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Abstract

Dynamic simulators model systems evolving over time. Often, it operates iteratively over fixed number of time-steps.
The output of such simulator can be considered as time series or discrete functional outputs. Metamodeling is an
effective method to approximate demanding computer codes. Numerous metamodeling techniques are developed for
simulators with a single output. Standard approach to model a dynamic simulator uses the same method also for
multi-time series outputs: the metamodel is evaluated independently at every time step. This can be computationally
demanding in case of large number of time steps. In some cases, simulator outputs for different combinations of input
parameters have quite similar behaviour. In this paper, we propose an application of shape invariant model approach
to model dynamic simulators. This model assumes a common pattern shape curve and curve-specific differences in
amplitude and timing are modelled with linear transformations. We provide an efficient algorithm of transformation
parameters estimation and subsequent prediction algorithm. The method was tested with a CO2 storage reservoir case
using an industrial commercial simulator and compared with a standard single step approach. The method provides
satisfactory predictivity and it does not depend on the number of involved time steps.

Keywords: Kriging, Functional data analysis, Semiparametric model

1. Introduction

Simulation models are used nowadays in many industrial applications to predict and analyze the behaviour of
complex systems. A simulator is a complex computer code embedding the physical laws governing the physical
system under investigation. The input of such simulators can be adjustable or uncontrollable parameters which are
only partially known and thus are affected by uncertainty. Uncertainty analysis of numerical experiments is used
to assess the confidence of the model outcomes which are then used to make decisions [1]. Here, we focus on a
particular type of dynamic simulators that are used to make predictions in the future. These simulators are based
typically on finite element/finite difference codes used for instance for the simulation of flows and transfers in porous
media. Industrial applications using this type of simulators are for instance hydrocarbons reservoir forecasting and
carbon dioxide (CO2) underground storage [2, 3]. Such applications involve very complex numerical codes with a
large number of inputs and with high uncertainty derived from an incomplete knowledge of subsurface formation [4].
The uncertainty on the simulator output is usually assumed to be mostly due to the propagation of the uncertainty on
the input. Nevertheless, modelling errors can also play a role.

The simulator models a multi-phase 3-D fluid flow in heterogeneous porous media, operating over fixed number of
time-steps. The typical output of such simulators consists of a sequence of outputs at different time-steps. Therefore,
it represents time series related, for instance, to a recovery rate for a given well or a group of wells. It can be also a
spatial output such as a pressure map or a saturation map also evolving with time. Here we focus on 1D time series
output which can be typically measured in a well.

Let us consider the output of a simulator as a deterministic function Y(t) = F(x̄, t), where x̄ ∈ Ω ⊂ Rd is a
configuration of preselected input parameters and 0 < t < T refers to a time step. Y(t) is a time dependent output, e.g.
oil production rate or reservoir pressure.

The function F : Rd × [0,T ]→ R models the relationship between the input and the output of the numerical simu-
lator. Methods such as Monte Carlo ones can be used to propagate uncertainty. However, each model evaluation being
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generally very time-consuming this approach can be unpractical in industrial applications. Moreover, the probability
distribution of the input may vary as new data comes in or within a process of dynamic data assimilation. Therefore, a
response surface approach (also referred to a metamodel approach) can be more useful in such applications [3, 5, 6].

The advantage of a metamodel is that is fast to evaluate and it is designed to approximate the complex computer
code based on a limited number of simulator evaluations. These evaluations of the simulator are taken at some well
chosen input configurations also called the training set or the experimental design. Numerous experimental designs
have been proposed and many of them are quite sophisticated. Here, we use Latin Hypercube designs [7] for their
good space filling properties. Usually, it can be coupled with other criteria such as the maximin design (maximum
minimum distance) [8, 9]. In this work, we focus on Gaussian process (GP) based metamodels also known as kriging
[10, 8, 9].

The aim of this work is to propose a new method to address multi-time series outputs. For such dynamic simulator
a standard approach assumes a single step GP model for each time step. This basic approach can be computationally
intensive for a high number of time steps and when the construction of a single GP model is time consuming (i.e. when
the size of the training set and the number of variables is large). Therefore, the procedure can become unpractical in
some industrial applications.

The problem of metamodeling for dynamic simulators was recently investigated by different authors and several
principal approaches can be distinguished. A first possible approach is GP metamodelling considering the time steps
as the model additional input parameter [3, 11, 12]. This approach is easy to implement, however if we want to take
into account all the information from an experimental design at every time steps, the size of new experimental design
is multiplied by the number of time steps. It results to matrices of high dimensions that can lead to some numerical
problems in case of large size of original experimental design or in case of high density of the steps in the time scale.
Conti et al. (2009) [13] developed an iterative approach to build a model of dynamic computer code, assuming that the
model output at a given time step depends only on the output at the previous time step. To reduce the dimensionality of
the problem, we can also represent the given observations as truncated functions by some selected basis functions with
the following GP modelling for the coefficient of the selected representation. Bayarri et al. (2007) [14] introduced
wavelet decomposition. Campbell et al. (2006) [15], Higdon et al. (2008) [16] and Lamboni et al. (2009) [17]
suggested application of principal component decomposition. Auder et al. (2010) [18] extended this approach by
preliminary classification.

In this work, we propose a new functional approach involving a combination of Shape Invariant Model (SIM)
approach and Gaussian Process modelling. Considering J time steps and a training set Xn = {x̄1, .., x̄n} the simulator
output consist then in a set of curves:

Yn =
{
Yi, j = F(x̄i, t j), 1 ≤ i ≤ n, 1 ≤ j ≤ J

}
.

In our practical example (the CO2 storage case study) we have observed that usually these curves have quite
similar behaviour. So that, we assume that there is a mean pattern from which all the curves can be deduced by a
proper parametrical transformation. The shape invariant model assumes that the curves have a common shape, which
is modelled nonparametrically. Then curve-specific differences in amplitude and timing are modelled with the linear
transformations such as shift and scale [19, 20, 21]. Hence, we consider the following model:

Yi, j = α∗i f (t j − θ
∗
i ) + v∗i + σ∗i εi j, 1 ≤ i ≤ n, 1 ≤ j ≤ J (1)

where t j stands for observation times and θ∗ = {θi, 1 ≤ i ≤ n}, v∗ = {vi, 1 ≤ i ≤ n}, α∗ = {αi, 1 ≤ i ≤ n} ∈ Rn are vectors
of transformation parameters corresponding to horizontal and vertical shifts and scales of the unknown function f .

Without loss of generality we assume that the simulator provides the data at some constant time intervals. Time t
is then equispaced in [0,T] with J time steps. The unknown errors σ∗i εi, j are independent zero-mean random variables
with variance σ∗i

2. Here, we can also assume that σ∗i
2 = 1 without loss of generality.

The approach proposed in this work for the functional outputs modeling combines an efficient estimation of the
transformation parameters (α∗, θ∗, v∗) and a subsequent GP modeling for these parameters that can be used to predict
new curves without running the simulator.

The paper is organized as follows. Section 2 presents the basics of GP modeling and the model validation criteria.
Section 3 describes the method of efficient estimation of transformation parameters in the shape invariant model. The
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method is illustrated with an example on an analytical function. In Section 4 we present the forecast algorithm for
dynamic simulators. Section 5 provides the practical application of the algorithm with a CO2 storage reservoir case.

2. GP based metamodeling

The method proposed in this paper is based on a combination of a shape invariant model and a Gaussian process
metamodel. In this section, we recall the basics of GP modeling or kriging.

The idea of modeling an unknown function by a stochastic process was introduced in the field of geostatistics by
Krige in the 1950’s [22] and formalized in 1960’s by Matheron (1963) [10]. Later Sacks et al. (1989) [8] proposed
the use of kriging for prediction and design of experiments. The theory and the algorithms are formalized in [8], [23]
and [9].

Consider the output of a simulator as an unknown deterministic function F(x̄) ∈ R, where x̄ ∈ Ω ⊂ Rd is a
specified set of selected input parameters. The function F is only known in predetermined design points: Xn =

{(x̄k,Fk = F(x̄k)) , 1 ≤ k ≤ n}. The objective is to predict the function F0 = F(x̄0) for some new arbitrary input x̄0. The
function is modeled as a sample path of a stochastic process of the form:

F̃(x̄) =

m∑
j=1

h j(x̄) · β j + Z(x̄) = β>h(x̄) + Z(x̄) (2)

where:

• β>h(x̄) is the mean of the process and corresponds to a linear regression model with preselected given real-
valued functions h = {hi, 1 ≤ i ≤ m}. Here, we only consider the case h = 1.

• Z(x̄) is a centered Gaussian stationary random process. It is defined by its covariance function: C(x̄, ȳ) =

E
[
Z(x̄)Z(ȳ)

]
= σ2 R(x̄, ȳ). R(x̄, ȳ) is the correlation function and σ2 = E[Z(x̄)2] denotes the process variance.

Stationarity condition assumes: R(x̄, ȳ) = R(|x̄ − ȳ|), where |x̄ − ȳ| denotes the distance between x̄ ∈ Ω and
ȳ ∈ Ω.

Numerous families of correlation functions have been proposed in the literature. We use here Gaussian correlation
function, the special case of the power exponential family. The power exponential correlation function is of the
following form:

R(x̄, ȳ) = exp

− d∑
j=1

(
x j − y j

)p j

θ j

 = exp

− d∑
j=1

dp j

j

θ j

 (3)

where d j = |x j − y j|, 0 < p j ≤ 2 and θ j > 0. The hyperparameters (θ1, .., θd) stands for correlation lengths which affect
how far a sample point’s influence extends. A high θi means that all points will have a high correlation (F(xi) being
similar across our sample), while a low θi means that there are significant difference between the F(xi)’s [24]. The
parameters p j corresponds to the smoothness parameters. These parameters determine mean-square differentiablity of
the random process Z(x). For p j = 2 the process is infinitely mean-square differentiable and the correlation function
is called Gaussian correlation function. Hence, Gaussian correlation function is infinitely mean-square differentiable
and it leads to a stationary and anisotropic process Z(x) [9, 23]. Regardless the choice of a correlation function,
the estimation of hyperparameters (θ1, .., θd) is crucial for reliable prediction. We are using maximum likelihood
estimation algorithm [9] that we will discuss later.

The experimental design points are selected in order to retrieve most information on the function at the lowest
computational cost. The number of design points for a reliable response surface model depends on the number of
inputs and on the complexity of the response to analyze [7, 9]. Latin Hypercube Designs (LHD) provides a uniform
coverage of the input domain. If we wish to generate a sample of size n, first, we partition the domain of each
variable in n intervals of equal probability. Then, we randomly sample x̄1 according to the distribution of each of the
n intervals. Further, for each of the n values for x̄1, we randomly select one interval to sample for x̄2 , so that only one
sample of x̄2 is taken in each interval. We continue the process of a random sampling without replacement until all the
variables have been sampled. As a result we generate a sample where each of d inputs is sampled only once in each
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of N intervals. Latin hypercube designs have been applied in many computer experiments since they were proposed
by Mckay et al., (1979) [7].

In this work, we use modified version of LHD - maximin LHD. It is based on maximizing a measure of closeness
of the points in a design Dn:

max
design Dn

min
x̄1,x̄2∈Dn

d(x̄1, x̄2)

It can guarantee that any two points in the design are not ”too close”. Hence, the design points are uniformly spread
over the input domain.

Consequently, when we have the experimental design Xn = (x̄1, .., x̄n) and the observation data Yn = (F(x̄1), .., F(x̄n))
the multivariate distribution according to the model (2) for the Gaussian correlation function can be expressed as:(

Y0
Yn

)
∼ N1+n

[(
h>(x̄0)

H

)
β, σ2

(
1 r>(x̄0)

r(x̄0) R

)]
,

where R = (R(x̄i, x̄ j))1≤i, j≤n ∈ Rn×n is the correlation matrix among the observations; r(x̄0) = (R(x̄1, x̄0), ..,R(x̄n, x̄0))> ∈
Rn is the correlation vector between the observations and the prediction point; h>(x̄0) =

(
h j(x̄0)

)
1≤ j≤m

∈ Rm is the

vector of regression function at the prediction point x̄0 and H =
(
h j(x̄i)

)
1≤i≤n,1≤ j≤m

∈ Rn×m is the matrix of regression
functions at the experimental design. The parameters β and σ are unknown.

Considering the unbiasedness constraint, the parameter β is replaced by the generalized least squares estimate β̂
in (2). Here, β̂ is of the following form: β̂ =

(
H>R̂−1H

)−1
H>R̂−1Yn. Assuming that the correlation function is the

Gaussian correlation function, the prediction is therefore given by:

F̂(x̄0) = h>(x̄0) · β̂ + r̂(x̄0) R̂−1
(
Fn −H · β̂

)
(4)

The hyperparameters θ = (θ1, .., θm) and the process variance σ2 are estimated by Maximum Likelihood (MLE).
Using the multivariate normal assumption, the MLE for σ2 is:

σ̂2 =
1
m

(
Yn −H β̂

)
R−1

(
Yn −H β̂

)
(5)

Knowing the estimations for β̂ and σ̂2, the coefficients θ are estimated by maximizing the log likelihood:

l
(
β̂, σ̂2, θ

)
= −

1
2

[
m log σ̂2(θ) + log(det(R(θ)) + m

]
(6)

The function (6) depends only on θ.
After having estimated all the model parameters, we now need to validate the model. In this work for estimation

of prediction accuracy of the model, we use the predictivity index, Q2, and root mean squared error, RMS E . The
predictivity index is calculated basing on cross validation and it has the following form:

RMS E :=

√√ n∑
i=1

(Ŝ X/xi − F(xi))2

n
Q2 := 1 −

∑n
i=1

(
Ŝ X/xi − F(xi)

)2

∑n
i=1

(
F(xi) − F̃

)2 (7)

Ŝ X/xi is the kriging model computed using all the design points Xn excepting x̄i and F̃ is the mean of F(x̄i).
The closer Q2 is to 1 or RMS E is to 0, the higher is the model predictivity. These criteria can be also calculated

on a separate validation test data by performing additional simulations. It provides higher accuracy measure though it
requires additional time costs.

3. Shape Invariant Model

In this section, we discuss the shape invariant model representation and the procedure for efficient parameters
estimation.
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The shape invariant model was introduced by Lawton et al. (1972) [19]. The model assumes that we are working
with a set of curves that have a common shape function that is modeled nonparametrically. The deformation of this
function is modeled parametrically by choosing a proper parametrical transformation. We consider a class of linear
transformations only. These parameters can be normally interpreted as shift in timing or scale in amplitude. For
this reason, shape invariant model is widely applied to study periodic data such as temperature annual cycle [25] or
traffic data analysis [26]. Indeed, in these cases there is always some variability in time cycles or amplitude. The
model has also been used to study biological data , where the departure from the pattern can be caused by a different
environmental conditions [21, 20]. In this work, we use the model to propagate uncertainty on a reservoir simulator
output data. For example, we consider a reservoir pressure during CO2 injection, then shift in time is caused by
different moment of stopping injection. So that, by applying shape invariant model, we can study the influence of the
model input parameters on the overall shapes of the selected output.

In figure (1) we display three possible transformations that we consider in our work: horizontal shift 1(a), vertical
shift 1(b) and vertical scaling 1(c). The bold line represent original pattern shape.

(a) Horizontal Shift (b) Vertical Shift (c) Vertical Scale

Figure 1: Parametrical transformation examples

We are interested in the common shape as well as in the efficient estimation of transformation parameters. So that,
we can reproduce any curve and align it to the pattern. Moreover, we can make a prediction of a possible new curve
for an input configuration x̄0 by modeling the transformation parameters.

As already mentioned, for an experimental design Xn = {x̄1, .., x̄n} we have a set of observations:
Yn =

{
Yi, j = F(x̄i, t j), 1 ≤ i ≤ n, 1 ≤ j ≤ J

}
, where x̄i, 1 ≤ i ≤ n is the set of preselected input parameters and

t j, 1 ≤ j ≤ J refers to the time sample. So that, Yi, j is the jth observation on the ith experimental design unit,
with 1 ≤ i ≤ n and 1 ≤ j ≤ J. Thereby, the idea is to find a general pattern curve that makes possible subsequent
transformation of any curve to this selected pattern with properly adjusted transformation parameters.

We focus here on linear transformations. Thus, the model structure may be written as:

Yi, j = α∗i · f (t j − θ
∗
i ) + v∗i + σ∗2 · εi j (8)

where t j, 1 ≤ j ≤ J are observation times which are assumed to be known and equispaced in the interval [0,T ].
The vector of parameters: (α∗, θ∗, v∗) = (α1, .., αn, θ1, .., θn, v1, .., vn) is unknown as well as the pattern function f . The
errors εi j are i.i.d. with a normal distribution, (i, j) ∈ {1, .., n} × {1, .., J}. It characterizes observation noise. Without
loss of generality we may assume that σ∗2 = 1. The variance does not affect the parameters estimation procedure and
the method still works for a variance σ∗2. The function f is assumed to be 2π-periodic [25, 26].

In this section we will provide the algorithm for efficient estimation of transformation parameters under unknown
function pattern f . Since the functional pattern f is unknown, the pattern is replaced by its estimate. So that, it
seems natural to study the problem (8) in a semi-parametric framework: the transformation shifts and scales are the
parameters to be estimated, while the pattern stands for an unknown nuisance functional parameter. We use an M-
estimator built on the Fourier series of the data. Under identifiability assumptions it is possible to provide a consistent

5



algorithm to estimate (α∗, θ∗, v∗) when f is unknown. The algorithm is described in details in the following subsection
with an illustration on an analytical function example.

3.1. Model Assumptions

Consider Yn = F(Xn, t) = {F(x̄i, t j), 1 ≤ i ≤ n, 1 ≤ j ≤ J} is (n × J) matrix of observations. We model these
observations in the following way:

Yi, j = α∗i · f (t j − θ
∗
i ) + v∗i + εi j, 1 ≤ i ≤ n, 1 ≤ j ≤ J (9)

where f : R → R is an unknown 2π-periodic continuous function, θ∗ = (θ∗1, ..., θ
∗
n), α∗ = (α∗1, ..., α

∗
n), v∗ =

(v1, ..., vn) ∈ Rn are unknown parameters, εi j is a Gaussian white noise with variance equal to 1. The time period is
translated in such a way that: [0,T[→ [0, 2π[, therefore ti =

j−1
J 2π, j = 1, .., J are equispaced in [0, 2π[.

The objective is to estimate the horizontal shift θ∗ = (θ∗1, ..., θ
∗
n), the vertical shift v∗ = (v1, ..., vn) and the scale

parameter α∗ = (α∗1, ..., α
∗
n) without knowing of the pattern f . Fourier analysis is well suited for the selected structure

of the model. Indeed, this transformation is linear and shift invariant. Therefore, by applying a discrete Fourier
transform to (9) and supposing J is odd, the model becomes:

dkl =

{
α∗ke−ilθ∗k cl( f ) + wkl, 1 ≤ k ≤ n, 0 < |l| ≤ (J − 1)/2
α∗kc0( f ) + v∗k + wk0, 1 ≤ k ≤ n, l = 0 (10)

where cl( f ) = 1
J
∑J

m=1 f (tm)e−2iπ ml
J , (|l|≤(J−1)/2) are the discrete Fourier coefficients and wkl, (1≤k≤n, |l|≤(J−1)/2) is a

complex white Gaussian noise with independent real and imaginary parts.
We also notice that in order to ensure the identifiability of the model (10) we are working in the parameter space:

A =
{
(α∗, θ∗, v∗) ∈ [−π, π[3×n: α1 = 1, θ1 = 0, v1 = 0

}
.

To summarize, in this section we estimate the transformation parameters (α∗, θ∗, v∗) without prior knowledge of
the function f . The estimation depends on the unknown functional parameter (cl ( f ))|l|≤(J−1)/2, the Fourier coefficients
of the unknown function f . So that, we consider a semi-parametrical method based on an M-estimation procedure.
M-estimation theory enables to build an estimator defined as a minimiser of a well-tailored empirical criterion that is
given in the following subsection.

3.2. Parameters estimation procedure

The goal is to estimate the vector of parameters (α∗, θ∗, v∗) that depends on the Fourier coefficients of the unknown
function f . We consider a semi-parametric method based on an M-estimation procedure [26].

To construct an M-estimator, we define the rephased (untranslated and rescaled) coefficients for any vector (θ, α, v) ∈
A:

c̃kl(α, θ, v) =

 1
αk

eilθk dkl, 1 ≤ k ≤ n, 0 < |l| ≤ (J − 1)/2
1
αk

(dkl − vk) , 1 ≤ k ≤ n, l = 0

and the mean of these coefficients:

ĉl(α, θ, v) =
1
n

n∑
k=1

c̃kl(α, θ, v), |l| ≤ (J − 1)/2

Therefore, for (α∗, θ∗, v∗) we obtain:

c̃kl(α∗, θ∗, v∗) = cl( f ) +
1
α∗k

eilθ∗k wkl 1 ≤ k ≤ n

ĉl(α∗, θ∗, v∗) = cl( f ) +
1
n

n∑
k=1

eilθ∗k · wkl

α∗k

.
Hence, |c̃kl(α, θ, v) − ĉl(α, θ, v)|2 should be small when (α, θ, v) is closed to (α∗, θ∗, v∗).
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Now, consider a bounded positive measure µ on [0,T ] and set

δl :=
∫ T

0
exp

(
2iπl
T

ω

)
dµ(ω), (l ∈ Z) (11)

Obviously, the sequence (δl) is bounded. Without loss of generality we will assume that δ0 = 0 and |δl| > 0, l , 0.
Assume further that

∑
l |δl|

2 |cl( f )|2 < +∞. So that f ∗ µ is a well defined square integrable function:

f ∗ µ(x) =
∫

f (x − y)dµ(y)

We construct the following empirical contrast function (12):

Mn(α, θ, v) =
1
n
·

n∑
k=1

J−1
2∑

l=− J−1
2

|δl|
2 |c̃kl(α, θ, v) − ĉl(α, θ, v)|2 (12)

The random function Mn is non negative. Furthermore, its minimum value is reached closely to the true parameters
(α∗, θ∗, v∗). We define the estimator by:

(α̂, θ̂, v̂)n = arg min
α,θ,v∈A

Mn(α, θ, v)

The proof of convergence (α̂, θ̂, v̂)n
P
−→

n→+∞
(α∗, θ∗, v∗) and asymptotic normality of the estimators can be found in

[26, 25]. The weights δl in (11) are chosen to guarantee the convergence of the contrast function to a deterministic
function Mn and to provide the asymptotic normality of the estimators. Moreover, the convergence can be speeded up
by proper selection of weights. The analysis of covergence at different weights is presented in [26]. In this work we
used the weight δl = 1/|l|β with β = 1.5.

The computation of the estimators is very fast since only a Fast Fourier algorithm and a minimization algorithm
of a quadratic functional are needed. The procedure is summarized in Algorithm (1)

Algorithm 1 Parameters estimation procedure
Input: Input set of curves from experimental design Yn = {Yi j, i = 1, .., n; j = 1, .., J}
Output: Transformation parameters estimation (α∗, θ∗, v∗)

Define the identifiability condition: A =
{
(α∗, θ∗, v∗) ∈ [−π, π[3×n: α1 = 1, θ1 = 0, v1 = 0

}
Compute the matrix of discrete Fourier coefficients D = {dkl, k = 1, .., n; |l| ≤ (J − 1)/2}
Compute the matrix of rephased Fourier coefficient C̃ = {c̃kl, k = 1, .., n; |l| ≤ (J − 1)/2}
Compute the vector of mean of rephased coefficients Ĉ = {̂cl, |l| ≤ (J − 1)/2}
Choose the weight sequence δl

Define Mn(α, θ, v) = 1
n ·

∑n
k=1

∑ J−1
2

l=− J−1
2
|δl|

2 |c̃kl(α, θ, v) − ĉl(α, θ, v)|2

Compute (α̂, θ̂, v̂) = arg minα,θ,v∈A Mn(α, θ, v) ∈ R3×(n−1)

Return: (α̂, θ̂, v̂) ∈ R3×(n−1)

3.3. Analytical Function Example

In this section the shape invariant model and the efficient parameters estimation are presented on an analytical
function. The minimization algorithm used in the estimation procedure is a Newton-type algorithm.

Let us consider the following function:

f (x) = 20 · (1 − x/(2π)) · x/(2π)
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Simulated data are generated as follows:

Yi j = α∗i · f (t j − θ
∗
i ) + v∗i + εi j, 1 ≤ i ≤ n, 1 ≤ j ≤ J

with the following choice of parameters: J = 5, N = 101, t j =
j−1
J 2π, 1 ≤ j ≤ J are equally spaced points on

[0, 2π[. Transformation parameters (θ∗, α∗, v∗) are uniformly distributed on ]0, 1], where θ∗1 = 0, v∗1 = 0, α∗1 = 1; the
noise ε ji, j = 1, .., J, i = 1, ..,N are simulated with a Gaussian law with mean 0 and variance 0.5.

Results are displayed in Figure 2. The function f is plotted by a solid red line in Figure 2(d). Figure 2(a) shows the
original simulated noisy data Yi, j. The cross-sectional mean function of these data is presented in Figure 2(d) by black
dotted line. Figure 2(b) plots estimated transformation parameter versus the originally simulated parameters. As it
can be seen, the estimations are very close to the original parameters. The inverse transformation using the estimated
parameters is displayed in Figure 2(c) and the mean function of restored curves is displayed in Figure 2(d) by blue
dashed line. Figure 2(d) compares the cross-sectional mean of inversely transformed data and the cross-sectional
mean of originally simulated data. Despite the noise, it is noticeable that the data after inverse transformation are
much more closer to the original function f than the original cross-sectional mean function.

(a) Original noisy data (b) Calculated parameters

(c) Inverse Transformation (d) Comparison

Figure 2: Analytical Example
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This analytical example shows that the method is effective in estimating the transformation parameters of the
shape invariant model. In the next section, we will explain how this model can be applied in reservoir engineering
forecast problems.

4. Functional data approximation

To apply the shape invariant model approach to approximate functional data from a dynamic simulator, firstly
we have to modify the parameters estimation procedure for large number of curves. When we are working with
uncertainty modeling, we always start from an experimental design Xn and a set of observation Yn. As we have
mentioned, the number of design points depends on the number of inputs and on the complexity of the response.
So that, some optimization problems could arise when we compute the contrast function with a large number of
curves. It can be time consuming and the results can be inaccurate. Therefore, we propose the following mod-
ification to the Algorithm (1): the original observation data is split into blocks and the optimization procedure is
then performed on each of the blocks. Following the identifiability condition, we are working on a compact set
A =

{
(α∗, θ∗, v∗) ∈ [−π, π[3×n: α1 = 1, θ1 = 0, v1 = 0

}
. This condition should be satisfied on every block optimization

by adding the first reference curve to the block.

Algorithm 2 Parameters estimation procedure for large n
Input: Input set of curves from experimental design Yn = {Yi j, i = 1, .., n; j = 1, .., J}
Output: Transformation parameters estimation (α∗, θ∗, v∗)

Split the observation data into Nb blocks of (K + 1) curves
for m = 1, ..,Nb do

Define block curves YK+1 = {Y1,Y(m−1)(K+1)...,YmK } = {Yi j, i = 1, ..,K + 1, j = 1, .., J}
Perform Algorithm (1)
Compute (α̂, θ̂, v̂) = arg min

α,θ,v∈A
Mn(α, θ, v), where (α̂, θ̂, v̂) ∈ R3×K

end for
Return: (α̂, θ̂, v̂) ∈ R3×(n−1)

With this procedure, we do not have limitations on experimental design of any size. As soon as we have estimated
the parameters for every curve from observation data set, we can formulate the prediction algorithm. Instead of
reproducing the simulator output for a prediction point x̄0 at every time step, we model the whole output curve
with the transformation parameter. This curve will provide the approximation of the output for the selected input
configuration x̄0 at each of considered time steps {t j, j = 1, .., J}. The transformation parameters for the input x̄0 are
evaluated with the Gaussian process response surface modeling. The model is based on the experimental design and
the set of evaluated transformation parameters calculated for the observation data curves. The prediction framework
for an arbitrary input configuration x̄0 is presented by the following Algorithm (3).

Summing up, with this proposed algorithm the problem of response surface modeling for dynamic simulators is
reduced from single step GP modeling for each of J time steps to an optimization problem and a GP modeling for
the transformation parameters. However, it is worth to mention that before performing the algorithm it is important to
analyze the curves behaviour for the observation data set. Studying the curves characterization, probably we may fix
for example vertical shifts v or horizontal shifts θ at zero. Also, if the curves have significantly different behaviour at
different time intervals we can split the observation data in time as well in order to achieve higher prediction accuracy.

The next section presents an application with a dynamic reservoir simulator case.

5. CO2 storage reservoir case

Carbon Capture and Storage technology stands for the collection of CO2 from industrial sources and its injection
underground. Carbon dioxide is stored in a deep geological formation that is sealed on a top by a low permeability
cap rock formation. Subsurface storage of CO2 is always associated with an excess pressure in the reservoir and one
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Algorithm 3 Prediction algorithm for dynamic simulator
Input: Dynamic simulator Y = F(x̄, t) with t ∈ {t j, j = 1, .., J} and prediction point x̄0

Output: Prediction Y0 = F(x̄0, t j) for all j = 1, .., J
Generate an experimental design Xn = (x̄1, .., x̄n) to span the space of interest
Evaluate Yn = F(Xn, t j) at every time step t j, 1 ≤ j ≤ J
Generate a set of discrete curves {Yi, j}, i = 1, .., n; j = 1, .., J
Estimate the (α, θ, v) ∈ (Rn)3 with Algorithm 2
Construct new experimental design for the function of parameters: (Xn, θ(Xn)), (Xn,α(Xn)) and (Xn, v(Xn))
Estimation of hyperparameters for GP models of transformation parameters
α(x̄0), θ(x̄0) and v(x̄0) are approximated with corresponding GP models
Reproduce: F(x̄0, t j) = α(x̄0) f (t j − θ(x̄0)) + v(x̄0) for all {t j, j = 1, .., J}
Return: Discrete time series Y0 = F(x̄0, t) with t ∈ {t j, j = 1, .., J}

of the primary environmental risks is a pressure-driven leakage of CO2 from the storage formation. In order to assess
the risk of CO2 leakage through the cap rock we consider a synthetic reservoir model. The model is made up of three
zones (3):

• a reservoir made of 10 layers

• a cap-rock made up of 9 layers

• a zone-to-surface composed of 1 layer

Figure 3: Reservoir Model

The XY size of the grid is set at 10 km total length. Each layer is 5m thick, including the cell above the cap-rock.
The total number of cells is 13520 (26x26x20 model grid). The structure of the reservoir is reduced to its simplest
expression. The zone above the cap-rock (up to the surface) is currently set to 1 layer. The salinity of the water is
35gm/l. The temperature of the reservoir is set to 60C and the initial pressure is hydrostatic. The injection bottom rate
is set to 10E+06 tons/year. The fracture pressure is estimated by geomechanical experts to 158 bars. Exceeding this
value of reservoir pressure can lead to a leakage. The simulation period is 55 years that include an injection period
of 15 years followed by 40 years of storage. In this study we analyze the possibility of leakage through a cap rock.
Therefore, we consider pressure in the storage reservoir as an objective function to be approximated.
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The uncertain parameters selected for this study characterize the reservoir and the fluid properties. It implies
different CO2 flowing possibilities between the reservoir layers. The distribution law for the parameters is uniform.
Table (1) represents the parameters description with their range of minimum and maximum values.

Name Description Min Max
PORO Reservoir Porosity 0.15 0.35

KSAND Reservoir Permeability 10 300
KRSAND Water relative permeability end-point 0.5 1.0

Table 1: Uncertain Parameters

We start from the observation data Yn - [30; 55] matrix of simulator outputs. By means of Algorithm (2) we
provide the transformations parameters estimations. Figure (4(a)) provides the original set of curves and Figure (4(b))
represents the same set after inverse transformation. The pattern curve is differentiable after the inverse transformation
with the estimated parameters.

(a) Observation data (b) Restored data

Figure 4: Original observation data and data after inverse transformation

As we are sure here that the model parameters are efficiently estimated, we can proceed with the next step of
prediction algorithm (3). The next step is to build Gaussian process response surface models for the transformation
parameters basing on the estimations.

In figure (5) we display the model validation criteria: Root Mean Square Error (RMSE) and predictivity indices
(Q2), calculated separately for every year. The criteria were computed with the help of additional confirmation test
data. The low predictivity in the first and last years is caused by low variance of data in that period. In general, the
method provides reliable level of predictivity. It is also reflected by crossplots of test and predicted data. Figure (6(a))
is based on new proposed approach and Figure (6(b)) corresponds to single step GP modelling. Both methods provide
a good level of approximation.
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(a) RMSE (b) Predicitivity Indices

Figure 5: Predictivity Indices and RMSE

(a) SIM method (b) Single Step GP

Figure 6: Crossplot comparison

Table (2) compares the simulation CPU time for both methods. SIM method provides suffucuently accurate results
(although less accurate than the single step GP approach), but with a CPU reduction of a factor five.

SIM method Single step GPOptimization Parameters modeling Total
CPU time 00:00:35 00:00:15 00:00:50 00:04:28

Table 2: CPU time comparison
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It is worth to mention, that in this study we consider a simple model with only 3 uncertain parameters. So that, to
estimate the function with GP model at every single step takes approximately 10 seconds. For more complex functions
and more input uncertain parameters involved a single step model evaluation can take up to 10-20 minutes. So that,
for the same simulation period of 55 years CPU time can increase to 10-20 hours. Whereas SIM approach does not
depend on number of time steps and the method always conclude only a single optimization problem and as maximum
3 GP models for the transformation parameters.

6. Conclusion

This paper focuses on two general problems. First, we introduce a shape invariant model approach and we provide
an efficient algorithm for estimation of transformation parameters of the model with the method specification for
large sets of curves. Second, we suggest the application of this approach to model the time series outputs from a
dynamic simulator. The proposed method reduces the problem of functional outputs modeling to one optimization
problem and three GP response surface models. We have tested the method with a CO2 storage reservoir case. We
have also compared the method with the standard single-step approach. Presented numerical results show that the
method provides satisfactory and comparable predictivity at lesser CPU time. The method also does not depend on
the number of the involved time-steps. It can be very advantageous when we are working with a model involving large
number of times steps such as CO2 storage when the reservoir model simulation period can include up to hundreds or
thousands time steps. However, if the set of output curves have significantly different behaviour, preliminary curves
classification may be required.
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