a) normal behavior (UT = 0) and (b) tangent behavior
(UN = 0, RN constant).

This Frictional Cohesive Zone Model takes into account the progressive damage
between two bodies and the post-fracture frictional contact on the created crack lips.
Different models can be used according to the material (brittle, ductile) by specifying
the different evolution laws [36]-[37] (Michel et al., 1994; Tvergaard, 1990; Alfano et
al., 2001; Perales et al., 2006) .
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4.2. Examples

In what follows, the finite element discretization is based on linear displacement
triangular elements that are arranged in a "crossed-triangle" quadrilateral pattern. The
analysis considers 2D plane-strain conditions.

The considered miscrostructure is composed of a metal matrix (Zircaloy-4) and
inclusions (δ-hydrides). The Zircaloy-4 behavior is assumed to be elastoplastic (J2
plasticity, Young Modulus E = 99GPa, Poisson’s ratio ν = 0.325, Yield in tension
σ0 = 450MPa, Hardening Modulus HY = 850MPa) (Balourdet et al., 1999; Ca-
zalis et al., 2005) and hydrides to be neo-Hookean (E = 135GPa, ν = 0.32)
(Yamanaka et al., 1999; Yamanaka et al., 2001). We assume that the Zircaloy-4 and
the hydrides inclusions have the same density ρ = 7800kg/m3. The FCZM coeffi-
cients of Zircaloy-4, zirconium hydrides and Zircaloy-hydride interface are respec-
tively : CZr

N = 2 × 1018Pa/m, wZr = 0.5J/m2, RZr
max = 1GPa, CZrH

N = 2CZr
N ,

wZrH = 0.8wZr, RZrH
max = 1.25RZr

max, CZr−ZrH
N = 2CZr

N , wZr-ZrH = 0.001wZr,
RZr-ZrH
max = 0.045RZr

max, if the interface is considered as ’weak’ or wZr-ZrH = 1000wZr,
RZr-ZrH
max = 45RZr

max if the interface is considered as ’strong’.

Moreover, we assume a low friction coefficient μ = 0.05 and same compliance for
the normal and tangential behaviors CN = CT .

The PELICANS library manages the finite element part of the problem : the struc-
ture geometry, the inclusions distribution and morphology, the boundary conditions,
the periodicity, the discretization and the global solver. The LMGC90 library takes
into account the FCZM between each body. The material properties of the matrix and
the inclusions are managed by the MatLib library.

4.2.1. Body-to-body interaction : influence of interface type on the fracture of a
brittle heterogeneous material

This example deals with the fracture of a bimaterial. Each mesh is considered
as an independent body (body-to-body interaction, Figure 1 case). In particular, the
influence of the interface behavior on the fracture of metal matrix composites is inves-
tigated. The considered composite is representative of hydrided Zircaloy-based alloys
at high burnup which compose cladding of nuclear fuel rods after many years in Pres-
surized Water Reactor.

The structure is composed by a metal matrix (Zircaloy-4) and rectangular aligned
inclusions (δ-hydrides). The structure geometry is a square with length L = 50μm.
Horizontal velocity boundary conditions on the left and right vertical faces are pres-
cribed (respectively V = −1m/s and V = 1m/s). A precrack is introduced at the
bottom perpendicular to the loading (Figure 8).

Two cases of bonding strength value between the two phases, strong and weak, are
considered.
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Figure 8. Boundary condition (arrows), matrix (light gray), inclusions (dark gray)
and precrack (white line)

Figure 9 shows the fracture features for the weak and strong matrix/inclusion cases.
The crack path is significantly influenced by the interface matrix/inclusions bonding
strength. For the weak interfaces, the cracks propagate inside the matrix and along
the inclusions boundaries due to the formation of microcracks along weak interfaces.
In case of strong interfaces, the cracks propagate through the inclusions due to the
high cohesive strength with the matrix. These results are consistent with the following
criterion (Raous et al., 2002; Raous et al., 2001; He et al., 1989; Siegmund et al.,
1997; Martin et al., 1998; Xu et al., 1998) : the transition between deflection and
penetration occurs for a ratio of interface fracture energy wint to inclusion fracture
energy wi in the range [0.013, 0.25]. In other words, when wint < 0.013wi the matrix
crack is delfected at the interface (case of weak interface) ; when wint > 0.25wi the
matrix crack propagates through the inclusion (case of strong interface).

Figure 10 shows the evolution of the stress during cracking process. During the
loading, the stress increases linearly. When the precrack propagates into the matrix to
the first inclusion, the stress becomes to decrease. In case of strong interfaces, it conti-
nues to decrease rapidly due to the propagation of the cracks through the inclusions
while in case of weak interfaces, it increases due to the formation of microcracks and
their coalescence (precrack is arrested at the matrix/inclusion interface).

The energy release rate decreases with increasing interfacial bonding strength. The
energy release for strong interfaces is lower than for weak interfaces. These results
show the importance of the interface bonding strength and, in conclusion, a strong
interface is more deleterious than a weak interface.

4.2.2. Body-to-body with periodic boundary interaction : fracture of a ductile
heterogeneous material

Since the previous example can be considered as a calculus of a structure behavior,
we consider now the same type of heterogeneities but from the point of view of the
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Figure 9. Rupture features of the two cases : weak (left) and strong (right)

Figure 10. Stress (MPa) vs strain (%) for the two cases : weak (solid curve) and strong
(dashed curve)

material behavior. Moreover, a plastic deformation inside the matrix is considered in
order to underline the abilities of the MatLib library.

This example deals with the fracture of a bimaterial with periodic conditions and
without precrack (body-to-body interaction, Figure 1 case, with periodic conditions).
The example is the same as the previous one (section 4.2.1), except that the boun-
dary conditions are periodic and there is no precrack in the structure. In addition, the
bonding stength value between the two phases is assumed to be strong.
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A macroscopic strain gradient is prescribed along the horizontal direction.

Without any initial precrack, a multifracture initiates in the inclusions, especially at
the locii of high concentration of inclusions (Figure 11). Then, the cracks propagation
occur through growth and coalescence and lead to the failure of the structure.

Figure 11. Initiation of cracks (white line) in the inclusions

Figure 12 shows the overall stress-strain curve. The overall behavior is ductile over
an uniaxial stress about 530MPa (the yield stress of the matrix being 450MPa) :
as expected, the presence of elastic inclusions with higher strength than the matrix
increases the overall yield stress.

Figure 12. Stress (MPa) vs strain (%) for the two cases : weak (solid curve) and strong
(dashed curve)
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4.2.3. Cluster-to-cluster with periodic boundary interactions : intergranular fracture

This example deals with intergranular fracture in order to show the ability of the
method in a cluster-to-cluster strategy. Each grain is a meshed domain related to each
other with FCZM (cluster-to-cluster interaction, Figure 2 case). The considered struc-
ture is composed by metal grains (Zircaloy) and by two multi-grains inclusions (δ-
hydride). The structure geometry is a periodic square with length L = 100μm (perio-
dic boundary interaction, Figure 3 case), see Figure 13. A periodic Voronoï tessellation
is used. A macroscopic strain gradient rate is prescribed along the horizontal direction.

The bonding strength value between the hard grains and the soft grains is assumed
to be weak.

Figure 13 (right) shows the fractured periodic structure. Again as expected, the
cracks initiate at the grain boundaries of the hard grains. Two main cracks propagate
along the grain boundaries of the soft grains and they join together to form a single
one which leads to the failure of the material.

Figure 14 shows the overall stress-strain curve. The overall behavior is brittle due
to the weak bonding strength of the grain boundaries.

Figure 13. Periodic meshed bodies : shades of gray represents the grains and the
inclusions are delimited by the white borders (left) and fractured cell (right).

5. Conclusion and perspective

This paper presented a numerical framework for the modeling of dynamic crack
propagation in heterogeneous materials. The underlying model rests on a multibody
approach and complex interactions behavior in a periodic extension of the standard
NonSmooth Contact Dynamics framework. This framework has been rewritten as a
dual Schur approach with complex interaction law between subdomains instead of
“basic” continuity condition. It can be seen as an extension of the classical nonover-
lapping domain decomposition methods. In particular, it allows to model complex in-
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Figure 14. Stress (MPa) vs strain (%) for the periodic domain.

teractions, discrete media, periodic media, parallelism or multiphysics. The associated
developed software has the following capabilities : dynamic, finite strain, non-linear
behaviors, periodic Finite Element, crack initiation and propagation, nonsmooth post-
fracture behavior. Two examples dealing with the influence of the matrix/inclusion
interfaces on the crack propagation and the intergranular fracture in a heterogeneous
material have been presented to illustrate the ability of Xper and of the modeling stra-
tegy.

This strategy and Xper code can be applied to nuclear safety, for example, to de-
terminate the fuel behavior at high burnup in a nuclear reactor or the ageing effect on
the behavior of nuclear power plant equipment.

A natural extension of the proposed modeling framework is the parallelism. Each
body can be considered as an independent meshed subdomain. In that case, the sub-
problems are solved on parallel computers. An another application is the multiphysics
in which each mathematical problem is posed on a different domain. Furthermore, one
can introduce complex interactions law between the subdomains.
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Appendix
A. Overview of the software implementation

The architecture design of the software is based on object oriented techniques.
Object oriented programming (OOP) provides a clear modular structure for programs
and makes it easy to maintain and modify existing code. The fundamental concepts
are (Martin, 1996; Martin, 2003; Meyer, 1997) : inheritance, encapsulation, abstrac-
tion and polymorphism. One of the principal advantages of OOP techniques over pro-
cedural programming techniques is that they enable programmers to create modules
that do not need to be changed when a new type of object is added. A programmer
can simply create a new object that inherits many of its features from existing objects.
This makes object-oriented programs easier to modify.

For low programming cost, the strategy retained here is not to develop the software
’from scratch’ but to reuse and extend existing libraries. It permits to take advantages
of the libraries updates while developing the whole software. The framework can be
splitted in two distinct levels (see section 3) : a global Finite Element resolution (inclu-
ding periodic extension) and a local non smooth contact resolution. The Xper archi-
tecture respects this local/global levels by the coupling of three libraries : LMGC90,
PELICANS and MatLib. The libraries are described in the following.

A.1. Existing libraries

A.1.1. LMGC90

The LMGC90 library (LMGC90, 2009) is developed by Dubois and Jean (Dubois
et al., 2003). The software is an open platform under the CECILL License (CECILL,
2005) for modeling interaction problems between elements including multi-physics.
It allows to model : granular material made of rigid or deformable bodies and with
complex interactions (contact, friction, cohesion, wear, etc.), discrete media, masonry,
fracture, etc. The modeling approach is based on an hybrid or extended Finite Element
Method (FEM) - Discrete Element Method (DEM), using various numerical strategies
such as Molecular Dynamics (MD) or NSCD. In particular, the NSCD algorithm al-
lows to take into account cohesive zone models with contact and friction (see section
3 and 4.1).

The programming language used is Fortran90. Although Fortran90 is a procedural
programming language, LMGC90 is implemented in the form of modules using Ob-
ject Oriented Programming. In particular, the code is open for extension and closed
for modification, it respects the ’Open-Closed’ principle (Meyer, 1997). LMGC90 can
be used as a library or as a standalone software through a macro language.
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A.1.2. PELICANS

The PELICANS library (PELICANS, 2009), developed by the French ’Institut de
Radioprotection et de Sûreté Nucléaire’ (IRSN) under CECILL-C License (CECILL,
2005), is a toolbox for the implementation of various numerical methods dedicated to
the solution of systems of partial differential equations (PDEs).

The PELICANS platform is written in standard C++ and is object-oriented. The
constitutive classes are classified in two groups : ’plug-points’ and ’service pro-
vider’. The ’plug-points’ classes play the role of mother classes and permit user
classes to plug into the platform. The ’service provider’ classes make functionalities
available to users. The platform respects the Component-Based Development prin-
ciples, such as the Design by Contract, command-query separation, Liskov substitu-
tion principle, inheritance, naming and self-documentation issues (Martin, 1996; Mar-
tin, 2003; Meyer, 1997).

A.1.3. MatLib

The MatLib library is developed by Stainier (Stainier et al., 2003). MatLib is a
material constitutive models library. It is based on a variational formalism of thermo-
mechanical constitutive updates (Ortiz et al., 1999; Yang et al., 2006). This formalism
rests on potential combination naturally involving an object oriented structure. The
architecture permits the creation of new models from existing models and their im-
plementation in the library. The models are accessible to users through a common
interface.

The library is written in C++.

A.2. Software architecture

The Xper rests on the coupling of the three libraries (see Figure 15) using OO and
Mixed Programming.

In the current version of the code, the LMGC90 library plays the role of the master
program in the coupling. It manages, in particular, the time discretization and the
Newton loops. In the future, the master program will be an interpreted program written
with high-level and OO programming language like Python and independent of the
three libraries.

The choice of the master program being made, each library has a clear mechanical
meaning (Figure 15) :

– PELICANS manages the periodic finite element at the global level,
– MatLib provides the non linear constitutive models (global level),
– LMGC90 manages the surface behavior between the bodies at the local level.
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The volumetric behavior is obtained by the coupling of the finite element library
developed from PELICANS and the constitutive models library MatLib. Since the two
libraries are written in C++ language, the coupling is strong. For example, a MatLib
object can be instantiated from a PELICANS class. A PELICANS-MatLib interface
permits to manage the MatLib objects in the library developed from PELICANS, pre-
serving the independence of each library.

The surface behavior is managed by LMGC90. The coupling between LMGC90
and PELICANS needs Fortran90/C++ Mixed Programming techniques. Two inter-
faces are developed for passing parameters from C++ to Fortran90 and back, one in
PELICANS and the other in LMGC90.

This strategy permits to compile all the libraries independently, and then to link
them.

Note that minor changes have been made in the LMGC90 and MatLib libraries.

LMGC90

PELICANS

MatLib

NSCD + FCZM
�

�

�� �

multibody FE + #

Constitutive law �

Xper

time discretization

newton loop

Figure 15. Role of each library

A.3. Xper software

The main features of the Xper software are summarized as follows :

– dynamics,
– finite strain,
– non-linear behaviors,
– heterogeneous materials,
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– periodic Finite Element,
– complex surface behavior (i.e. contact and friction),
– mixing FEM-DEM.

Note that for the preprocessing, the postprocessing and the linear algebra, the in-
ternal capabilities of the PELICANS and LMGC90 libraries are completed by the
coupling to external software. These functionalities are thus available in the software.

To reduce the high cost of software development, existing codes have been reused
instead of developing them ’from scratch’. According to this strategy, the implementa-
tion and the validation of the Xper project, including all the features presented, repre-
sents 1 man-year. This is a relatively low development costs compared to developing
entirely the features of the libraries in a new platform.
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