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Abstract

We study the double discrete Legendre–Fenchel Transform (LFT) to
approximate the convex hull of a given function. We analyze the con-
vergence of the double discrete LFT in the multivariate case based on
previous convergence results for the discrete LFT by Corrias. We focus
our attention on the grid on which the second discrete LFT is computed
(dual grid); its choice has great impact on the accuracy of the result-
ing approximation of the convex hull. Then, we present an improvement
(both in time and accuracy) to the standard algorithm based on a change
in the factorization order for the second discrete LFT. This modification
is particularly beneficial for bivariate functions. We also present some
situations in which the selection of the dual grid is crucial, and show that
it is possible to choose a dual grid of arbitrary size without increasing the
memory requirements of the algorithm. Finally, we apply our algorithm
to the study of phase separation in ionic solutions where non-ideal effects
due to long-range electrostatic and short-range steric correlations between
ions play an important role.

In many applications, the equilibrium properties of a thermodynamic sys-
tem can be studied through the minimization of a certain potential under some
macroscopic constraints. In ideal situations, the potential is convex, and solv-
ing the constrained minimization problem is straightforward. However, complex
modelling taking into account non-ideal effects often leads to non-convex poten-
tials. In this situation, the system at equilibrium is not in a state lying in the
non-convexity region of the potential, i.e., the region where the potential and
its convex hull differ. Depending on the enforced macroscopic constraints, this
can lead to phase separation. This behavior was discovered by Maxwell in the
study of the Van der Waals equation ([9]); he was able to build the correct
potential by applying the so-called Maxwell’s equal area rule to the derivative
of the potential, which, for a univariate potential, is equivalent to finding its
convex hull.

For more complex potentials, e.g., bivariate or multivariate functions, the
convex hull cannot be computed analytically. Since the convex hull results
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from a double Legendre–Fenchel Transform (LFT), it can be approximated by
a double discrete LFT. This approach has been considered in [5] in view of
deriving pressure laws in binary mixtures. The main ingredient of the double
discrete LFT is obviously the discrete LFT, which can be computed, as in [5],
using Lucet’s algorithm [8]. This algorithm consists in reducing the transform
by means of dimensional factorization to one-dimensional transforms, and the
latter can be computed in linear time.

The first part of this paper is centered on the convergence properties of the
double discrete LFT in the multivariate case. In the literature, most of the
papers focus on the computation of the discrete LFT, which has by itself many
applications; on the contrary, there are few theoretical results on the double
discrete LFT, mainly dealing with convex functions (see for example [2]). Our
convergence results on the double discrete LFT are based on [2] which addresses
the convergence of the discrete LFT. However, in order to prove convergence
to the convex hull and better understand the behavior of the algorithms, it is
important to study the grid on which the second discrete LFT is applied, which
we call dual grid. The choice of the dual grid is one of the main issues regarding
an accurate approximation of the convex hull, an issue which is often only briefly
discussed, as for example happens in [5].

In the second part, we restrict the scope to bivariate functions and present
an improvement (both in time and accuracy) of the standard algorithm based
on the double application of Lucet’s algorithm. The main idea is to change the
factorization order when computing the second discrete LFT. The same change
could be made in the multivariate case, but the gain would be marginally infe-
rior. Another improvement consists in merging (through a maximum operation)
the results obtained after the two possible changes in the factorization order.
We present numerical examples illustrating the benefits of the proposed ap-
proach. Moreover, the issue of choosing the dual grid is again highlighted, and
an efficient handling of dual grids of arbitrary length is investigated.

In the last part, we present a physical application of our algorithm to the
study of phase separation in ionic solutions consisting of cations and anions
dissolved in a solvent (typically water). We consider the model presented in [7]
where non-ideal effects (due to long-range electrostatic and short-range steric
correlations between ions) give rise, under certain conditions, to a non-convex
free energy. The free energy has unbounded derivatives for vanishing ionic
densities, and, owing to steric correlations, becomes unbounded when the total
ionic density reaches a certain finite threshold. We present the shapes of the
non-convexity regions, as computed by the present algorithm, for various cases
concerning the valences of the ions.

1 Preliminaries

1.1 Legendre–Fenchel Transform

In what follows, we consider functions defined on R
n and taking values in R :=

R ∪ {−∞,+∞}. Given a function f of this form, we denote by f (respectively,

f) the lower (upper) semi-continuous hull of f , i.e., the greatest (smallest) lower
(upper) semi-continuous function upper-bounded (lower-bounded) by f , and by
conv f the convex hull of f , i.e., the greatest convex function upper-bounded by
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f .
Let g be a convex function. We denote by dom g its (effective) domain,

i.e., the subset of Rn where g < +∞; we say that g is proper if dom g is non-
empty and g never takes the value −∞. Moreover, we denote by cl g the closure
of g, which is g if g is proper and the constant function −∞ otherwise; g is said
to be closed if g = cl g. Given a point x ∈ R

n and a vector ξ ∈ R
n, we say that

ξ is a subgradient of g at x if the affine function z 7→ g(x) + 〈ξ, z − x〉, where
〈·, ·〉 is the scalar product of R

n, is upper-bounded by g; the collection of all
subgradients of g at x is called the subdifferential of g at x and is denoted by
∂g(x).

Lucet’s algorithm for the convex hull is based on the Legendre–Fenchel
Transform (LFT), defined as follows.

Definition 1. Given f : Rn → R not necessarily convex, the LFT of f is the
function f∗ from R

n to R defined as

f∗(ξ) = sup
x∈Rn

[〈x, ξ〉 − f(x)] .

For an exhaustive treatment of the properties of the LFT, we refer to any
introductory book in convex analysis, such as [10]; we recall only the properties
which are useful in the development of the algorithm. Namely, f∗ is a closed
convex function; f ≤ g implies f∗ ≥ g∗; f∗∗ = cl (conv f); for n ≥ 2, the LFT
can be factorized along each dimension as f∗ = (−(· · · (−f∗1)∗2 · · · )∗(n−1))∗n,
where f∗i is the LFT along the ith-dimension, i.e.,

f∗i : (x∼i, ξi) 7→ sup
xi∈R

[xiξi − f(x∼i, xi)] , (1)

with the notation ∼i = {1, . . . , n} \ {i}.

1.2 Discrete Legendre-Fenchel Transform

In order to define the discrete version of the LFT, we introduce the following
notation: given a set ∅ 6= Ω ⊆ R

n and f : Rn → R, we define fΩ as

fΩ(x) =

{

f(x) if x ∈ Ω,

+∞ elsewhere.

It is clear that
f∗
Ω(ξ) = sup

x∈Ω
[〈x, ξ〉 − f(x)] ,

and that f∗
Ω′ ≥ f∗

Ω when Ω ⊆ Ω′; moreover, f∗
Ω∪Ω′ = max {f∗

Ω, f
∗
Ω′} for any sets

Ω,Ω′ ⊆ R
n.

Since we are interested in computing the LFT numerically, the case in which
Ω is finite is particularly important. In what follows, the subscript N is used to
stress the finiteness of the set ΩN ; the notation does not mean that |ΩN | = N .
The set ΩN is always assumed to be non-empty.

Definition 2. Given f : Rn → R not necessarily convex and a finite set ΩN ⊂
R

n, the discrete Legendre-Fenchel Transform of f computed on the set ΩN is
the function f∗

ΩN
.
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In what follows, we implicitly assume that

(i) f(x) < +∞ for at least one x ∈ ΩN , otherwise f∗
ΩN

would be −∞ every-
where;

(ii) f(x) > −∞ for all x ∈ ΩN , otherwise f∗
ΩN

would be +∞ everywhere.

In the one-dimensional case, there is an explicit formula for the discrete LFT;
this formula is the foundation for the linear-time one-dimensional algorithm
proposed by Lucet in [8]. Moreover, owing to the factorization properties of the
LFT, this algorithm is the basic building block of discrete LFT algorithms in
higher dimensions.

1.3 Convergence to the Legendre-Fenchel Transform

Our convergence analysis of the double discrete LFT is based on a convergence
result of the discrete LFT by Corrias [2], which considers Ω = [0, 1]n and proves
that the discrete LFT converges to the LFT as the set ΩN ⊂ Ω is refined; the
present statement has been adapted to our notation and extended explicitly to
more general sets Ω.

Definition 3. Let (ΩN )N be an increasing sequence of finite subsets of Ω ⊆ R
n.

We say that the sequence converges to Ω if minx′∈ΩN
‖x′ − x‖ → 0 as N → ∞

for all x ∈ Ω; we denote this fact by the notation ΩN → Ω. If, additionally,
supx∈Ω minx′∈XN

‖x′ − x‖ → 0 as N → ∞, we say that the convergence is
uniform.

Theorem 4. Let ∅ 6= Ω ⊆ R
n and let f : Rn → R be such that

(

fΩ
)

= fΩ.

Let (ΩN )N a sequence of finite subsets of R
n such that ΩN → Ω. Then, f∗

ΩN

converges pointwise to f∗
Ω. Moreover, if f |Ω is uniformly continuous and ΩN →

Ω uniformly, then the convergence is uniform on every bounded subset S of
dom f∗

Ω.

Proof. The proof is essentially the same as that of [2, Theorem 2.1] and can be
found in [1, Theorem 3.27].

The hypothesis
(

fΩ
)

= fΩ is necessary in order to make Theorem 4 true for

every sequence ΩN → Ω, as shown in [2]. A couple of simple settings in which
this hypothesis holds is

(i) Ω is open and f |Ω is upper semi-continuous;

(ii) Ω ⊆ cl intΩ and f |Ω is continuous.

The proofs for these two sufficient conditions can be found respectively in Corol-
lary 3.30 and Proposition 3.33 of [1].

2 The double Discrete Legendre-Fenchel Trans-

form

2.1 Optimal dual set and grid

Given f : Rn → R and ∅ 6= Ω ⊆ R
n, we consider the problem of computing

conv fΩ. Firstly, we discretize this problem by considering a finite set ΩN ⊂ Ω;
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the function we actually want to compute is then conv fΩN
. Secondly, since

the application of two successive LFT’s to such a function yields its convex
hull, we build an approximation of the convex hull by applying two successive
discrete LFT’s, i.e., taking

(

f∗
ΩN

)∗

SM
, where SM ⊂ R

n is a finite set; we call this

operation a double discrete LFT, while the set SM is called thedual grid.
A correct choice of the dual grid SM is essential to obtain an accurate ap-

proximation of the convex hull. For any dual grid SM ,
(

f∗
ΩN

)∗

SM
6=

(

f∗
ΩN

)∗
=

conv fΩN
as functions defined on R

n; this is true because by finiteness of ΩN ,
the domain of f∗

ΩN
is R

n, and by finiteness of SM , the convex functions f∗
ΩN

and conv
[

(

f∗
ΩN

)

SM

]

(and thus their LFT’s) differ. Nonetheless, we now show

that there exists at least a set SM which is optimal. In the following statement,
the set Ω need not be finite.

Definition 5. We say that a set S ⊆ R
n is a an optimal dual set with respect

to Ω if
(f∗

Ω)
∗

S (x) = cl conv fΩ(x) (2)

for every x ∈ Ω ∩ domcl conv fΩ. Moreover we say that SM is an optimal dual
grid if it is a finite optimal dual set.

Remark 6. If SM is an optimal dual grid, the equality (2) never holds on Ω \
domcl conv fΩ, since, in that case, the double discrete LFT is finite everywhere.

Remark 7. If Ω = ΩN is finite, there holds cl conv fΩN
= conv fΩN

, i.e., conv fΩN

is closed; see [10, Corollary 19.1.2].

The following Lemma is inspired by [6, Proposition 2.3], from which it follows
immediately when Ω is a ball centered at the origin; here, we provide a direct
proof for more general sets Ω.

Lemma 8. Let g : Rn → R be a proper closed convex function and let ∅ 6= Ω ⊆
R

n. Let ξ0 ∈ R
n be such that ∂g∗(ξ0) ∩ Ω 6= ∅. Then, g∗Ω(ξ0) = g∗(ξ0).

Proof. Let x0 ∈ ∂g∗(ξ0) ∩ Ω. Since x0 ∈ ∂g∗(ξ0), by [10, Theorem 23.5 (b,a*)],
there holds g∗(ξ0) = 〈x0, ξ0〉 − g(x0). Since x0 ∈ Ω, we infer that g∗(ξ0) ≤
supx∈Ω [〈x, ξ0〉 − g(x)] = g∗Ω(ξ0). By the properties of the LFT, we also obtain
g∗Ω(ξ0) ≤ g∗(ξ0), thereby proving the assertion.

Remark 9. We observe that Lemma 8 does not require the finiteness of Ω; if Ω
is finite, the converse statement can also be proved [1, Lemma 4.10].

Remark 10. The case in which Ω is a ball centered at the origin has been
considered also in [8, Proposition 2] as a corollary of [6] for a general function f .
In our opinion, the convexity of the function is an essential assumption to state
the result. Moreover, the statement f∗ = f∗

B when the ball B is large enough is
not true when, for example, the derivative of f∗ becomes unbounded.

We close this section with two important results concerning dual grids: a
sufficient condition for this property (Theorem 11) and an existence result of
finite optimal dual grids when the set ΩN is itself finite (Theorem 12).

Theorem 11. Consider f : Rn → R and let Ω, S ⊆ R
n. Let x ∈ R

n such that

∂ cl conv fΩ(x) ∩ S 6= ∅. (3)

Then, (f∗
Ω)

∗

S
(x) = cl conv fΩ(x). Moreover, if (3) holds for every x ∈ Ω ∩

domcl conv fΩ, then S is an optimal dual set with respect to Ω.
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Proof. After observing that (f∗
Ω)

∗
= cl conv fΩ by the properties of the LFT, it

is sufficient to apply Lemma 8 to the function g := f∗
Ω and the set S.

Theorem 12. Consider f : Rn → R and let ΩN ⊂ R
n be finite. Then, there

exists a finite set SM ⊂ R
n which is an optimal dual grid with respect to ΩN .

Proof. Since ΩN is finite, by [10, Theorem 23.10] we infer ∂ conv fΩN
(x) 6=

∅ for every x ∈ ΩN ∩ domconv fΩN
. Thus, SM can be built by satisfying

the sufficient condition given in Theorem 11; in particular, this yields |SM | =
|ΩN ∩ domconv fΩN

| which is finite.

2.2 Convergence to the convex hull

We now return to the double discrete LFT
(

f∗
ΩN

)∗

SM
. We assume that ΩN

has been chosen, while the dual grid SM has yet to be determined; as seen
in the previous section, the best choice is given by an optimal dual grid SM .
Unfortunately, this is a difficult task since we need to know something about
conv fΩN

. Nonetheless, finding a non-finite optimal dual set S is generally easier
(see for example Section 3.1 where a possible optimal dual set S is given in the
case ΩN = XN × YN ⊂ R

2); moreover, since by Theorem 12, we know that
a finite dual set exists, we can hopefully find a bounded set S. The following
Theorem shows that by considering a sequence of non-optimal dual grids SM →
S, we can achieve convergence of the double discrete LFT to the convex hull.

Theorem 13. Let f : Rn → R, let ΩN be a finite subset of Rn and let S ⊆ R
n

be an optimal dual set such that S ⊆ cl intS. Let (SM )M be a sequence of
finite subsets of R

n such that SM → S. Then, for fixed ΩN ,
(

f∗
ΩN

)∗

SM
(x) →

conv fΩN
(x) for every x ∈ ΩN ∩ domconv fΩN

.

Proof. The function f∗
ΩN

and the set S satisfy the hypotheses of Theorem 4 since

f∗
ΩN

is continuous on R
n by finiteness of ΩN . Hence,

(

f∗
ΩN

)∗

SM
→

(

f∗
ΩN

)∗

S
. The

thesis follows since, owing to the optimality of S, we infer
(

f∗
ΩN

)∗

S
= conv fΩN

on ΩN ∩ domconv fΩN
.

By repeating the final steps of the proof of Theorem 4, we obtain the follow-
ing error estimate.

Corollary 14. Under the hypotheses of Theorem 13, let x0 ∈ ΩN∩domconv fΩN

and let ξ0 ∈ ∂ conv fΩN
(x0) ∩ S. Then,

| conv fΩN
(x0)−

(

f∗
ΩN

)∗

SM
(x0)| ≤ ‖ξ0 − ξ̂M‖ ‖x0‖+ |f∗

ΩN
(ξ̂M )− f∗

ΩN
(ξ0)|,

where ξ̂M = arg minξ∈SM
‖ξ0 − ξ‖.

Proof. Since ξ0 ∈ ∂ conv fΩN
(x0) = ∂

(

f∗
ΩN

)∗
(x0), owing to [10, Theorem 23.5

(b,a*)], we infer
(

f∗
ΩN

)∗
(x0) = 〈x0, ξ0〉 − f∗

ΩN
(ξ0). Moreover, by optimality of
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S, we also obtain
(

f∗
ΩN

)∗

S
(x0) =

(

f∗
ΩN

)∗
(x0). We can then write

0 ≤
(

f∗
ΩN

)∗

S
(x0)−

(

f∗
ΩN

)∗

SM
(x0)

= 〈x0, ξ0〉 − f∗
ΩN

(ξ0)− max
ξ∈SM

[

〈x0, ξ〉 − f∗
ΩN

(ξ)
]

≤ 〈x0, ξ0〉 − f∗
ΩN

(ξ0)− 〈x0, ξ̂M 〉+ f∗
ΩN

(ξ̂M )

≤ 〈ξ0 − ξ̂M , x0〉+ f∗
ΩN

(ξ̂M )− f∗
ΩN

(ξ0)

≤ ‖ξ0 − ξ̂M‖ ‖x0‖+ |f∗
ΩN

(ξ̂M )− f∗
ΩN

(ξ0)|,

and the thesis is proved.

Remark 15. Since the function f∗
ΩN

is continuous, Corollary 14 says that the
error in the approximation of conv fΩN

at the point x0 is determined only by the
density of the grid SM near a point of ∂ conv fΩN

(x0); should we be interested in
the value of conv fΩN

(x0) for a point x0 ∈ ΩN , we could consider a neighborhood
S of a point of ∂ conv fΩN

(x0).

3 An algorithm for the convex hull

3.1 Standard factorization

The discrete LFT, being a special case of LFT, can be factorized in a similar
way. For simplicity, we focus on the case n = 2, i.e., bivariate functions; see
Remark 18 for the multivariate case. Consider f : R2 → R and Ω = X×Y ⊂ R

2,
not necessarily finite. The dimensional factorization (1) yields

f∗
Ω =

(

−f∗1
Ω

)∗2
.

Since for every y ∈ R we can have fΩ(x, y) < +∞ only if x ∈ X, we obtain

g(ξ, y) := (fΩ)
∗1(ξ, y) = [fΩ(·, y)]

∗
(ξ) = [f(·, y)]∗X (ξ).

In particular, when y /∈ Y , there holds fΩ(·, y) ≡ +∞ and thus g(·, y) ≡ −∞.
Finally, we obtain

f∗
Ω(ξ, η) = (−g)

∗2
(ξ, η) = [−g(ξ, ·)]∗ (η) = [−g(ξ, ·)]∗Y (η),

where the last equality follows from the fact that, fixed ξ, the function −g(ξ, ·)
is +∞ outside of Y .

In the case of the discrete LFT, i.e., when Ω = ΩN = XN × YN is finite
with |XN | = n and |YN | = m, we obtain a factorization of the two-dimensional
discrete LFT into one-dimensional discrete LFT’s. In particular, in order to
compute f∗

ΩN
(ξ, η) for a given (ξ, η) ∈ R

2, we need to compute g(ξ, yj) for every
j = 1, . . . ,m using m one-dimensional discrete LFT’s along the x-direction (each
on data whose length is n) and then applying one one-dimensional discrete LFT
along the y-direction (on data whose length is m); if we want to compute the
transform for (ξ, η) ∈ SM , where SM is a grid with the same size as ΩN , we
then have in total m discrete LFT’s on data of size n and n discrete LFT’s
on data of size m. Having the one-dimensional algorithm linear complexity, the
complexity of a two-dimensional algorithm based on this factorization is O(nm),
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again linear; this is the algorithm presented in [8]. Finally, by choosing a dual
grid of the tensor-product form SM = CM × DM ⊂ R

2, we can compute the
double discrete LFT

(

f∗
ΩN

)∗

SM
by applying twice the algorithm just presented;

this is the algorithm used in [5], to which we refer henceforth as the “standard
factorization” algorithm.

The choice of the dual grid is a crucial issue common to all convex hull al-
gorithms based on the double discrete LFT and, in our opinion, has not been
stressed enough in the literature. Owing to Theorem 13, it is reasonable to
choose SM as a discretization of an optimal dual set S, possibly as small as pos-
sible; but also the type of discretization is relevant and we treat it in Section 3.5.
In the case ΩN = XN × YN , a possible choice of S is the set [ξ−, ξ+]× [η−, η+]
built as follows. Given y ∈ R, let gy := fΩN

(·, y), ξ−y := max ∂ conv gy(minXN )
and ξ+y := min ∂ conv gy(maxXN ); this means that ξ−y and ξ+y are, respectively,
the right and left derivative of conv gy at minXN and maxXN . We then define
ξ− as miny∈YN

ξ−y and ξ+ as maxy∈YN
ξ+y ; η− and η+ are defined in a similar

manner. A proof of this result can be found in [1, Theorem 5.15].

3.2 Alternating factorization

Since the order of factorization is arbitrary, we do not need to factorize both
discrete LFT’s in the same way. We can decompose the second discrete LFT as

(

f∗
ΩN

)∗

SM
=

[

−
(

f∗
ΩN

)∗2

SM

]∗1

,

obtaining that
(

f∗
ΩN

)∗

SM
(x, y) = [−h(·, y)]∗CM

(x),

where
h(ξ, y) =

[

f∗
ΩN

(ξ, ·)
]∗

DM
(y) =

[

(−g(ξ, ·))∗YN

]∗

DM
(y).

This means that h(ξ, ·) is an approximation of the convex hull of (−g(ξ, ·))YN
.

By substituting h with the true convex hull (which is easily calculable in one
dimension) and by observing that

conv
[

(−g(ξ, ·))YN

]

=
[

(−g(ξ, ·))∗YN

]∗
,

we obtain a way to compute the function
(

f∗
ΩN

)∗

CM×R
in linear time, even if

the dual set CM × R is not finite. This function is a better approximation of
conv fΩN

than
(

f∗
ΩN

)∗

SM
since, owing to the properties of the FLT,

(

f∗
ΩN

)∗

S
≤

(

f∗
ΩN

)∗

S′
≤

(

f∗
ΩN

)∗
= conv fΩN

for every sets S, S′ ⊆ R
2 such that S ⊆ S′.

Definition 16. We refer to the algorithm computing
(

f∗
ΩN

)∗

CM×R
by the fac-

torization presented above as the alternating factorization algorithm.

A further variant is to consider the two possible changes in the factorization
order and merge the results through a maximum operation, that is, we compute
(

f∗
ΩN

)∗

CM×R
and

(

f∗
ΩN

)∗

R×DM
and set

(

f∗

X2
N

)∗

(CM×R)∪(R×CM )
= max

{

(

f∗
ΩN

)∗

CM×R
,
(

f∗
ΩN

)∗

R×DM

}

. (4)
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Definition 17. We refer to the algorithm computing
(

f∗

X2
N

)∗

(CM×R)∪(R×CM )

from (4) as the max-alternating factorization algorithm.

The max-alternating factorization algorithm improves the alternating factor-
ization one in terms of accuracy since the dual set has been enlarged again. Our
numerical results in Section 3.4 show that the max-alternating factorization al-
gorithm is also more efficient in terms of computational time to achieve a certain
accuracy threshold (except for very simple functions). Finally, when applied to
functions which are invariant under swap of coordinates, the max-alternating
factorization algorithm preserves this property.

The dual sets used for the double discrete LFT’s presented in this section
are no longer finite. They can be built following the construction at the end of
Section 3.1 for an optimal dual set of the form S = [ξ−, ξ+]× [η−, η+]. Specif-
ically, we choose CM as a discretization of [ξ−, ξ+] and DM as a discretization
of [η−, η+]; in what follows, when speaking of the dual grid in relation to the
alternating factorization algorithms, we refer to the finite sets CM and DM , and
not to the actual dual sets CM × R and R×DM used in the transforms.

3.3 Implementation

Let us first briefly recall the standard algorithm for the double discrete LFT.
Consider a function f : R2 → R, a primal grid ΩN = XN × YN , and a dual grid
SM = CM ×DM . The algorithm consists in evaluating f∗

ΩN
on the grid SM and

then (f∗
ΩN

)∗SM
on the grid ΩN . If the grids ΩN and SM have the same size, the

matrix which initially contains the values of f on the grid ΩN can be used for
all the successive computations: we substitute each row with its discrete LFT
and then do the same for the columns of the matrix so obtained. If the sizes of
the grids differ, it is still possible to use one matrix by choosing it sufficiently
large to accommodate both grids. A simple choice for the dual grid SM is a
uniform discretization of the optimal dual set S = [ξ−, ξ+]× [η−, η+]. We notice
that ξ± and η± can be easily found by computing the interval containing all
the natural grids of the one-dimensional discrete LFT’s, respectively, along the
rows and along the columns, since in one dimension those grids correspond to
the slopes of the convex hull. More elaborate choices for the dual grid, which
are instrumental when approximating the convex hull of complex functions, are
discussed in Section 3.5.

In order to implement the alternating factorization algorithm, we can adapt
the standard algorithm just presented by condensing the two consecutive one-
dimensional discrete LFT’s in the same direction into a single application of
the convex hull operation; thus the computation of

(

f∗
ΩN

)∗

CM×R
is not only

slightly better, but also slightly faster (see, for instance, the results in Table 3
below). Algorithm 1 presents a pseudo-code description of the alternating fac-
torization algorithm. We denote by convexhull_1d(grid, values) the sub-
routine which computes the convex hull of the piecewise linear interpolant on
the nodes grid and the values values (the row index in values corresponds
to the first dimension, while the column index to the second one). Moreover,
we denote by fast_dlft(grid, values) the subroutine which computes the
one-dimensional discrete LFT by Lucet’s algorithm. Both subroutines return a
piecewise linear function, which is represented by an object pcw whose compo-
nents are pcw.grid and pcw.values; we denote by pcw(grid) the evaluation
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Algorithm 1 Alternating factorization algorithm for the double discrete LFT

Input: XN → xgrid, YN → ygrid, f(XN × YN ) → values

Output:
(

f∗
ΩN

)∗

CM×R
→ values

! Step 1: compute the discrete LFT along each column

lwb = +Inf

upb = -Inf

parallel do j = 1,size(ygrid)

pcws(j) = fast_dlft(xgrid , values(:,j))

lwb = min(lwb , pcws(j).grid (1))

upb = max(upb , pcws(j).grid (-1))

end do

! Step 2: build the dual grid C_M

! and evaluate each of the discrete LFT ’s on it

cgrid = linspace(lwb , upb , size(xgrid))

parallel do j = 1,size(ygrid)

values(:,j) = -pcws(j)(cgrid)

end do

! Step 3: compute the convex hull of each row

parallel do i = 1,size(cgrid)

pcw = convexhull_1d(ygrid , values(i,:))

values(i,:) = -pcw(ygrid)

end do

! Step 4: compute the discrete LFT along each column

parallel do j = 1,size(ygrid)

pcw = fast_dlft(cgrid , values(:,j))

values(:,j) = pcw(xgrid)

end do

of the piecewise linear function on the points of grid. We use an array no-
tation where indexes start from 1 and where the index −1 is a shortcut for
the last index; the function size(array) gives the size of an array. Moreover,
we denote by linspace(start,stop,N) the grid which discretizes the interval
[start, stop] with N evenly spaced points. Finally, the keyword parallel de-
notes the loops whose iterations are independent and thus computed in parallel.

The implementation of the max-alternating factorization algorithm follows
along the same lines. A practically relevant observation is that it is not necessary
to implement a new function when computing

(

f∗
ΩN

)∗

R×DM
. Indeed, it suffices

to change the order of the dimensions (i.e., transpose the data matrices) before
and after Algorithm 1.

Finally, we observe that, owing to finite precision arithmetic, both the stan-
dard and the modified algorithms can contain points where the output values are
greater than the input values. In order to satisfy the property

(

f∗
ΩN

)∗

SM
≤ fΩN

,

it is possible to take as the convex hull the minimum between the input and
output values. This test is used in what follows to detect the region where the
function differs from its convex hull.

10



Remark 18. The alternating factorization algorithm can be also applied in di-
mension n > 2, but we expect less significant improvements in speed and pre-
cision the higher the dimension is, since the number of loops is always reduced
by one independently of n.

3.4 Numerical comparisons

In this section we present numerical tests to compare the three above algo-
rithms to approximate the double discrete LFT, which we abbreviate as s-
dDLFT (standard algorithm for the double discrete LFT), a-dDLFT (alternat-
ing factorization) and ma-dDLFT (max-alternating factorization). In all cases,
the dual grid is built from a uniform discretization of the optimal dual set
S = [ξ−, ξ+]× [η−, η+], with the same size as the grid ΩN on which the function
is approximated. We test the algorithms on functions of the form f(x, y) = f(r),

where r is the distance to the origin of the point (x, y), i.e., r =
√

x2 + y2. The
first test function we use is

f1
test(x, y) = (r2 − 1)2,

whose convex hull is

conv f1
test(x, y) =

{

(r2 − 1)2 if r > 1,

0 if 0 ≤ r ≤ 1.

The grid ΩN consists of 1000× 1000 points uniformly distributed on the square
[−1.5, 1.5]2. As a first assessment of the quality of the numerical results, we
compare the exact convex hull with the regions flagged as non-convex by the
different algorithms, i.e., where the computed convex hull differs from the value
of the function. The regions detected by the s-dDLFT, a-dDLFT and ma-
dDLFT are shown in white in Figure 1; the loss of invariance under swap of
coordinates for the a-dDLFT is visible in the different shape of the region around
the two axes. In Figure 2, the error between the computed and exact convex
hulls is shown, whereas in Table 1, quantitative information about this error
is reported. It is clear that the change of factorization order employed in the
a-dDLFT improves the approximation of the convex hull, and that the ma-
dDLFT further improves the results. These successive improvements are also
visible from Figure 3 which displays the restriction of the transforms to the axes.
Finally, to illustrate Corollary 11, we have also included in Figure 2 the case in
which the value 0 is inserted manually into the dual grid; being 0 the value of
the gradient in the non-convex region, we obtain an almost exact result inside
the region of non-convexity.

The second test function (see Figure 4) is

f2
test(x, y) = exp r + 25 · sin (2.5− r) · exp

[

− (2.5− r)
2
]

,

and, by observing that conv f2
test(x, y) = conv f2

test(r), we can build a very accu-
rate approximation of the convex hull of f2

test by a one-dimensional computation
(we denote by s the value of the one-dimensional derivative inside the region
of non-convexity). We treat this convex hull as the “exact” one in order to test
the two-dimensional algorithms. The domain is the square [−3.75, 3.75]2 dis-
cretized by a 1000× 1000 uniform grid. The exact region of non-convexity is an
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Figure 1: Non-convexity region of the function f1
test on the domain [−1.5, 1.5]2,

computed from left to right by the s-dDLFT, a-dDLFT and ma-dDLFT; the
points where the computed convex hull differs from the function f1

test are shown
in white.
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Figure 2: Error between the exact convex hull of f1
test and its value computed

from left to right and from top to bottom by the s-dDLFT, a-dDLFT, ma-
dDLFT and ma-dDLFT using a dual grid containing 0.
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on [−1.5, 1.5]2 s-dDLFT a-dDLFT ma-dDLFT
Maximum value 0.0297 −29.30% −29.30%

Mean value 0.0041 −23.73% −37.03%
Standard deviation 0.0068 −21.64% −32.55%

on the unit circle s-dDLFT a-dDLFT ma-dDLFT
Maximum value 0.0297 −29.30% −29.30%

Mean value 0.0117 −23.55% −36.76%
Standard deviation 0.0068 −18.24% −25.29%

outside the unit circle s-dDLFT a-dDLFT ma-dDLFT
Maximum value 0.0026 −2.77% −98.14%

Mean value 2.883 · 10−5 −64.12% −96.96%
Standard deviation 8.565 · 10−5 −37.99% −95.87%

Table 1: Distribution of the error between the exact convex hull of f1
test and its

computed value. The values for the a-dDLFT and ma-dDLFT are expressed as
the relative error reduction with respect to the s-dDLFT.
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y
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(f
1 te
st
)
∗∗

(0
,·)

Figure 3: Restriction to the axes of the convex hull of f1
test computed respectively

by s-dDLFT (topmost line), a-dDLFT (middle line) and ma-dDLFT (bottom
line).
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Figure 4: The graph of the test function f2
test (solid line) and of its convex hull

(dashed line).
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Figure 5: Non-convexity region of the function f2
test on the domain

[−3.75, 3.75]2, computed from left to right through the s-dDLFT, a-dDLFT
and ma-dDLFT; the points where the computed convex hull differs from the
function f2

test are shown in white.

annulus with radii 0.47 and 2.87, whereas the regions computed numerically are
presented in Figure 5. In Figure 6 we plot the errors produced by the various
algorithms; for the fourth plot, we inserted manually into the grid the value s
(positive), but in this case, the region where the resulting transform is exact is
much smaller since the gradient in the region of non-convexity is constant only
in norm. By studying Table 2, we observe that the improvement achieved by the
a-dDLFT over the s-dDLFT is much larger for f2

test than for f1
test. Moreover,

there is a large reduction in the maximum error in the non-convexity region
when we use the ma-dDLFT; this does not happen for f1

test since the maximum
error is reached at the origin which is invariant under swap of coordinates.

Finally, we compare the running time of the algorithms. The a-dDLFT is as
expected faster than the s-dDLFT with a 32% reduction in computational time,
while computing the ma-dDLFT takes 49% more time than the s-dDLFT. How-
ever, in order to properly compare the a-dDLFT and ma-dDLFT algorithms,
we have to account not only for the computational time, but also for the quality
of the results. A possible way to do so is to compute the ma-dDLFT on a 10002

grid and the a-dDLFT on grids having size (1000 + i)2 with i = 1, 2, . . . ; then,
we choose i as the first value for which the error on the convex hull measured
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Figure 6: Errors between the exact convex hull of f2
test and its value computed

respectively from left to right and from top to bottom by the s-dDLFT, a-
dDLFT, ma-dDLFT and ma-dDLFT using a dual grid containing s.

on [−3.75, 3.75]2 s-dDLFT a-dDLFT ma-dDLFT
Maximum value 0.0855 −3.29% −84.32%

Mean value 0.0125 −65.31% −92.34%
Standard deviation 0.0182 −39.18% −89.75%

on the annulus s-dDLFT a-dDLFT ma-dDLFT
Maximum value 0.0855 −3.29% −84.32%

Mean value 0.0276 −65.35% −92.31%
Standard deviation 0.0181 −17.08% −87.24%

outside the annulus s-dDLFT a-dDLFT ma-dDLFT
Maximum value 0.0081 −0.00% −80.97%

Mean value 2.219 · 10−4 −60.58% −95.45%
Standard deviation 3.725 · 10−4 −33.79% −84.17%

Table 2: Distribution of the error between the exact convex hull of f2
test and its

computed value. The values for the a-dDLFT and ma-dDLFT are expressed as
the relative error reduction with respect to the s-dDLFT.

15



f1
test (odd i’s are excluded) f2

test

Maximum error i = 2 i > 3000
Time: −50% of ma-dDLFT

Mean error i = 212 i = 1279
Time: −27% of ma-dDLFT Time: +173% of ma-dDLFT

Standard deviation i = 162 i = 2245
Time: −33% of ma-dDLFT Time: +472% of ma-dDLFT

Table 3: Values of i at which the a-dDLFT produces a better result than the
ma-dDLFT in each of the three error measures. The time comparisons do not
include input generation.

in a certain metric (maximum, mean, or standard deviation) becomes smaller
than the reference value obtained with the ma-dDLFT. In this way, we can
compare the time the two algorithms require to reach a result of comparable
quality. Some care is needed in this assessment, since the convergence of the
error measures to zero with increasing i is not always monotone; for example,
the error for f1

test is always very small when i is odd since the dual grid contains
the slope 0. The results are reported in Table 3. We conclude that while the
a-dDLFT outperforms the ma-dDLFT for the simple test function f1

test, it is
much slower when applied to the slightly more complex f2

test. The time taken
by the ma-dDLFT is about 0.78 s for both test functions; the algorithms have
been implemented in Fortran (with parallelization provided by OpenMP) and
are called from a Python interpreter under Mac OS X 10.8 on a 2.93 GHz Intel
Core i7 (4 cores, HT).

3.5 The choice of the dual grid

In the rest of the paper we always consider the more accurate ma-dDLFT, but
the problems and possible solutions presented in this section concerning the dual
grid are relevant to the other algorithms as well.

The main issue in the accurate computation of the convex hull is the choice
of the dual grids CM and DM ; as we have seen in Theorem 13, a discretization
CM ×DM of the optimal dual set S = [ξ−, ξ+]× [η−, η+] represents a reasonable
choice. Until now, we have used a uniform discretization of S; however, when
the rate of change of the derivatives varies significantly over the domain, this
simple choice does not work well. This is the case of both the test functions
f1
test and f2

test when enlarging the domain on which the convex hull is computed.
Figure 7 illustrates this fact for the second test function. It is interesting to
observe that the plots are composed of black curves whose spacing is greater
the nearer they are to the origin: each of these curves corresponds to a point
in the dual grid. Let us consider for example ξ ∈ CM ; being CM × R the
actual set on which the second transform is computed, by Corollary 11 for
every point (x, y) ∈ ΩN , such that (ξ, η) ∈ ∂ conv fΩN

(x, y) for a certain η ∈ R,
there holds conv fΩN

(x, y) =
(

f∗
ΩN

)∗

CM×R
. Since in our case the test functions

and their convex hulls are differentiable, the locus of the points where the first
component of the gradient is ξ, corresponds to one of the black curves, i.e., is
composed of points where the algorithm yields the exact result. By observing
that the gradient is always directed radially and that its module depends only
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Figure 7: Non-convexity region of the function f2
test respectively from left to

right and from top to bottom on the domains [−5, 5]2, [−6, 6]2, [−7, 7]2 and
[−8, 8]2; the points where the computed convex hull differs from the function
f2
test are shown in white, while the boundary of the exact non-convexity region

is shown in red.

on the distance to the origin and increases with it, we can easily explain the
shape and the origin of the black curves, which are asymptotically tangent to
the y-axis; a similar remark also holds for the curves asymptotically tangent
to the x-axis, which are related to the points η ∈ DM . Since in our tests the
second derivative increases with the distance to the origin, we can explain the
reason they are denser and the result of the algorithm better far away from the
origin by the fact that the distance between successive points of the dual grids is
always the same, but the distance in primal space needed for the same increase
in the gradient is smaller as we move away from the origin.

Remark 19. If the rate of change of the derivatives of f is constant, then it is
satisfactory to use a large set S uniformly discretized. Consider for example
the convex function f(x, y) = Kr2 on the domain [−1, 1]2; by increasing the
constant K we can enlarge the optimal dual set S to be discretized uniformly.
Since the derivatives of f grow linearly with r, the distance between the black
curves corresponding to the points of the dual grid is the same everywhere. If
we take a dual grid which is at least as large as the primal grid, then there are
enough curves to cover the entire space and thus the result is (almost) exact.

A first solution to this problem consists in increasing the size of the dual
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Algorithm 2 Convex hull algorithm with dual grid partition.

Input: XN → xgrid, YN → ygrid,

f(XN × YN ) → values, S
(j)
M , j = 1, . . . , s → S_M(s)

Output:
(

f∗
ΩN

)∗

SL
→ cur_values

! Step 1 (common for all algorithm variants)

parallel do j = 1,size(ygrid)

pcws(j) = fast_dlft(xgrid , values(:,j))

end do

! iterate over the dual grids S_M

cur_values = -Inf

do j = 1,s

! complete the computation of the double discrete LFT

! using the dual grid S_M(j)

temp_values = ... (depending on the factorization used)

! merge the two solutions by a max operation

cur_values = max(cur_values , temp_values)

end do

grid. It is possible to use a dual grid of arbitrary length without increasing
memory usage by partitioning the dual grid; this method can be applied to
the three algorithms presented and also to their higher-dimensional variants.

Given an arbitrarily large dual grid SL, we partition it as
⋃

j=1,...,s S
(j)
M , where

∣

∣

∣
S
(j)
M

∣

∣

∣
= |ΩN | for all j = 1, . . . , s; the results obtained using the various dual

grids S
(j)
M are then merged using

(

f∗
ΩN

)∗

SL
= maxj=1,...,s

(

f∗
ΩN

)∗

S
(j)
M

. We can build

an algorithm which has memory requirements independent of |SL|, as shown in
Algorithm 2; moreover, we can perform the first step of discrete LFT’s only
once and use this result in the calculation of each

(

f∗
ΩN

)∗

S
(j)
M

, j = 1, . . . , s.

We can use Algorithm 2 to compute the double discrete LFT with a uniform
dual grid of arbitrary size. However, this approach is not very efficient (with
respect to computational time) since it requires dual grids of extremely large size
(see for example the bottom right plot in Figure 8). As discussed in Remark 19,
the difficulty does not lie in the density of the dual grid but in its uniformity. A
non-uniform distribution of points has to be considered since intervals of equal
length in dual space can correspond to intervals of varying length in primal
space. A possible heuristic approach, herein referred to as adaptive, uses as
dual grid SL all the slopes of the functions obtained in the first step of one-
dimensional convex hulls, i.e., the union of all the grids pcws(:).grid of one-
dimensional discrete LFT’s. This large grid in dual space can be partitioned
naturally in correspondence to each line on which the one-dimensional hull has
been computed: this means taking S_M(j)=pcws(j).grid and s=size(ygrid)

in Algorithm 2. Incidentally, we observe that the resulting dual grid SL can be
non-optimal, so that the computed hull is not necessarily well-approximated. In
practice, accurate results are achieved by considering only few lines; for example,
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we can fix 2 ≤ s ≤ size(ygrid) and take S_M(j)=pcws(indexes(j)).grid,
where indexes=floor(linspace(1,size(ygrid),s)).

In order to test if the choice S
(j)
M from the grids pcws(:).grid delivers more

accurate results compared to an uniform grid, we consider the test function

f3
test(x, y) = f1

test(x, y) +

7
∑

i=1

[

f1
test(0, 10i) · e

−10(r−10i)2
]

.

In Figure 8 the computed non-convexity region of f3
test is plotted for an adaptive

non-uniform dual grid with s = 2, 3, 10, 20. The primal grid has size 1000×1000,
while the dual grid has size (1000s) × (1000s). As a comparison, we have in-
cluded the results obtained with uniform dual grids of size 10002 (upper left)
and (1000s) × (1000s) with s = 100 (bottom right); for the latter plot, Algo-
rithm 2 has been used with s = 100. As for f2

test, it is possible to compute with
great accuracy the exact convex hull of f3

test and thus its exact non-convexity re-
gion; although this region is different from the non-convexity region of

(

f3
test

)

ΩN

(which is the one we are actually approximating), we compare our results against
it. Then, the distance between the computed and “exact” non-convexity region
(mapped on the same finite grid), measured as the percentage of points where
they differ, is respectively 44.1%, 5.23%, 1.36%, 0.40%, 0.32% and 1.17%.Thus,
for a non-uniform dual grid with s = 10, the result is of the same quality as
with an uniform dual grid with s = 100.

Remark 20. We can build a hierarchical version of Algorithm 2 by considering a

sequence of grids S
(1)
L ⊂ S

(2)
L ⊂ · · · ; for example, we can take S

(i)
L as the union of

pcws(j).grid with j varying in floor(linspace(1,size(ygrid),2**i+1)).

At each step i, we compute the double discrete LFT for the grid S
(i)
L \S

(i−1)
L using

Algorithm 2 and then merge it with the one obtained for S
(i−1)
L by a maximum

operation, thus obtaining the double discrete LFT for S
(i)
L . We observe that

devising a suitable stopping criterion is, however, not straightforward. We can
stop the computation when a certain distance between the current result and
the preceding one is below a prescribed tolerance. A possible problem in this
approach is that the distance between successive results may remain constant
and small if the lines which are added at each step are not close to non-convexity
regions which have not been explored yet; this happens frequently if the non-
convexity region has many connected components which are small compared to
full domain.

4 Application to phase separation in ionic solu-

tions

Ionic solutions consist of a solvent, usually water, in which one or more ionic
species are dissolved. The behavior of ionic solutions interacting with, or con-
fined by, solid objects carrying surface charges is of interest in many natural
and technological contexts. One of the first steps to elucidate the behavior of
such solutions is the study of bulk ionic solutions in the absence of external
forcing. The non-ideal behavior of bulk ionic solutions results mainly from two
types of effects, which both play a major role as the ionic density increases: long-
range electrostatic correlations due to screening by counter-ions and short-range
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Figure 8: Plots of the non-convexity regions of the test function f3
test on the

domain [−75, 75]2 covered by an uniform 1000× 1000 grid. The upper left plot
is produced with an uniform dual grid of size 1000× 1000, while for the bottom
right plot a uniform dual grid of size (1000s)× (1000s) with s = 100 is used; for
the other plots, an adaptive non-uniform dual grid is used with s, respectively
from left to right and from top to bottom, equal to 2, 3, 10 and 20.
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steric correlations due to excluded volume effects. These non-ideal terms result
from ion-ion interactions in the solution; ion-solvent interactions are neglected.
Liquid-vapor transition and criticality in bulk ionic solutions due to non-ideal
behavior have been extensively investigated over the past decades; see, e.g., [4].

We consider two dissolved ionic species, a cation and an anion; we denote
their valences by Z+ > 0 and Z− < 0, respectively. Within the so-called
Primitive model considered herein, both ions have the same diameter σ. We
denote by ρ = (ρ+, ρ−) the ionic densities, and we introduce the reduced ionic
densities ρ̂± = σ3ρ±. The bulk free energy of the ionic solution splits into
f(ρ) = fid(ρ) + fcorr(ρ), where the ideal term is given by

fid(ρ) =
1

βσ3

∑

i=±

ρ̂i(log(ρ̂i)− 1),

with β := (kBT )
−1 where kB is the Boltzmann constant and T the temperature.

The non-ideal term fcorr(ρ) is detailed in [7], which is devoted to the study
of phase separation in ionic solutions in confined situations. For the present
purpose, it suffices to know that fcorr(ρ) only depends on the non-dimensional
reduced temperatures

T ∗
± = kBT

4πεσ

Z2
±e

2
,

where ε is the solvent dielectric permittivity and e the elementary charge. More-
over, due to excluded volume effects, fcorr(ρ) becomes unbounded whenever the
packing number ξ(ρ) = π

6 ρ̂tot, with reduced total ionic density ρ̂tot = ρ̂+ + ρ̂−,
reaches unity. Therefore, the domain of f is {ρ ∈ R

2
+; ξ(ρ) < 1}. When the

reduced temperatures T ∗
± are large enough, the bulk free energy density f is

a convex function of the ionic densities. The minimization of the free energy
under canonical constraints fixing the mean-values of the ionic densities in this
regime has been investigated in [3] in confined situations.

Herein, we are interested in the regime where at least one of the reduced
temperatures T ∗

± falls below the critical value T ∗
crit ≈ 0.07857, so that f is no

longer convex in ρ. We observe that the convexity properties of the univariate
restrictions f+(ρ+) = f(ρ+, 0) and f−(ρ−) = f(0, ρ−) are solely determined
by the value of the corresponding reduced temperature T ∗

±. For instance, f+
(resp., f−) is convex in ρ+ (resp., ρ−) if T ∗

+ ≥ T ∗
crit (resp., T ∗

− ≥ T ∗
crit) and non-

convex otherwise. Another relevant property is that, in general (see below for a
counter-example), the bulk free energy density f is convex for high enough ionic
densities because steric correlations, which always yield a convex contribution,
become dominant.

Firstly, we study the case Z± = ±2. In the symmetric case where Z++Z− =
0, it turns out that fcorr only depends on ρ̂tot, which ensures that f and its
convex hull are invariant when swapping ionic densities. Moreover, the two
reduced temperatures T ∗

± are equal, and we denote by T ∗ their common value.
We show the shape of the non-convexity region in the case T ∗ = 0.07 (below the
critical value T ∗

crit ≈ 0.07857) in Figure 9; as expected this region is invariant
when swapping ionic densities. We notice that since f is convex for sufficiently
large ionic densities, we can restrict the computation of the convex hull to a
set smaller than the actual domain of f (in this case we have chosen the set
[0, 0.032]2 for the reduced ionic densities). Moreover, the dual grid is uniform.

21



0.00 0.06 0.12 0.18 0.24 0.30

ρ̂+

0.00
0.06
0.12
0.18
0.24
0.30

ρ̂
−

0.0 0.2 0.4 0.6 0.8 1.0

ρ̂+
1e 30.0

0.2
0.4
0.6
0.8
1.0

ρ̂
−

1e 3

Figure 9: Non-convexity region of the bulk free energy for Z± = ±2 and T ∗ =
0.07; the black points are where f = conv f . The right panel provides a zoom
of the left panel near the origin.

Now, we consider the non-symmetric case Z+ = +2 and Z− = −1. The non-
convexity regions are plotted in Figure 10 for T ∗

+ = 0.07 and T ∗
+ = 0.0196. As

expected, both regions are no longer invariant when swapping ionic densities.
Moreover, for T ∗

+ = 0.07, the non-convexity region does not divide the state
space into two connected components (contrary to the above symmetric case).
The reason for this is easily understood by considering the univariate restrictions
f+ and f− defined above. Indeed, T ∗

+ = 0.07 falls below the critical value T ∗
crit

so that the non-convexity region of f touches the ρ+-axis, whereas T ∗
− = 4T ∗

+

lies above the critical value so that the non-convexity region does not intersect
the ρ−-axis. Instead, for T ∗

+ = 0.0196, T ∗
− also falls below the critical value so

that the non-convexity region also intersects the ρ−-axis. This is illustrated by
the zoom near the origin provided by the plots in the second row of Figure 10.
As a further illustration, we consider the case Z+ = +3 and Z− = −2. The
non-convexity region is presented in Figure 11 for T ∗

+ = 0.03499 (left panel)
and T ∗

+ = 0.03491 (right panel). In both cases, T+
∗ falls below the critical value

T ∗
crit, but only in the second case, T ∗

− falls (slightly) below T ∗
crit.

Finally, we consider the case Z+ = +3, Z− = −1, and T ∗
+ = 0.0266. For

these values of the parameters, the region of non-convexity covers an area so
large that it is close to the boundary of the domain of the free energy density,
where its values and derivatives go rapidly to infinity. Thus, a uniform dis-
cretization to build the dual grid fails to produce any meaningful result; even
when using Algorithm 2 to deal with dual grids of extremely large size (we have
tried s = 1000 with a primal grid of size 5000 × 5000, i.e., with a dual grid
of size (5 × 106) × (5 × 106)), the results are not satisfactory. The adaptive
non-uniform dual grid constructed in Section 3.5 yields instead a more accurate
approximation, where the border of the non-convexity region is better resolved
(see Figure 12).
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Figure 10: Non-convexity region of the bulk free energy for Z+ = +2, Z− = −1,
and T ∗

+ = 0.07 (left) or T ∗
+ = 0.0196 (right). The second row provides a zoom

of the corresponding panels from the upper row near the origin.
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Figure 11: Non-convexity region of the bulk free energy for Z+ = +3, Z− = −2,
and T ∗

+ = 0.03499 (left panel) or T ∗
+ = 0.03491 (right panel).
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Figure 12: Non-convexity region of the bulk free energy for Z+ = +3, Z− = −1,
and T ∗

+ = 0.0266. The values of s used are, respectively from left to right and
from top to bottom, 2, 5, 10, 20, 30 and 100. The black triangular zone in the
upper right corner of each plot lies outside the domain of the bulk free energy.
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5 Conclusions

In this work, we have studied convex hull algorithms based on the double dis-
crete LFT. In addition to the standard factorization algorithm presented in [8]
and [5], we have proposed the alternating factorization variant specifically tai-
lored to bivariate functions, which we have shown to be more efficient than the
standard one. Additional improvements are achieved by the max-alternating
factorization. Moreover, we have highlighted that the quality of the resulting
approximations given by both the standard and alternating variants of the al-
gorithms depends on the choice of the dual grid. This grid is is not given as
an input and must be generated. The simplest solution to this problem, i.e.,
a uniform discretization, is not always sufficient to obtain accurate results. In
order to address this issue, we have presented an efficient method to handle
dual grids of arbitrary length and we have proposed a computationally-effective
approach for generating non-uniform dual grids. Finally, we have applied the
present algorithms to the study of phase separation in ionic solutions consist-
ing of cations and anions dissolved in a solvent, confirming the validity of the
approach.

We conclude with the observation that in certain situations it could be nec-
essary to obtain a characteristic function for the non-convexity region. This
could allow a more efficient storage of the hull data in the non-convexity region,
whereas for the values outside the region, the analytical expression of the func-
tion f can be used. The non-convexity regions resulting from the application
of a threshold to the difference (f − conv f) have often a shrinking and slightly
different shape. In order to avoid this, if the region can be already recognized
well from the plot of the binary matrix f 6= conv f (as it has been the case up to
now), it is possible to use the closing operation from mathematical morphology
(see [11]): the closing is applied to the binary matrix with structuring elements
of increasing size until the resulting matrix has the correct number of connected
components.
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