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We present here the implementation of a magnetoelectric memory with a voltage driven writing

method using a ferroelectric relaxor substrate. The memory point consists of a magnetoelastic

element in which two orthogonal stable magnetic states are defined by combining uni-axial

anisotropy together with a magnetic polarization in the hard axis direction. Using a ferroelectric

relaxor substrate, an anisotropic stress is created in the magnetic element when applying a voltage

across electrodes. Because of the inverse magnetostrictive effect, the effective anisotropy of the

magnetic element is controlled by the applied voltage and used to switch magnetization from one

state to the other. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795440]

I. INTRODUCTION

As the need for energy efficient data processing and data

storage booms, magneto-electric memories have raised a tre-

mendous interest among research teams. They could indeed

combine the advantages of magnetic storage, such as non-

volatility, speed, and endurance, with energy efficient elec-

tric writing techniques. Intrinsic magneto-electric materials

(with the notable examples of Cr2O3 and BiFeO3) have been

considered in several designs, but offer only a weak magne-

toelectric response at room temperature and therefore require

either cryogenic techniques1 or precise control of the operat-

ing temperature.2 On the other hand, composite materials,

introduced by Boomgaard et al. in 1976,3 use strain-coupled

piezoelectric and magnetostrictive materials. They can oper-

ate at room temperature and offer several design possibil-

ities. With such an interface strain coupling, electric field

control of ferromagnetism was shown in iron thin film struc-

tures.4 Most of the composite memory devices proposed

up to now are toggle memories, whose initial state must be

known prior to writing operation,5 or involve complex

schemes to switch between multiple anisotropy directions

defined by crystallographic axes of epitaxially grown materi-

als,6 or precisely synchronized driving signals.7

In 2010, we proposed and patented an innovative mem-

ory device called MELRAM (Magneto-ELectric Random

Access Memory) based on a composite structure composed

of a nanometer sized magnetostrictive material embedded in

a piezoelectric matrix.8–11 In particular, we showed that the

competition between an external magnetic field and uni-axial

magnetic anisotropy can be used to define two perpendicular

equilibrium positions for magnetization12,13 and that the

application of stress can trigger the switch between both posi-

tions in a deterministic fashion. A macroscopic device using

a commercial piezoelectric stack provided an experimental

proof of concept of this memory element14 and demonstrated

the writing principle using piezoelectric stress. The character-

ization of the magnetic state was performed using either a

Vibrating Sample Magnetometer (VSM) or Magneto Optical

Kerr Effect (MOKE). However, this approach is not suitable

for an integrated device at the sub-micrometer scale. We

hereby present the results obtained using a relaxor substrate

with adequate symmetry and characteristics. Such a substrate

has already been coupled to magnetic layers for memory

applications by Wu et al.15 In their model, the information is

supposed to be stored in the ferroelectric subsystem due to

switchable remanent stress states. In our experiment, the in-

formation is stored in the magnetic subsystem and persists

without either electrical tension or remanent stress.

II. PRINCIPLE OF THE MEMORY AND
CONSIDERATIONS ABOUT STRESS

The magnetic and mechanical configurations of a

MELRAM cell are given in Figure 1 and consists of a mag-

netic element with a defined easy axis (EA) at a 45� angle

relative to the X axis, subjected to a polarizing field HS in

the hard axis (HA) direction and a mechanical stress. The

EA can be obtained by considering an ellipsoid shaped ele-

ment or induced during the film preparation (e.g., sputtering
under magnetic field). The element has a high magnetostric-

tion kS. Assuming the magnetization is homogeneous in the

film, the magnetic free energy of the system submitted to in-

plane stress is described by the following equation:

Fmag ¼�MHscos
3p
4
�u

� �
� 1

2
MHAcos2 p

4
�u

� �

�3

2
kSðrxx�ryyÞcos2ðuÞ�3

2
kSrxycosðuÞsinðuÞ; (1)

a)Electronic mail: nicolas.tiercelin@iemn.univ-lille1.fr
b)Present address: Joint International Laboratory LICS/LEMAC, V. A.

Kotel’nikov Institute of Radioengineering and Electronics, 125009

Moscow and MIREA-pr. Vernadskogo, 78, 119454 Moscow, Russia.
c)Present address: Joint International Laboratory LICS/LEMAC: Wave

Research Center, GPI RAS, 38 Vavilov str., Moscow 119991, Russia.

0021-8979/2013/113(17)/17C719/3/$30.00 VC 2013 American Institute of Physics113, 17C719-1

JOURNAL OF APPLIED PHYSICS 113, 17C719 (2013)

http://dx.doi.org/10.1063/1.4795440
http://dx.doi.org/10.1063/1.4795440
http://dx.doi.org/10.1063/1.4795440
http://dx.doi.org/10.1063/1.4795440
mailto:nicolas.tiercelin@iemn.univ-lille1.fr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4795440&domain=pdf&date_stamp=2013-03-28


where M is the magnetization of the element, making an

angle u with respect to OX, HS is a polarizing field applied

in the hard axis direction, HA is the value of the effective ani-

sotropy field, and rij the mechanical stresses applied to the

element in the plane of the film. As shown in the dashed

curve of Figure 2, in the absence of applied stress, the com-

petition between the uniaxial anisotropy and the Zeeman

interaction leads to the creation of two minima of energy, for

values of HS lower than the anisotropy field HA. In the case

where HS has a value of about
ffiffiffi
2
p

=2 times the value of HA,

the two stable positions marked “1” and “0” are aligned

along the OX� and OYþ axes. When a stress is applied, the

energy profile is deformed by the magnetoelastic terms.

Switching the magnetization to positions “1” or “0” means

favoring a minimum of energy for u ¼ p or u ¼ p=2,

respectively. Therefore, the last term of the energy has no

influence, since the product cosðuÞsinðuÞ is zero in these

two positions. Shear stress, thus, have to be avoided.

However, the term in K � cos2ðuÞ is of interest: depending on

the sign and strength of K, the energy profile is suitably

modified. It can be also deduced that for a maximum effi-

ciency, rxx and ryy have to be of opposite signs, which leads

to conditions on the substrate properties. A first approach is

to consider a piezoelectric material with an in-plane polar-

ization and electrodes on opposite vertical sides in order to

generate an in-plane electric field, as proposed, for instance,

by Hu et al.16 The stress is then generated, say along OX

using the d33 piezoelectric coefficient, and due to the Poisson

effect, an opposite stress along OY is created. Unfortunately,

this approach is limited to non conductive magnetic layers as

a conductive film induces a strong distortion of the electric

field lines, which have to be perpendicular to the conductor,

and therefore leads to improper stress generation. In this

case, the electric polarization of the electroactive material

has, then, to be perpendicular to the plane, and the relevant

stress is related to the d31 and d32 coefficients. For most pie-

zoelectrics, such as PZT, the deformation is isotropic in the

plane and those coefficients are equal, leading to no effect on

the magnetoelastic system. Suitable materials belong to a

class of relaxors such as Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)

or Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT). For PMN-PT,

compositions near the so-called morphotropic phase bound-

ary, 011-cut and poled single crystals exhibit suitable

characteristics (d31 � �1900 � 10�12 C=N and d32 � þ1000

� 10�12 C=N).17 With such a substrate, the writing procedure is

as follows: upon tensile/compressive stress (i.e., rxx � ryy > 0),

and assuming positive magnetostriction, the free energy exhibits

a single minimum for u ¼ p (Fig. 2, left). Magnetization will

then rotate toward the “1” state whatever its previous state was.

Upon the removal of the stress, the state is preserved. Upon

compressive/tensile stress (i.e., rxx � ryy < 0), the minimum

lies at u ¼ p=2 (Fig. 2, right), corresponding to the “0” state.

III. EXPERIMENTS

A schematic view of the device is shown at the top of

Figure 3. As explained above, the stress is generated by a

commercial PMN-PT substrate. Before further processing,

one side of the substrate was mechanically polished to ensure

a surface smooth enough for MOKE measurements.

The magnetic element is a 10� ðTbCo2ð5nmÞ=FeCoð5nmÞÞ
exchange coupled multilayer. This type of structure is used as

it combines a fairly high magnetostriction and a well defined

uni-axial anisotropy. The film was deposited onto the pol-

ished side of the substrate through a shadow mask by RF

FIG. 1. Magnetic and mechanical configurations of a memory cell. The

polarizing field HS is applied perpendicular to the magnetic easy axis and

defines two stable positions. Tensile or compressive stress is applied to

switch between states.

FIG. 2. Magnetic free energy of the system when submitted to tensile (left)

or compressive (right) stress. Without stress applied, the energy exhibits two

stable positions (dashed curve).

FIG. 3. Top: Schematic of the demonstrator. The magnetoelastic multilayer

is deposited on top of a 011-cut and polarized PMN-PT single crystal.

Bottom: VSM magnetization characterizations of the deposited layer.
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sputtering using a rotary turn table in a Leybold Z550 equip-

ment. The deposition was made under a magnetic field gener-

ated by permanent magnets in order to induce a magnetic EA

in the desired direction, i.e., with an angle of 45� with respect

to the X axis. The obtained film magnetization

was characterized with a Vibrating Sample Magnetometer

(VSM). The results are shown in Figure 3. It is characteristic

of a uni-axial behavior with an anisotropy field of about

HA ¼ 200 Oe. For this kind of layer, the magnetostriction kS

is measured by laser deflectometry with the clamped beam

technique and is about 10�4. The switching was evidenced

using a MOKE setup to measure the projection of magnetiza-

tion along the EA, while the polarizing field HS was applied

on the HA, so as to define two stable positions. As shown in

Figure 4, the system behaves as expected. When applying

either positive or negative voltage pulses, tensile or compres-

sive stress, respectively, is generated leading to a switch to

“1” or “0.” One can also note that the state is kept upon

removal of the voltage. Switching was obtained with 250 ls

pulses, which is the shortest time allowed by the experimental

setup.

IV. CONCLUSION

We have presented here the concept and experimental

implementation of a device for a magnetoelectric memory

cell using the effect of stress on anisotropy combined with the

definition of 2 perpendicular stable positions in an anisotropic

element. The writing of the information in the magnetic sys-

tem is voltage controlled through the use of a 011-cut and

poled PMN-PT relaxor substrate. A positive voltage sets the

magnetization in one of the stable positions, whereas a nega-

tive voltage sets it in the other position. The position is kept

when no voltage is applied. MOKE experiments evidenced the

switching with sub-millisecond pulses. Since the information is

stored magnetically, the readout can be made using GMR/spin

valve techniques. Such an hysteretic giant magnetoresistance

effect in a structure with two different values of anisotropy and

submitted to mechanical stress was recently demonstrated.18

Biasing strategies for the magnetic polarization using FePt

permanent magnet layers are also investigated.19
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