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A linear-time approximate convex envelope
algorithm using the double Legendre—Fenchel
transform with application to phase separation

Lorenzo Contento* Alexandre Ern' Rossana Vermiglio*

Abstract

We study the double discrete Legendre—Fenchel Transform (LFT) to approxi-
mate the convex envelope of a given function. We analyze the convergence of the
double discrete LFT in the multivariate case based on previous convergence results
for the discrete LFT. We focus our attention on the grid on which the second dis-
crete LFT is computed (dual grid); its choice has great impact on the accuracy of
the resulting approximation of the convex envelope. Then, we present an improve-
ment (both in time and accuracy) to the standard algorithm based on a change in
the factorization order for the second discrete LFT. This modification is particu-
larly beneficial for bivariate functions. Moreover, we introduce a method for han-
dling functions that are unbounded outside sets of general shape. We also present
some situations in which the selection of the dual grid is crucial, and show that it is
possible to choose a dual grid of arbitrary size without increasing the memory re-
quirements of the algorithm. Finally, we apply our algorithm to the study of phase
separation in non-ideal ionic solutions.

Keywords. Convex envelope; convex hull; Legendre—Fenchel Transform; phase sepa-
ration.

1 Introduction

In many applications, the equilibrium properties of a thermodynamic system can be
studied through the minimization of a certain potential under some macroscopic con-
straints. In ideal situations, the potential is convex, and solving the constrained mini-
mization problem is straightforward. However, complex modelling taking into account
non-ideal effects often leads to non-convex potentials. In this situation, studying the
system at equilibrium requires to know the non-convexity region of the potential, i.e.,
the region where the potential and its convex envelope differ. Depending on the en-
forced macroscopic constraints, this can lead to phase separation. This behavior was
discovered by Maxwell in the study of the Van der Waals equation [15]; he was able to
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build the correct potential by applying the so-called Maxwell’s equal area rule to the
derivative of the potential, which, for a univariate potential, is equivalent to finding its
convex envelope.

For more complex potentials, e.g., bivariate or multivariate functions, the convex
envelope cannot be computed analytically. Since the convex envelope results from a
double Legendre—Fenchel Transform (LFT), it can be approximated by a double dis-
crete LFT. This seminal idea can be found in Brenier’s work [3]. The main ingredient
of the double discrete LFT is obviously the discrete LFT, which can be computed using
Lucet’s algorithm [13]. This algorithm consists in reducing the transform by means of
dimensional factorization to one-dimensional transforms, and the latter can be com-
puted in linear time, that is, in complexity O(n) where n is the number of sample
points. A recent example of application of the double discrete LFT to deriving pres-
sure laws in binary mixtures can be found in [10], while a recent review of the state
of the art in computational convex analysis and its applications can be found in [14].
We also mention the more sophisticated approach to one-dimensional convex envelope
and LFT computation in [8] where piecewise quadratic interpolants are used; unfor-
tunately, the resulting transform is not factorizable, unlike the fast discrete LFT based
on piecewise linear interpolation. Nonetheless, the extension to piecewise quadratic
functions is very promising, especially in light of recent works on parametric quadratic
programming such as [18].

It is also possible to compute the convex envelope without using LFTs but as a
solution to a partial differential equation. For example, it is shown in [16] that the con-
vex envelope of a real-valued function is the viscosity solution of a nonlinear obstacle
problem; in [17] a numerical method to solve this PDE on a grid is proposed. The basic
scheme is obtained by using centered finite differences along directions defined by an
associated stencil to approximate the Hessian matrix at the grid point. The resulting
discrete solution can be mildly non-convex for small stencils, and the choice of the di-
rections is crucial. Convexity can be achieved by introducing a correction term (which
forces the curvature of the solution to be non-zero everywhere) and the convergence of
both schemes is proved. A hybrid scheme is also proposed and tested numerically.

Finally, we remark that exact but less simple algorithms for computing the convex
hull of a set of points exist; these algorithms can be adapted to the problem of the
convex envelope of a function by considering its epigraph. For example, [4] presents
an optimal output-sensitive convex hull algorithm with complexity O(nlogh), where
h is the output size, while a popular library for computing convex hulls is Qhull [1]
which implements an algorithm with worst-case complexity O(nlogn).

The first part of this paper is centered on the convergence properties of the double
discrete LFT in the multivariate case. In the literature, most of the papers focus on
the computation of the discrete LFT, which has by itself many applications; on the
contrary, there are few theoretical results on the double discrete LFT, mainly dealing
with convex functions (see for example [6]). Our convergence results on the double
discrete LFT use [6] as a starting point. However, in order to prove convergence to the
convex envelope and better understand the behavior of the algorithms, it is important
to study the dual grid on which the second discrete LFT is applied. The choice of
the dual grid is one of the main issues regarding an accurate approximation of the
convex envelope, an issue which, to our knowledge, has not yet received the attention
it deserves in the literature. Incidentally, the choice of the directions stencil in [16]
bears similarities to that of the dual grid for the second discrete LFT in our context.

In the second part, we restrict the scope to bivariate functions and present an im-
provement (both in time and accuracy) of the standard algorithm based on the double



application of Lucet’s algorithm. The main idea is to change the factorization order
when computing the second discrete LFT. Another improvement consists in merging
(through a maximum operation) the results obtained after the two possible changes in
the factorization order. We present numerical examples illustrating the benefits of the
proposed approach. Moreover, the issue of choosing the dual grid is further investi-
gated, and an efficient handling of dual grids of arbitrary length is devised. We also
briefly discuss the treatment of non-rectangular domains.

In the last part, we present a physical application of our algorithm to the study
of phase separation in ionic solutions consisting of cations and anions dissolved in a
solvent (typically water). Such ionic solutions are encountered in numerous natural and
technological contexts (colloids, DNA, electrodes, etc.), largely due to the ability of
water to solvate ions and to screen their electrostatic interactions by its high dielectric
permittivity. We consider the model presented in [12] where non-ideal effects (due
to long-range electrostatic and short-range steric correlations between ions) give rise,
under certain conditions, to a non-convex free energy. The free energy has unbounded
derivatives for vanishing ionic densities, and, owing to steric correlations, becomes
unbounded when the total ionic density reaches a certain finite threshold. We present
the shapes of the non-convexity regions, as computed by the present algorithm, for
various cases concerning the valences of the ions. Knowledge of the convex envelope
of the free energy can be useful to determine the spatial distributions of ions and of the
resulting electrostatic potential in confined situations, see [12].

2 Preliminaries

2.1 Legendre-Fenchel Transform

In what follows, we consider functions defined on R” and taking values in R := RU
{—o0,40}. Given a function f of this form, we denote by f (respectively, f) the lower
(upper) semi-continuous envelope of f, i.e., the greatest (smallest) lower (upper) semi-
continuous function upper-bounded (lower-bounded) by f, and by conv f the convex
envelope of f, i.e., the greatest convex function upper-bounded by f.

Let g be a convex function. We denote by domg its (effective) domain, i.e., the
subset of R” where g < +o0; we say that g is proper if dom g is non-empty and g never
takes the value —co. Moreover, we denote by clg the closure of g, which is g if g is
proper and the constant function —eo otherwise; g is said to be closed if g = clg. Given
apoint x € R" and a vector & € R", we say that & is a subgradient of g at x if the affine
function z — g(x) + (£,z—x), where (-, ) is the scalar product of R", is upper-bounded
by g; the collection of all subgradients of g at x is called the subdifferential of g at x
and is denoted by dg(x).

Definition 1. Given f: R" — R not necessari@ convex, the Legendre—Fenchel Trans-
form (LFT) of f is the function f* from R" to R defined as

fH(&) = sup [(x,6) — f(x)].
xeR”

For an exhaustive treatment of the properties of the LFT, we refer to any introduc-
tory book in convex analysis, such as [19]; we recall only the properties which are
useful in the development of the algorithm. Namely, f* is a closed convex function;
f < gimplies f* > g*; f** = cl(conv f); for n > 2, the LFT can be factorized along



each dimension as f* = (—(---(—f*1)*2... )=y \where f* is the LFT along the
ith-dimension, i.e., _
f*l : (x~i75i)'_> sup [xiéi_f(XNiaxi)]v (1)

xi€R
with the notation ~i = {1,...,n}\ {i}.

2.2 Discrete Legendre—Fenchel Transform

In order to define the discrete version gf the LFT, we introduce the following notation:
givenaset ) # Q C R" and f: R" — R, we define fq as

folx) = {f(x) if x € Q,

+oo  elsewhere.

It is clear that
Ja(8) =sup[(x,&) — f(x)],
xeQ
and that f}, > f§ when Q C Q'; moreover, f{ o, =max { 1& fg’g,} for any sets Q, Q' C
R™.

Since we are interested in computing the LFT numerically, the case in which Q is
finite is particularly important. In what follows, the subscript N is used to stress the
finiteness of the set Qy; the notation does not mean that |Qy| = N. The set Qy is
always assumed to be non-empty.

Definition 2. Given f : R" — R not necessarily convex and a finite set Qn C R”, the
discrete Legendre—Fenchel Transform of f computed on the set Qy is the function fg*zN.

In what follows, we implicitly assume that
1. f(x) < oo for at least one x € Qy, otherwise fs*ZN would be —e everywhere;
2. f(x) > —eo for all x € Qy, otherwise fg  would be +oo everywhere.

In the one-dimensional case, there is an explicit formula for the discrete LFT; this
formula is the foundation for the linear-time one-dimensional algorithm proposed by
Lucet in [13]. Moreover, owing to the factorization properties of the LFT, this algo-
rithm is the basic building block of discrete LFT algorithms in higher dimensions.

2.3 Convergence to the Legendre-Fenchel Transform

Our convergence analysis of the double discrete LFT is based on a convergence result
for the discrete LFT by Corrias [6], which considers Q = [0,1]" and proves that the
discrete LFT converges to the LFT as the set Qy C € is refined; the following statement
has been adapted to our notation and extended explicitly to more general sets €.

Definition 3. Ler (Qn )y be an increasing sequence of finite subsets of Q C R". We say
that the sequence converges to Q if minycq, [|xX' —x|| = 0 as N — oo for all x € Q; we
denote this as Qy — Q. If, additionally, sup o minycy, [|X' —x|| = 0 as N — oo, we
say that the convergence is uniform.

Theorem 4. Let ® # Q C R” and let f : R" — R be such that (]TQ) = fa. Let (Qy)y be

a sequence of finite subsets of R" such that Qn — Q. Then, f_(*ZN converges pointwise
to f&. Moreover, if flq is uniformly continuous and Qn — Q uniformly, then the
convergence is uniform on every bounded subset S of dom f¢,.



Proof. The proof is essentially the same as that of [6, Theorem 2.1] and can be found
in [5, Theorem 2.27]. O O

The hypothesis (E) = fq is necessary in order to make Theorem 4 true for every
sequence Qy — €, as shown in [6]. A simple setting in which this hypothesis holds
is when Q C clintQ and f|q is upper semicontinuous; the proof can be found in [5,
Theorem 2.32]).

3 The double discrete Legendre—Fenchel Transform
3.1 Optimal dual set and grid

Given f: R" — R and 0 # Q C R", we consider the problem of computing conv fq.
Firstly, we discretize this problem by considering a finite set Qy C Q and by choosing
to approximate conv fo with the function conv fq,. Secondly, since the application
of two successive LFTs to fq, yields its convex envelope conv fo,, we build an ap-
proxim*ation of the convex envelope by using two successive discrete LFTs, i.e. taking
( faN)sM’ where Sy C R” is a finite set; we call this operation a double discrete LFT,

while the set Sy is called the dual grid.
A correct choice of the dual grid Sy, is essential to obtain an accurate approximation

of the convex envelope. For any dual grid Sy, ( fS*ZN)S =+ ( fK*ZN) = conv fq, as
M

functions defined on R”; this is true because, by finiteness of Qy, the domain of féN is

R”, and thus, by finiteness of Sy, the convex functions féN and conv {( f;ZN)S } (and
M
thus their LFTs) differ. Nonetheless, we now show that there exists at least a set Sy,

which is optimal. In the following statement, the set Q need not be finite.

Definition 5. We say that a set S C R" is an optimal dual set with respect to Q if

(f4)s (x) = cleonv fo (x) )

for every x € QN domclconv fo. Moreover we say that Sy is an optimal dual grid if it
is a finite optimal dual set.

Remark 6. When the dual set S = Sy is finite, the equality (2) holds nowhere on Q\
domclconv fq, since, by finiteness of Sy, the double discrete LFT is finite everywhere.

Remark 7. If Q = Qy is finite, there holds clconv fo, = conv fqo,, i.e., conv fo, is
closed; see [19, Corollary 19.1.2].

We close this section with two important results concerning dual grids: a sufficient
condition for optimality (Theorem 11) and an existence result of finite optimal dual
grids when the set Qy is itself finite (Theorem 12). The following preliminary Lemma
has been inspired by [11, Proposition 2.3], of which it is a direct consequence when Q
is a ball centered at the origin; here, we provide a direct proof for more general sets Q.

Lemma 8. Let g: R" — R be a proper closed convex function and let 0 # Q C R". Let
&o € R" be such that dg*(§y) NQ # 0. Then, g§, (&) = &*(&o).

Proof. Let xg € dg*(&) NQ. Since xg € dg*(&y), by [19, Theorem 23.5 (b,a*)], there
holds g*(&) = (x0,&0) — g(x0). Since xp € Q, we infer that

g (&) < sup [(x, G0) — 8(¥)] = ga(S0)-



By the properties of the LFT, we also obtain g, (&) < g*(&o), thereby proving the
assertion. O O

Remark 9. We observe that Lemma 8 does not require the finiteness of Q; if Q is finite,
the converse statement can also be proved [5, Theorem 3.12].

Remark 10. The case in which Q is a ball centered at the origin has been considered
also in [13, Proposition 2] as a corollary of [11] for a general function f. In our opinion,
the convexity of the function is an essential assumption to state the result. Moreover,
the statement f* = fz when the ball B is large enough is not true when, for example,
the derivative of f* becomes unbounded.

Theorem 11. Consider f: R" — R and let Q,S C R™. Let x € R" such that
dcleonv fo(x) NS #£ 0. 3)

Then, (f$)(x) = clconv fo(x). As a consequence, if condition (3) holds for every
x € QNdomclconv fq, then S is an optimal dual set with respect to Q.

Proof. After observing that (fg)" = clconv fq by the properties of the LFT, it is suffi-
cient to apply Lemma 8 to the function g := f{, and the set S. O O

Theorem 12. Consider f : R" — R and let Qy C R" be finite. Then, there exists a
finite set Syy C R" which is an optimal dual grid with respect to Qy.

Proof. Since Qy is finite, by [19, Theorem 23.10] we infer d conv fo, (x) # 0 for every
x € Qy Ndomconv fq,. Thus, Sy can be built by satisfying the sufficient condition
given in Theorem 11; in particular, this yields |Sy/| = ‘QN N domconv fQN‘ which is
finite. O O

3.2 Convergence to the convex envelope

*

We now return to the double discrete LFT ( ff*zN) . We assume that Qy has been
Sm

chosen, while the dual grid Sy, has yet to be determined; as seen in the previous section,

the best choice for Sy, is given by an optimal dual grid. Unfortunately, finding it is a
difficult task since we need to know something about conv fq, . Nonetheless, finding a
non-finite optimal dual set S is generally easier (see for example Section 4.1 where a
possible optimal dual set S is given in the case Qy = Xy x Yy C R?); moreover, since by
Theorem 12 we know that a finite dual set exists, we can hopefully find a bounded set
S. The following Theorem shows that by considering a sequence of non-optimal dual
grids Sy — S, we can achieve convergence of the double discrete LFT to the convex
envelope.

Theorem 13. Let f: R" = R, let Qy be a finite subset of R" and let S C R" be
an optimal dual set such that S C clintS. Let (Sy)u be a sequence of finite subsets

of R" such that Syy — S. Then, for fixed Qy, (f;ZN)SM (x) — conv fq, (x) for every
x € QyNdomconv fq,.

Proof. The function fg  and the set S satisfy the hypotheses of Theorem 4 since fg, |
is continuous on R" by finiteness of Qy. Hence, ( f;gN)ZM — ( ff‘zN) ; The conclusion

*
follows since, owing to the optimality of S, we infer ( ff*lzv)s = conv fq, on QyN
domconv fg,.



By repeating the final steps of the proof of Theorem 4, we obtain the following
error estimate.

Corollary 14. Under the hypotheses of Theorem 13, let xo € Qn Ndomconv fq, and
let & € d conv fo, (x0) NS. Then,

|conv fay (x0) = (8, )5, (x0)| < 1€ = &urll Ixoll + /&, (&m) — /&, (&0)

’

where EM = arg mingcg, [1Eo—E&|l-

Proof. Since & € dconv fo, (x0) =2 (fS*ZN> (x0), by [19, Theorem 23.5 (b,a*)], we
*
infer ( fs*ZN) (x0) = (x0,%0) — f&,,(0). Moreover, by optimality of S, we also obtain

( fE‘ZN); (x0) = ( féN) ) (x0). We can then write
0= (fa,)} (x0) — ()7, (30)
= (x0,%0) — fo, (60) — max [(x0,8) — 15, (€)]

(x0,E0) — fioy (E0) — (x0, &) + fiy (En)
(&0 — Eu,x0) + finy (En) — fiy (&0)
1180 — Entll Ixoll + | s,y (Enr) — fisyy (01,

and the corollary is proved. O O

IN

<
<

Remark 15. Since the function f¢, is continuous, Corollary 14 says that the error in
the approximation of conv fo, at the point xg is determined only by the density of the
grid Sy near a point of d conv fq, (xo); should we be interested in the value of conv fq,
only in one point xyp € Qy, we could consider as the set S a neighborhood of a point of
dconv fo, (x0).

4 An algorithm for the convex envelope

4.1 Standard factorization

The discrete LFT, being a special case of LFT, can be factorized in a similar way. For
simplicity, we focus on the case n = 2, i.e., bivariate functions; see Remark 18 for the
multivariate case. Consider f : R2 5Rand Q =X x Y C R?, not necessarily finite.
The dimensional factorization (1) yields

1\ *2
fa=(-fa) "
Since for every y € R we can have fq(x,y) < 40 only if x € X, we obtain

8(&.) = (fo)" (&) = [fa 3] (&) = [F(-2)]x (6)-

In particular, when y ¢ Y, there holds fo(,y) = 4o and thus g(-,y) = —co. Finally, we

obtain
f6Em) = (=) (&) =[—g(& )] () =[-g(&. )]y ().



where the last equality follows from the fact that, fixed &, the function —g(&,-) is +oo
outside Y.

In the case of the discrete LFT, i.e., when Q = Qy = Xy X Yy is finite with [Xy| =n
and |Yy| = m, we obtain a factorization of the two-dimensional discrete LFT into
one-dimensional discrete LFTs. In particular, in order to compute fg*zN(Jj,n) for a
given (£,71) € R?, we need to compute g(&,y;) for every j = 1,...,m using m one-
dimensional discrete LFTs along the x-direction (each on data whose length is n) and
then applying one one-dimensional discrete LFT along the y-direction (on data whose
length is m); if we want to compute the transform for (§,1) € Sy, where Sy is a grid
with the same size as Qp, we then have in total m discrete LFTs on data of size n
and n discrete LFTs on data of size m. Having the one-dimensional algorithm linear
complexity, the complexity of a two-dimensional algorithm based on this factorization
is O(nm), again linear; this is the algorithm presented in [13]. Finally, by choosing a
dual grid of the tensor-product form Sy = Cy; x Dy C R?, we can compute the dou-

ble discrete LFT ( ff*lzv)s by applying twice the algorithm just presented; this is the
M

algorithm used in [10], to which we refer henceforth as the “standard factorization”
algorithm.

The choice of the dual grid is a crucial issue common to all convex envelope al-
gorithms based on the double discrete LFT and, in our opinion, has not been stressed
enough in the literature. Owing to Theorem 13, it is reasonable to choose Sy as a
discretization of an optimal dual set S, possibly as small as possible; but also the type
of discretization is relevant and we treat it in Section 4.5. In the case Qy = Xy X Yy
and f < oo on Qy, a possible choice of S is the set [E~,ET] x [n7,n*] built as
follows. Given y € R, let gy := fou(-,y), & := maxdconvgy(minXy) and & :=
min d conv gy(max Xy ); this means that &, and & are, respectively, the right and left
derivative of conv gy at min Xy and max Xy. We then define £~ as minyey, &~ and £+
as maxycy, é;r; N~ and N are defined in a similar manner. A proof of this result can
be found in [5, Theorem 4.15].

4.2 Alternating factorization

Since the order of factorization is arbitrary, we do not need to factorize both discrete
LFTs in the same way. We can decompose the second discrete LFT as

" N *1
(fan)s, = [~ Ua)s]
obtaining that
(o), (63) =[R2, (),

where *

ME) = [fiy (6], 0) = [(—8EN3] ).

Dy

This means that /(&) is an approximation of the convex envelope of (—g(&,"))y, -
By substituting & with the true convex envelope (which is easily calculable in one
dimension) and by observing that

Il
—
—
oQ
—
e
N
N
;*
[
*

conv [(~g(&, )y |



*
we obtain a way to compute the function ( fﬁ*lzv) MR in linear time, even if the dual set
M X

*
Cu x Ris not finite. This function is a better approximation of conv fgq, than ( fSN)
Sm

since, owing to the properties of the FLT,

(fézv); < (ff*lzv);/ < (ff*lzv)* = CoanQN
for every sets S,5" C R? such that S C §'.
*
Definition 16. We refer to the algorithm computing ( fE‘ZN)C " by the factorization
M X
presented above as the alternating factorization algorithm.

A further variant is to consider the two possible changes in the factorization order
*

and merge the results through a maximum operation, that is, we compute ( fg*zN)

and ( fg*zN) ) and set

RXDM

CMXR

(&) (Cymy(epy) = maX { (o) iy (féN)%X,)M} ' @)

*

Definition 17. We refer to the algorithm computing ( fS*ZN) Dy from (4) as
M

(CuxR)U(Rx
the max-alternating factorization algorithm.

The max-alternating factorization algorithm improves the alternating factorization
one in terms of accuracy since the dual set has been enlarged again. Our numerical re-
sults in Section 4.4 show that the max-alternating factorization algorithm is also more
efficient in terms of computational time to achieve a certain accuracy threshold (ex-
cept for very simple functions). Finally, when applied to functions which are invariant
under swap of coordinates, the max-alternating factorization algorithm preserves this
property as the exact convex hull does.

The dual sets used for the double discrete LFTs presented in this section are no
longer finite. They can be built following the construction at the end of Section 4.1 for
an optimal dual set of the form S = [~ "] x [n™,nT]. Specifically, we choose Cy
as a discretization of [, &7 ] and Dy as a discretization of [17,1n"]; in what follows,
when speaking of the dual grid in relation to the alternating factorization algorithms,
we refer to the finite sets Cy; and Dy, and not to the actual dual sets Cyy x R and R x Dy,
used in the transforms.

Remark 18. The alternating factorization algorithm can be also applied in dimension
n > 2, but we expect less significant improvements in speed and precision the higher
the dimension is, since the number of loops is always reduced by one independently of
n.

4.3 Implementation

Let us first briefly recall the standard algorithm for the double discrete LFT. Consider
a function f: R2 SR, a primal grid Qn = Xy X Yy, and a dual grid Sy; = Cys X Dy;.
The algorithm consists in evaluating f = on the grid Sy and then ( fg*zN)gM on the grid
Q. A simple choice for the dual grid Sy, is a uniform discretization of the optimal
dual set S = [E7,E¥] x [n,n*]. We notice that £ and N can be easily found by

computing the interval containing all the natural grids of the one-dimensional discrete



LFTs, respectively, along the rows and along the columns, since in one dimension those
grids correspond to the slopes of the convex envelope. More elaborate choices for the
dual grid, which are instrumental when approximating the convex envelope of complex
functions, are discussed in Sections 4.5 and Appendix A.

In order to implement the alternating factorization algorithm, we can adapt the
standard factorization algorithm just presented by condensing the two consecutive one-
dimensional discrete LFTs in the same direction into a single application of the convex

*
envelope operation; thus the computation of ( fg’-‘zN> ® is not only slightly better,
CMX

but also slightly faster (see, for instance, the results in Table 3 below). Algorithm 1
presents a pseudo-code description of the alternating factorization algorithm. We de-
note by convexenvelope_1d(grid, values) the subroutine which computes the
convex envelope of the piecewise linear interpolant on the nodes grid and the values
values (the row index in values corresponds to the first dimension, while the column
index to the second one). Moreover, we denote by fast_dlft(grid, values) the
subroutine which computes the one-dimensional discrete LFT by Lucet’s algorithm.
Both subroutines return a piecewise linear function, which is represented by an object
pcw whose components are pcw.grid and pcw.values; we denote by pcw(grid)
the evaluation of the piecewise linear function on the points of grid. We use an ar-
ray notation where indexes start from 1 and where the index —1 is a shortcut for the
last index; the function size (array) gives the size of an array. Moreover, we denote
by linspace(start,stop,N) the grid which discretizes the interval [start,stop]
with N evenly spaced points. Finally, the keyword parallel denotes the loops whose
iterations are independent and thus computed in parallel.

The implementation of the max-alternating factorization algorithm follows along
the same lines. A practically relevant observation is that it is not necessary to imple-

*
ment a new function when computing ( f;gN)R . Indeed, it suffices to change the
Dy

X
order of the dimensions (i.e., transpose the data matrices) before and after Algorithm 1.

Finally, we observe that, owing to finite precision arithmetic, both the standard and

the modified algorithms can contain points where the output values are greater than the
*

input values. In order to satisfy the property ( ff*zN) < fay, it is possible to take as
Sm
the convex envelope the minimum between the input and output values. This test is
used in what follows to detect the region where the function differs from its convex
envelope.
The readers interested in the codes can request them to the first author.

4.4 Numerical comparisons

In this section we present numerical tests to compare the three above algorithms to ap-
proximate the double discrete LFT, which we abbreviate as s-dDLFT (standard algo-
rithm for the double discrete LFT), a-dDLFT (alternating factorization) and ma-dDLFT
(max-alternating factorization). In all cases, the dual grid is built from a uniform dis-
cretization of the optimal dual set S = [£7,&T] x [n7,nT], with the same size as the
grid Qu on which the function is approximated. We first test the algorithms on func-
tions of the form f(x,y) = f(r), where r is the distance to the origin of the point (x,y),
i.e., ¥ = v/x2 +y2; a non-radial function is tested in Section 4.5. The first test function
we consider is

fes(y) = (2 =1)%,

10



Input: Xy — xgrid, ¥y — ygrid, f(Xy x Yy) — values

*
Output: (f5N>C XR-—>values
M

! Step 1: compute the discrete LFT along each column
lwb = +Inf
upb = -Inf
parallel do j = 1,size(ygrid)
pcws(j) = fast_dlft(xgrid, values(:,j))
lwb = min(lwb, pcws(j).grid (1))
upb = max(upb, pcws(j).grid(-1))

end do
! Step 2: build the dual grid C_M
! and evaluate each of the discrete LFTs on it

cgrid = linspace(lwb, upb, size(xgrid))
parallel do j = 1,size(ygrid)
values (:,j) = -pcws(j)(cgrid)
end do
! Step 3: compute the convex envelope of each row
parallel do i = 1,size(cgrid)

pcw = convexenvelope_1d(ygrid, values(i,:))
values(i,:) = -pcw(ygrid)
end do

! Step 4: compute the discrete LFT along each column
parallel do j = 1,size(ygrid)

pcw = fast_dlft(cgrid, values(:,j))

values (:,j) = pcw(xgrid)
end do

Algorithm 1: Alternating factorization algorithm for the double discrete LFT.

whose convex envelope is

(P =1)?% ifr>1,

cony fiby (x.5) = {O o

The grid Qy consists of 1000 x 1000 points uniformly distributed on the square [—1.5,1.5].
As a first assessment of the quality of the numerical results, we compare the regions
flagged as non-convex by the different algorithms, i.e., where the computed convex
envelope differs from the value of the function; in the present case the exact region of
non-convexity is the unit disk. The regions detected by the s-dDLFT, a-dDLFT and
ma-dDLFT are shown in white in Figure 1; the loss of invariance under swap of co-
ordinates for the a-dDLFT is visible in the different shape of the region around the
two axes. In Figure 2, the error between the computed and exact convex envelopes
is shown, whereas in Table 1, quantitative information about this error is reported. It
is clear that the change of factorization order employed in the a-dDLFT improves the
approximation of the convex envelope, and that the ma-dDLFT further improves the re-
sults. These successive improvements are also visible from Figure 3 which displays the
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Figure 1: Non-convexity region of the function £, on the domain [—1.5,1.5]?, com-
puted from left to right by the s-dDLFT, a-dDLFT and ma-dDLFT; the points where
the computed convex envelope differs from the function fL, are shown in white.

Table 1: Errors between the exact convex envelope of £, and its computed value. The
values for the a-dDLFT and ma-dDLFT are expressed as the relative error reduction
with respect to the s-dDLFT.

inside [—1.5, 1.5]2 s-dDLFT a-dDLFT | ma-dDLFT
Maximum value 0.0297 —29.30% | —29.30%
Mean value 0.0041 —23.73% —37.03%
Standard deviation 0.0068 —21.64% | —32.55%

inside the unit circle s-dDLFT a-dDLFT | ma-dDLFT
Maximum value 0.0297 —29.30% | —29.30%
Mean value 0.0117 —23.55% | —36.76%
Standard deviation 0.0068 —18.24% | —25.29%

outside the unit circle s-dDLFT a-dDLFT | ma-dDLFT
Maximum value 0.0026 —2.77% —98.14%
Mean value 2.883-107° | —64.12% | —96.96%
Standard deviation | 8.565-107> | —37.99% | —95.87%

restriction of the transforms to the axes. Finally, to illustrate Theorem 11, we have also
included in Figure 2 the case in which the value O is inserted manually into each one-
dimensional dual grid used by ma-dDLFT; being (0,0) the value of the gradient in the
non-convex region, we obtain an almost exact result inside the region of non-convexity.

The second test function (see Figure 4) is
F2(x,y) = expr+25-sin (2.5 — r) -exp [— (25— r)2] ,

and, by observing that conv f2(x,y) = conv f2(r), we can build a very accurate ap-
proximation of the convex envelope of f2, by a one-dimensional computation (we
denote by s the value of the one-dimensional derivative inside the region of non-
convexity). We treat this convex envelope as the “exact” one in order to test the
two-dimensional algorithms. The domain is the square [—3.75,3.75]% discretized by
a 1000 x 1000 uniform grid. The exact region of non-convexity is an annulus with
radii 0.47 and 2.87, whereas the regions computed numerically are presented in Fig-
ure 5. In Figure 6 we plot the errors produced by the various algorithms; for the fourth

12
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Figure 2: Error between the exact convex envelope of fL and its value computed
from left to right and from top to bottom by the s-dDLFT, a-dDLFT, ma-dDLFT and
ma-dDLFT using a dual grid containing 0.
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Figure 3: Restriction to the y-axis of the convex envelope of f..,, computed respectively
by s-dDLFT (blue line), a-dDLFT (red line) and ma-dDLFT (green line); the exact
convex hull is shown in black.
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Figure 4: The graph of the test function fésl (blue line) and of its convex envelope
(green line).
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Figure 5: Non-convexity region of the function fZ on the domain [—3.75,3.75]%, com-
puted from left to right by the s-dDLFT, a-dDLFT and ma-dDLFT; the points where
the computed convex envelope differs from the function fZ, are shown in white.

plot, we inserted manually into the grids the value s (positive), but in this case the re-
gion where the resulting transform is exact is much smaller since the gradient in the
region of non-convexity is constant only in norm. By studying Table 2, we observe that
the improvement achieved by the a-dDLFT over the s-dDLFT is much larger for f2
than for f.,. Moreover, there is a large reduction in the maximum error in the non-
convexity region when we use the ma-dDLFT; this does not happen for fL, since the
maximum error is reached at the origin which is invariant under swap of coordinates.
We have also tested grids with increasing size (both in primal and dual space) in order
to check numerically the convergence to the exact convex hull; the maximum and mean
error as functions of the grid size for the three variants of the double DLFT algorithm
are reported in Figure 7.

Finally, we compare the running time of the algorithms. The a-dDLFT is as ex-
pected faster than the s-dDLFT with a 32% reduction in computational time, while
computing the ma-dDLFT takes 49% more time than the s-dDLFT. However, in order
to properly compare the a-dDLFT and ma-dDLFT algorithms, we have to account not
only for the computational time, but also for the quality of the results. A possible way
to do so is to compute the ma-dDLFT on a 1000 x 1000 grid and the a-dDLFT on grids
having size (10004 i) x (1000+:) with i = 1,2,...; then, we choose i as the first value
for which the error on the convex envelope measured in a certain metric (maximum,
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Figure 6: Errors between the exact convex envelope of f2 and its value computed
respectively from left to right and from top to bottom by the s-dDLFT, a-dDLFT, ma-
dDLFT and ma-dDLFT using dual grids containing s.

Table 2: Errors between the exact convex envelope of f2, and its computed value. The
values for the a-dDLFT and ma-dDLFT are expressed as the relative error reduction

with respect to the s-dDLFT.

on [-3.75,3.75]> | s-dDLFT | a-dDLFT | ma-dDLFT
Maximum value 0.0855 —3.29% —84.32%
Mean value 0.0125 —65.31% | —92.34%
Standard deviation 0.0182 —39.18% | —89.75%

inside the annulus s-dDLFT a-dDLFT | ma-dDLFT
Maximum value 0.0855 —3.29% —84.32%
Mean value 0.0276 —65.35% | —92.31%
Standard deviation 0.0181 —17.08% —87.24%

outside the annulus s-dDLFT a-dDLFT | ma-dDLFT
Maximum value 0.0081 —0.00% —80.97%
Mean value 2.219-107% | —60.58% | —95.45%
Standard deviation | 3.725-10~% | —33.79% | —84.17%
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Figure 7: The maximum and mean errors for the convex hull of f2, as functions of the
grid size |Qy| = |Sy|

Table 3: Values of i at which the a-dDLFT produces a better result than the ma-dDLFT
in each of the three error measures. The time comparisons do not include input gener-
ation.

fii (odd i’s are excluded) 12
Maximum error i=2 i > 3000
Time: —50% of ma-dDLFT
Mean error =212 i=1279
Time: —27% of ma-dDLFT | Time: +173% of ma-dDLFT
Standard deviation i=162 i =2245
Time: —33% of ma-dDLFT | Time: +472% of ma-dDLFT

mean, or standard deviation) becomes smaller than the reference value obtained with
the ma-dDLFT. In this way, we can compare the time the two algorithms require to
reach a result of comparable quality. Some care is needed in this assessment, since the
convergence of the error measures to zero with increasing i is not always monotone;
for example, the error for fL is always very small when i is odd since the dual grid
contains the slope 0. The results are reported in Table 3. We conclude that while the a-
dDLFT outperforms the ma-dDLFT for the simple test function £, it is much slower
when applied to the slightly more complex f2 . The time taken by the ma-dDLFT is
about 0.78 s for both test functions; the algorithms have been implemented in Fortran
(with parallelization provided by OpenMP) and are called from a Python interpreter
under Mac OS X 10.8 on a 2.93 GHz Intel Core i7 (4 cores, HT).

4.5 The choice of the dual grid

In the rest of the paper we always consider the more accurate ma-dDLFT, but the
problems and possible solutions presented in this section concerning the dual grid are
relevant to the other algorithms as well.

The main issue in the accurate computation of the convex envelope is the choice of
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the dual grids Cy; and Djy; as we have seen in Theorem 13, a discretization Cys X Dy of
the optimal dual set S = [£~,E™] x [, 0| represents a reasonable choice. Until now,
we have used a uniform discretization of S; however, when the rate of change of the
derivatives varies significantly over the domain, this simple choice does not work well.
This is the case of both the test functions f, and f2, when enlarging the domain on
which the convex envelope is computed. Figure 8 illustrates this fact for the second test
function. It is interesting to observe that the plots are composed of black curves whose
spacing is the greater the nearer they are to the origin: each of these curves corresponds
to a point in the dual grid. Let us consider for example £ € Cy; being Cyy X R the
actual set on which the second transform is computed, we infer from Theorem 11 that
for every point (x,y) € Qy, such that (§,1n) € dconv fo, (x,y) for a certain n € R,

there holds conv fo, (x,y) = ( f-QN) . Since in our case the test functions and their

convex envelopes are differentiable, the locus of the points where the first component
of the gradient is &, corresponds to one of the black curves, i.e., is composed of points
where the algorithm yields the exact result. By observing that the gradient is always
directed radially and that its module depends only on the distance to the origin and
increases with it, we can easily explain the shape and the origin of the black curves,
which are asymptotically tangent to the y-axis; a similar remark also holds for the
curves asymptotically tangent to the x-axis, which are related to the points 11 € Dy,.
Since in our tests the second derivative increases with the distance to the origin, we can
explain the reason they are denser and the result of the algorithm better far away from
the origin by the fact that the distance between successive points of the dual grids is
always the same, but the distance in primal space needed for the same increase in the
gradient becomes smaller as we move away from the origin.

Remark 19. If the rate of change of the derivatives of f is constant, then it is satisfactory
to use a large set S uniformly discretized. Consider for example the convex function
f(x,y) = Kr? on the domain [—1,1]?; by increasing the constant K we can enlarge the
optimal dual set S to be discretized uniformly. Since the derivatives of f grow linearly
with r, the distance between the black curves corresponding to the points of the dual
grid is the same everywhere. If we take a dual grid which is at least as large as the
primal grid, then there are enough curves to cover the entire space and thus the result
is (almost) exact.

A first solution to this problem consists in increasing the size of the dual grid.
It is possible to use a dual grid of arbitrary length without increasing memory usage
by partitioning the dual grid; this method can be applied to the three algorithms pre-
sented and also to their higher-dimensional variants. Given an arbitrarily large dual
grid Sy, we partition it as szlv_”’sS;V’,), where ‘Sj(‘,’,)’ = |Qu| for all j =1,...,s; the

*

results obtained using the various dual grids S,(é) are then merged using ( fK*ZN)S =
L

max;—p,..s ( fQN) (J) We can build an algorithm which has memory requirements in-

as shown in Algorithm 2; moreover, we can perform the first step of

*
discrete LFTs only once and use this result in the calculation of each ( fi*lzv)s(j) ,J=
M

1,...,s.

We can use Algorithm 2 to compute the double discrete LFT with a uniform dual
grid of arbitrary size. However, this approach is not very efficient (with respect to
computational time) since it requires dual grids of extremely large size (see for ex-
ample the bottom right plot in Figure 9). As discussed in Remark 19, the difficulty
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Figure 8: Non-convexity region of the function f2, respectively from left to right and
from top to bottom on the domains [—5,5]%, [~6,6]%, [~7,7]> and [—8,8]?; the points
where the computed convex envelope differs from the function f2 are shown in white,
while the boundary of the exact non-convexity region is shown in red.

does not lie in the density of the dual grid but in its uniformity. A non-uniform dis-
tribution of points has to be considered since intervals of equal length in dual space
can correspond to intervals of varying length in primal space. A possible heuristic
approach uses as the dual grid Sy the union of all the grids pcws(:) .grid of the
first step of one-dimensional discrete LFTs. This large grid in dual space can be par-
titioned naturally in correspondence to each line on which the one-dimensional LFT
has been computed: this means taking S_M(j)=pcws(j) .grid and s=size(ygrid)
in Algorithm 2. Incidentally, we observe that the resulting dual grid Sz can be non-
optimal, so that the computed envelope is not necessarily well-approximated. In prac-
tice, accurate results are achieved by considering only few lines; for example, we
can fix 2 < s < size(ygrid) and take S_M(j)=pcws(indexes(j)).grid, where
indexes=floor(linspace(l,size(ygrid),s)).

In order to test if the choice SI(VJI) from the grids pcws(:) .grid delivers more ac-
curate results compared to a uniform grid, we consider the test function

3

—10(r—10)2
ft?est(xvy) ftest x,y) Z |:ftest (0,10i) - ¢~ 10(r—10i) ] .

In Figure 9 the computed non-convexity region of f is plotted for a heuristic non-
uniform dual grid with s = 2,3,10,20. The primal grid has size 1000 x 1000, while the
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Input: Xy — xgrid, Yy — ygrid,

f(Xn xYy) — values, Sj(‘fl'),j: I,...,s = SM(s)

Output: ( ffiw); — cur_values

! Step 1 (common for all algorithm wartants)

parallel do j = 1,size(ygrid)
pcws(j) = fast_dlft(xgrid, values(:,j))

end do

! 4terate over the dual grids S_M
cur_values = -Inf

do j = 1,s

! complete the computation of the double discrete LFT
! using the dual grid S_M(j)

temp_values = ... (depending on the factorization used)
! merge the two solutions by a max operation
cur_values = max(cur_values, temp_values)

end do

Algorithm 2: Convex envelope algorithm with dual grid partition.

dual grid has size (1000s) x (1000s). As a comparison, we have included the results ob-
tained with uniform dual grids of size 1000 x 1000 (upper left) and (1000s) x (1000s)
with s = 100 (bottom right); for the latter plot, Algorithm 2 has been used with s = 100.
Like f2. it is possible to compute with great accuracy the exact convex envelope of
13 and thus its exact non-convexity region; although this region is different from the
non-convexity region of ( fést) oy (which is the one we are actually approximating), we
compare our results against it. Then, the distance between the computed and “exact”
non-convexity region (mapped on the same finite grid), measured as the percentage
of points where they differ, is respectively 44.1%, 5.23%, 1.36%, 0.40%, 0.32% and
1.17%. Thus, for a non-uniform dual grid with s = 10, the result is of the same quality
as with a uniform dual grid with s = 100.
As a final test, we consider the following function introduced in [17]:

8a0(x,y) = %(cos2 6 + asin® @)x* + (1 — o) cos O sin Oxy + %(Otcos2 6 +sin® 0)y>.
We take o = —%, 0 = %arctan% and choose as the domain the square [—1,1]? dis-
cretized by a uniform 1000 x 1000 grid; the resulting function and its convex envelope
computed by the Qhull library using the same primal grid are shown in Figure 10. We
report in Table 4 the differences between the various algorithms and the solution given
by Qhull. We use the suffixes xy and yx to denote the two different orderings for the
alternating factorization algorithm. Moreover, we denote by the suffix hV with some
integer N (respectively uN) the application of Algorithm 2 with s = N and a heuristic
(respectively uniform) grid; we have included only one value of s since in this case
higher values do not improve the results significantly. We observe that since the test
function g_ 1 L arctan | is not invariant under exchange of the axes, different orderings
produce different results; which ordering works best depends on the particular func-
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Figure 9: Plots of the non-convexity regions of the test function f2 on the domain
[—75,75]? covered by a uniform 1000 x 1000 grid. The upper left plot is produced
with a uniform dual grid of size 1000 x 1000, while for the bottom right plot a uniform
dual grid of size (1000s) x (1000s) with s = 100 is used; for the other plots, a heuristic
non-uniform dual grid is used with s, respectively from left to right and from top to
bottom, equal to 2, 3, 10 and 20.

20



0.6
TN
\\\\\\\ \\\ 0.4
N :
RN y
0.2
~L0 o5 4, 05 10 y0.5 1.0

Figure 10: Plots of the function g_; Larctan | (left) and its convex hull (right) on
(1,1 ‘

tion considered. In the general case in which the size of the dual grid differs from
that of the primal grid, also the computational speed is not the same for the two or-
derings. However, in our case we have chosen to take the two grids with the same
size and thus in theory there is no difference in computational time; the time difference
observed in practice is also negligible. Furthermore, as expected both alternating fac-
torization algorithms perform better than the standard one, but they are outperformed
by the max-alternating one. Using Algorithm 2 leads to better results at the expense of
computational time. In this case, the gain due to a uniform grid is modest, while the
heuristic approach performs extremely well even for s very small. This is due to the
fact that the heuristic algorithm is able to build a dual grid which is extremely close to
the optimal one. However, this is not what happens in general, and the present obser-
vation results from the particular shape of the test function. Moreover, the choice of
the factorization direction affects the heuristic algorithm more than the uniform one. In
this test case, the high precision observed in the symmetrized heuristic algorithm is due
to the xy ordering. In the yx case, the convex hull of the sections along the y direction
are all affine functions, which means that their derivative is constant and thus the dual
grid associated is composed by only one point; even by examining s sections, we can
at most build a dual grid with s points, resulting in an inaccurate approximation.

S Application to phase separation in ionic solutions

Ionic solutions consist of a solvent, usually water, in which one or more ionic species
are dissolved. The behavior of ionic solutions interacting with, or confined by, solid
objects carrying surface charges is of interest in many natural and technological con-
texts. One of the first steps to elucidate the behavior of such solutions is the study of
bulk ionic solutions in the absence of external forcing. The non-ideal behavior of bulk
ionic solutions results mainly from two types of effects, which both play a major role
as the ionic density increases: long-range electrostatic correlations due to screening by
counter-ions and short-range steric correlations due to excluded volume effects (see [2]
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Table 4: Differences for the convex envelope of g 1 Larctan | between the result pro-

duced by the Qhull library and those of the algorithms presented in this paper. Vari-
ations in computational time are expressed as fraction of the time taken by the ma-
dDLFT algorithm.

s-dDLFT | a-dDLFT-xy a-dDLFT-yx
Maximum value 1074 1.2-10°° 8.6-107°
Mean value 2.3-107 3.2-1077 9.8-1077
Standard deviation | 1.6-10~° 2.6-1077 4.6-107°
Time —34.5% —49.9% —50.1%

ma-dDLFT | ma-dDLFT-h3 | ma-dDLFT-ul0
Maximum value 1.2-10°° 6.8-10710 1.2-1077
Mean value 22-1077 5.0-10717 1.7-10°%
Standard deviation | 1.9-10~7 5.3-10717 1.7-10°%
Time 0.544 s +92.6% +527.2%

and references therein). These non-ideal terms result from ion-ion interactions in the
solution; ion-solvent interactions are neglected. Liquid-vapor transition and criticality
in bulk ionic solutions due to non-ideal behavior have been extensively investigated
over the past decades; see, e.g., [9].

We consider two dissolved ionic species, a cation and an anion; we denote their
valences by Z, > 0 and Z_ < 0, respectively. Within the so-called Primitive model
considered herein, both ions have the same diameter 6. We denote by p = (p,p-)
the ionic densities, and we introduce the reduced ionic densities p- = 63p... The bulk
free energy of the ionic solution splits into f(p) = fia(p) + feorr(p), Where the ideal
term is given by

falp) = ﬁlcﬁ,.;f"“"g(ﬁ"’ -

with B := (kgT)~! where kg is the Boltzmann constant and 7' the temperature. The
non-ideal term feorr(p) is detailed in [12], which is devoted to the study of phase sep-
aration in ionic solutions in confined situations. For the present purpose, it suffices to
know that f.o(p) only depends on the non-dimensional reduced temperatures

where € is the solvent dielectric permittivity and e the elementary charge. Moreover,
due to excluded volume effects, foorr(p) becomes unbounded whenever the packing
number &(p) = ZPior. With reduced total ionic density Py = P4 + P, reaches unity.
Therefore, the domain of f is {p € R2;E(p) < 1}. When the reduced temperatures
T are large enough, the bulk free energy density f is a convex function of the ionic
densities. The minimization of the free energy under canonical constraints fixing the
mean-values of the ionic densities in this regime has been investigated in [7] in confined
situations.

Herein, we are interested in the regime where at least one of the reduced temper-
atures 77} falls below the critical value TJ;, ~ 0.07857, so that f is no longer convex
in p. We observe that the convexity properties of the univariate restrictions f (p+) =
f(p+,0) and f_(p—) = f(0,p_) are solely determined by the value of the correspond-
ing reduced temperature 7'f. For instance, f (resp., f_) is convex in py (resp., p—)
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Figure 11: Non-convexity region of the bulk free energy for Z, = £2 and T* = 0.07;
the black points are where f = conv f. The right panel provides a zoom of the left
panel near the origin.

if TY > T, (resp., T* > T7.) and non-convex otherwise. Another relevant property
is that, in general (see below for a counter-example), the bulk free energy density f is
convex for high enough ionic densities because steric correlations, which always yield
a convex contribution, become dominant.

Firstly, we study the case Z, = +2. In the symmetric case where Zy +Z_ =0, it
turns out that f.o only depends on Py, which ensures that f and its convex envelope
are invariant when swapping ionic densities. Moreover, the two reduced temperatures
T{ are equal, and we denote by T* their common value. We show the shape of the
non-convexity region in the case 7" = 0.07 (below the critical value 7_; ~ 0.07857)
in Figure 11; as expected this region is invariant when swapping ionic densities. We
notice that since f is convex for sufficiently large ionic densities, we can restrict the
computation of the convex envelope to a set smaller than the actual domain of f (in this
case we have chosen the set [0,0.032]? for the reduced ionic densities). Moreover, the
dual grid is uniform.

Now, we consider the non-symmetric case Z; = +2 and Z_ = —1. The non-
convexity regions are plotted in Figure 12 for 7} = 0.07 and T} = 0.0196. As ex-
pected, both regions are no longer invariant when swapping ionic densities. Moreover,
for T = 0.07, the non-convexity region does not divide the state space into two con-
nected components (contrary to the above symmetric case). The reason for this is
easily understood by considering the univariate restrictions f; and f_ defined above.
Indeed, T} = 0.07 falls below the critical value T}, so that the non-convexity region of
f touches the p -axis, whereas T* = 4T lies above the critical value so that the non-
convexity region does not intersect the p_-axis. Instead, for T = 0.0196, T also falls
below the critical value so that the non-convexity region also intersects the p_-axis.
This is illustrated by the zoom near the origin provided by the plots in the second row
of Figure 12. As a further illustration, we consider the case Zy = +3 and Z_ = —2.
The non-convexity region is presented in Figure 13 for 7'} = 0.03499 (left panel) and
T} = 0.03491 (right panel). In both cases, 7, falls below the critical value 7.}, but
only in the second case, T falls (slightly) below T;,.

Finally, we consider the case Z; = +3, Z_ = —1, and T} = 0.0266. For these
values of the parameters, the region of non-convexity covers an area so large that it
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Figure 12: Non-convexity region of the bulk free energy for Z, = +2,Z_ = —1, and

'+ =10.07 (left) or T = 0.0196 (right). The second row provides a zoom of the corre-
sponding panels from the upper row near the origin.
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Figure 13: Non-convexity region of the bulk free energy for Z, = +3,Z_ = —2, and
'+ =0.03499 (left panel) or T’} = 0.03491 (right panel).
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is close to the boundary of the domain of the free energy density, where its values
and derivatives go rapidly to infinity. Thus, a uniform discretization to build the dual
grid fails to produce any meaningful result; even when using Algorithm 2 to deal with
dual grids of extremely large size (we have tried s = 1000 with a primal grid of size
5000 x 5000, i.e., with a dual grid of size (5 x 10%) x (5 x 10%)), the results are not
satisfactory. The heuristic non-uniform dual grid constructed in Section 4.5 yields
instead a more accurate approximation, where the border of the non-convexity region
is better resolved (see Figure 14).

6 Conclusions

In this work, we have studied convex envelope algorithms based on the double discrete
LFT. In addition to the standard factorization algorithm presented in [13] and [10],
we have proposed the alternating factorization algorithm which we have shown to be
more efficient than the standard factorization one for bivariate functions. Additional
improvements are achieved by the max-alternating factorization and by the correct han-
dling of domains with arbitrary shape (see Appendix A for the latter). Moreover, we
have emphasized theoretically and numerically that the quality of the resulting approx-
imations given by both the standard and alternating algorithms depends on the choice
of the dual grid. This grid is not given as an input and must be generated. The simplest
solution to this problem, i.e., a uniform discretization, is not always sufficient to obtain
accurate results. In order to address this important issue, we have presented an efficient
method to handle dual grids of arbitrary length and we have devised a computationally-
effective approach for generating non-uniform dual grids. Finally, we have applied the
present algorithms to the practically-relevant study of phase separation in ionic solu-
tions consisting of cations and anions dissolved in a solvent, confirming the validity of
the approach.

With an eye toward future developments, we observe that in certain situations it
could be necessary to obtain a characteristic function for the non-convexity region. This
could allow a more efficient storage of the envelope data in the non-convexity region,
whereas for the values outside the region, the analytical expression of the function f
could be used. The non-convexity regions resulting from the application of a threshold
to the difference (f — conv f) have often a shrinking and slightly different shape. In
order to avoid this, if the region can be already recognized well from the plot of the
binary matrix f # conv f (as it has been the case up to now), it is possible to use the
closing operation from mathematical morphology (see [20]): the closing is applied to
the binary matrix with structuring elements of increasing size until the resulting matrix
has the correct number of connected components.

A Treatment of non-rectangular domains

The double discrete LFT algorithms operate naturally on rectangular computational
domains discretized by a Cartesian grid. But since every function can be extended by
setting its value to +oo where it is not defined, we should be able to treat inside this
framework functions defined on sets of arbitrary shape. Unfortunately, as observed in
Remark 6, the double discrete LFT is always finite everywhere and thus every infor-
mation about the domain shape is lost.

The problem lies in the fact that the information about the domain shape is encoded
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Figure 14: Non-convexity region of the bulk free energy for Z, = +3,Z_ = —1, and
T} = 0.0266. The values of s used are, respectively from left to right and from top to
bottom, 2, 5, 10, 20, 30 and 100. The black triangular zone in the upper right corner of
each plot lies outside the domain of the bulk free energy.
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in the behavior at infinity of the LFT. Consider for example a one-dimensional function
f which is finite on the interval [/,r] and +oo elsewhere. Its discrete LFT fxy is a
piecewise linear function whose domain is the whole real line and whose first and last
slopes, which extend all the way to Foo, are respectively / and r. If we apply the
continuous LFT to fy . we obtain again a function which is defined on [,r] and oo
elsewhere. On the other hand, by applying a discrete LFT to fy , we use its values
in only a finite number of points and suppose that it is 4o elsewhere, which produces
again a function defined on the whole real line. In order to reconstruct the correct
domain, it is sufficient to keep in memory the values of the external slopes of fy, .

In the two-dimensional case, we similarly have to preserve the external slope infor-
mation of the first discrete LFT in order to obtain the correct domain after the second
discrete LFT. Using the modified algorithm simplifies the matter because we only have
one set of slopes to consider since there are only two passes of one-dimensional dis-
crete LFTs; however, because of the pass of convex envelopes between them, these
slopes change before the last pass. This is reasonable since the convex envelope can
make the domain of finiteness of a function grow.

Using the notation of Section 4.2, in order to compute the slopes after the convex
envelope pass, we have to determine which points of Yy belong asymptotically for

& — oo to the convex envelope conv [(—g(é, .))YN:|' This can be done in a similar

way to the computation of the standard one-dimensional convex envelope by taking
into account also the slopes obtained in the first pass of discrete LFTs. We explain
explicitly only the case & — oo; the other case can be treated in exactly the same way
by inverting the -axis. Let y;, i = 1,...,N be the points of the grid Yy. Fixed i, the
function —g(-,y;) is a piecewise linear function whose slope has a constant value s;
after a certain value &; on the £-axis. Take & = max; &;. For simplicity, given & > &,
denote the value —g(&,y;) by z;(§); we have that z;(&) = z;(&y) + 5;(& — &) and that
the slopes ¢;;(&) between the nodes x; and x; are

cii(€) = zj(8) ~2(8) _ 2j(So) —zi(8o) + (5;—si)(§ — o) 5)

xj—xi xj—x,-

The convex hull of the piecewise linear function having nodes y; and values z;(£)
with i = 1,...,N is given by interpolating only a subset of the nodes. This subset
depends on &, but we will now show that there exists & > &) such that the subset
remains constant for & > &,; we will denote by ip, k=1,...,M, with M <N, these
nodes.

We have that i] = 1 since the first node always belongs to the convex hull nodes for
every & (similarly we also have i}, = N). Given iy, the next value i | can be computed
in the following way. Neglecting the grid points x; with i < i} and supposing that X
is in the convex hull, the next node in the convex hull at £ is arg minj_: 4 nCit ().
Since c;¢;(&) are affine as functions of &, there is &, | > &o such that the minimizer

will be the same for all § > &/, |. This value is i | and from (5) we have that i, | =
Sj—Six .. .
j—i. In the case of the minimum being assumed by more than one
'k

j(80) =z (o)
value of j we choose the one for which A S

arg min;_ ,

= is the smallest; in case of a further
draw, we can take the point for which x; is larger. If iy, = N, then M = k+ 1 and all
values have been computed.
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The value &, | is the first value of & for which

ciir,, (6) S cij(8)  forevery j> i
by substituting (5) and solving these linear inequalities we obtain that

Z,-;H(éo)*z,-;(io) z,‘(éo)fz,-;g(éo)

x_/ —X

Xox —X %
k1 Tk 'k

*
v = Eo+ max — p—
- J>i A S TSR

o
1 Xj—Xx X% —,
J# k+1 I a1 ik

Taking &, = max;_

nodes are given by (i} )1, m for all & > &,.. The functions conv [(—g(&, -))YN] (yi)s

m & (where we put & = &y = &), we have that the convex hull

i=1,...,N, when & > &, are given by the formulas

zi(&) if i = iy for some k,
oz (&) +(1- o)z (&) ifi <i<if, forsome k;

by substituting the z;, we can easily get their slopes as functions of s;.
In this way we obtain the interval [&;,&,] outside of which the points of Yy be-
longing to the convex envelope do not change anymore and the external slopes of

conv [(—g(&, -))YN] (y) as a function of & for every y € Yy. Then, by discretizing [&;, &,]

and using the obtained slopes, we can compute the final pass of discrete LFTs recov-

ering the correct shape of the domain. We finally observe that this improvement to the

algorithm can also be seen as a further enlargement of the dual set; in particular, the
*

function we are computing is ( fs*ZN) where Cyy is a discretization

(J—o.&[UCH Uy, +oo]) xR
of [, &,]; by applying the symmetrization, we can then compute the double LFT with
a dual set Sy, such that R? \ Sy is bounded.
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