Cartan subgroups and generosity in $S L _2\left(Q _p\right)$

Benjamin Druart

To cite this version:

Benjamin Druart. Cartan subgroups and generosity in $S L _2\left(Q _p\right)$. 2013. hal-00806561v1

HAL Id: hal-00806561 https://hal.science/hal-00806561v1

Preprint submitted on 1 Apr 2013 (v1), last revised 3 Oct 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cartan Subgroups and Generosity in $S L_{2}\left(\mathbb{Q}_{p}\right)$

Benjamin Druart* ${ }^{* \dagger}$

April 1, 2013

Abstract

We describe all Cartan subgroups of $S L_{2}\left(\mathbb{Q}_{p}\right)$. We show that the Cartan subgroup consisting of all diagonal matrices is generous and it is the only one up to conjugacy.

Keywords p-adic field ; Cartan subgroup ; generosity
MSC2010 20G25; 20E34; 11E57
A subset X of a group G is left-generic if G can be covered by finitely many lefttranslates of X. We define similary right-genercity. If X is G-invariant, then leftgenericity is equivalent to right-genericity. This important notion in model theory was particulary developped by B. Poizat for groups in stable theories [3]. For a group of finite Morley-rank and X a definable subset, generosity is the same as being of maximal dimension [3, lemme 2.5]. The term generous was introduced in [2] to show some conjuguation theorem. A definable subset X of a group G is generous in G if the union of its G-conjugates, $X^{G}=\left\{x^{g} \mid(x, g) \in X \times G\right\}$, is generic in G.

In an arbitrary group G, we define a Cartan subgroup H as a maximal nilpotent subgroup such that every finite index normal subgroup $X \unlhd H$ is of finite index in its normalizer $N_{G}(X)$. In connected reductive algebraic groups over an algebraically closed fields, the maximal torus is typically an example of a Cartan subgroup. Moreover it is the only one up to conjugation and it is generous. It has been remarked in [1] that, in the group $S L_{2}(\mathbb{R})$, the Cartan subgroup consisting of diagonal matrices is also generous. But it has also been remarked that in the case of $S L_{2}(\mathbb{R})$, there exists another Cartan subgroup, namely $\mathrm{SO}_{2}(\mathbb{R})$, which is not generous.

We will discuss here some apparently new remarks of the same kind in $S L_{2}\left(\mathbb{Q}_{p}\right)$. First we describe all Cartan subgroups of $S L_{2}\left(\mathbb{Q}_{p}\right)$. After we show that the Cartan

[^0]subgroup consisting of diagonal matrices is generous and it is the only one up to conjugacy.

I would like to thank E. Jaligot, my spervisor for his help, and E. Baro to explain me the case of $S L_{2}(\mathbb{R})$.

Description of Cartan subgroups up to conjugacy

We note $v_{p}: \mathbb{Q}_{p} \longrightarrow \mathbb{Z} \bigcup\{+\infty\}$ the p-adic-valuation, and $a c: \mathbb{Q}_{p}^{\times} \longrightarrow \mathbb{F}_{p}$ the angular component defined by $a c(x)=\operatorname{res}\left(p^{-v_{p}(x)} x\right)$ where res: $\mathbb{Q}_{p} \longrightarrow \mathbb{F}_{p}$ is the residue map.

With this notations, if $p \neq 2$, an element $x \in \mathbb{Q}_{p}^{\times}$is a square if and only if $v_{p}(x)$ is even and $a c(x)$ is a square in \mathbb{F}_{p}. For $p=2$, an element $x \in \mathbb{Q}_{2}$ can be written $x=2^{n} u$ with $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{2}^{\times}$, then x is a square if n is even and $u \equiv 1(\bmod 8)$ [4].

Fact 1 ([4]). If $p \neq 2$, the group $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, it has for representatives $\{1, u, p, u p\}$, where $u \in \mathbb{Z}_{p}^{\times}$is such that ac (u) is not a square in \mathbb{F}_{p}

The group $\mathbb{Q}_{2}^{\times} /\left(\mathbb{Q}_{2}^{\times}\right)^{2}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, it has for representatives $\{ \pm 1, \pm 2, \pm 5, \pm 10\}$.

For any prime p, and any δ in $\mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, we put:

$$
\begin{aligned}
Q_{1} & =\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right) \right\rvert\, a \in \mathbb{Q}_{p}^{\times}\right\} \\
Q_{\delta} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right) \right\rvert\, a, b \in \mathbb{Q}_{p} \text { and } a^{2}-b^{2} \delta=1\right\}
\end{aligned}
$$

Lemma 1.

$$
\begin{array}{ll}
\forall x \in Q_{1} \backslash\{I,-I\} & C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)=Q_{1} \\
\forall x \in Q_{\delta} \backslash\{I,-I\} & C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)=Q_{\delta}
\end{array}
$$

The checking of these equalities is left to the reader.
Proposition 1. The groups Q_{1} and Q_{δ} are Cartan subgroups of $S L_{2}\left(\mathbb{Q}_{p}\right)$
Proof. One checks easily that Q_{1} is abelian and the normalizer of Q_{1} is:

$$
N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)=Q_{1} \cdot\langle\omega\rangle \quad \text { where } \quad \omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

For X a subgroup of Q_{1}, if $g \in N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)$ and $x \in X$, then, using lemma 1

$$
Q_{1}=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(x^{g}\right)=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)^{g}=Q_{1}^{g}
$$

It follows that $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)=N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)=Q_{1} \cdot\left\langle\omega>\right.$ and if X of finite index k in Q_{1}, then X is of index $2 k$ in $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)$. We can see that for t in $Q_{1}, t^{\omega}=\omega^{-1} t \omega=t^{-1}$ thus $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)^{\prime}=Q_{1}^{2}$ and $\left[Q_{1}^{2}, \omega\right]=Q_{1}^{2}$, in particular $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)$ is not nilpotent. By
the normalizer condition for nilpotent groups, if Q_{1} is properly contained in a nilpotent group K, then $Q_{1}<N_{K}\left(Q_{1}\right) \leq K$, here $N_{K}\left(Q_{1}\right)=Q_{1} \cdot\langle\omega\rangle$ which is not nilpotent, a contradiction. It finishes the proof that Q_{1} is a Cartan subgroup.

For $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, we check similary that the group Q_{δ} is abelian. Since for all subgroups X of $Q_{\delta}, C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)=Q_{\delta}$, it follows that $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)=N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{\delta}\right)=Q_{\delta}$, and if X is of finite index in Q_{δ} then X is of finite index in its normalizer. By the normalizer condition for nilpotent groups, Q_{δ} is nilpotent maximal.

Proposition 2. $Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid \operatorname{tr}(A)^{2}-4 \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right\} \cup\{I,-I\}$
$Q_{\delta}^{S L_{2}\left(\mathbb{Q}_{p}\right)}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid \operatorname{tr}(A)^{2}-4 \in \delta \cdot\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right\} \cup\{I,-I\}$
We put:

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \right\rvert\, u \in \mathbb{Q}_{p}\right\} \bigcup\left\{\left.\left(\begin{array}{cc}
-1 & u \\
0 & -1
\end{array}\right) \right\rvert\, u \in \mathbb{Q}_{p}\right\}
$$

If $A \in S L_{2}\left(\mathbb{Q}_{p}\right)$ satisfies $\operatorname{tr}(A)^{2}-4=0$, then either $\operatorname{tr}(A)=2$ or $\operatorname{tr}(A)=-2$, and A is a conjugate of a element of U. In this case, A is said unipotent. It follows, from Proposition 2 :

Corollary 3. We have the following partition:
$S L_{2}\left(\mathbb{Q}_{p}\right) \backslash\{I,-I\}=(U \backslash\{I,-I\})^{S L_{2}\left(\mathbb{Q}_{p}\right)} \sqcup\left(Q_{1} \backslash\{I,-I\}\right)^{S L_{2}\left(\mathbb{Q}_{p}\right)} \sqcup \underset{\delta \in \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}}{\bigsqcup_{\delta}}\left(Q_{\delta} \backslash\{I,-I\}\right)^{S L_{2}\left(\mathbb{Q}_{p}\right)}$
Remark. If δ and δ^{\prime} in \mathbb{Q}_{p}^{\times}are in the same coset of $\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, then, by Proposition 2, if $x^{\prime} \in Q_{\delta^{\prime}}$, then there exists $x \in Q_{\delta}$ and $g \in S L_{2}\left(\mathbb{Q}_{p}\right)$, such that $x^{\prime}=x^{g}$, thus, by lemma 1, $Q_{\delta^{\prime}}=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(x^{\prime}\right)=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)^{g}=Q_{\delta}^{g}$. Therefore the Corollary 3 makes sense.

Proof of Proposition 2. - If $A \in Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$, then there exists $P \in S L_{2}\left(\mathbb{Q}_{p}\right)$ such that

$$
A=P\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) P^{-1}
$$

with $a \in \mathbb{Q}_{p}^{\times}$. We have $\operatorname{tr}(A)=a+a^{-1}$, so $\operatorname{tr}(A)^{2}-4=\left(a+a^{-1}\right)^{2}-4=\left(a-a^{-1}\right)^{2}$ and $\operatorname{tr}(A)^{2}-4 \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$.

Conversely, let A be in $S L_{2}\left(\mathbb{Q}_{p}\right)$ with $\operatorname{tr}(A)^{2}-4$ a square. The caracteristic polynomial is $\chi_{A}(X)=X^{2}-\operatorname{tr}(A) X+1$ and its discriminant is $\Delta=\operatorname{tr}(A)^{2}-4 \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, so χ_{A} has two distinct roots in \mathbb{Q}_{p} and A is diagonalizable in $G L_{2}\left(\mathbb{Q}_{p}\right)$. There is $P \in G L_{2}\left(\mathbb{Q}_{p}\right)$, and $D \in S L_{2}\left(\mathbb{Q}_{p}\right)$ diagonal such that $A=P D P^{-1}$. If

$$
P=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

we put

$$
\tilde{P}=\left(\begin{array}{cc}
\frac{\alpha}{\operatorname{det}(P)} & \beta \\
\frac{\gamma}{\operatorname{det}(P)} & \delta
\end{array}\right)
$$

and we have $\tilde{P} \in S L_{2}\left(\mathbb{Q}_{p}\right)$ and $A=\tilde{P} D \tilde{P}^{-1} \in Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$.

- If A is in $Q_{\delta}^{S L_{2}\left(\mathbb{Q}_{p}\right)} \backslash\{I,-I\}$, then $\operatorname{tr}(A)=2 a$ and there exists $b \neq 0$ such that $a^{2}-b^{2} \delta=1$. So $\operatorname{tr}(A)^{2}-4=4 a^{2}-4=4\left(b^{2} \delta+1\right)-4=(2 b)^{2} \delta \in \delta \cdot\left(\mathbb{Q}_{p}^{\times}\right)^{2}$

Conversely we proceed as in the real case and the root $i \in \mathbb{C}$. The discriminant of $\chi_{A}, \Delta=\operatorname{tr}(A)^{2}-4$ is a square in $\mathbb{Q}_{p}(\sqrt{\delta})$, and the caracteristic polynomial χ_{A} has two roots in $\mathbb{Q}_{p}(\sqrt{\delta}): \lambda_{1}=\alpha+\beta \sqrt{\delta}$ and $\lambda_{2}=\alpha-\beta \sqrt{\delta}$ (with $\alpha, \beta \in \mathbb{Q}_{p}$). For the two eigen values λ_{1} and λ_{2}, A has eigen vectors:

$$
v_{1}=\binom{x+y \sqrt{\delta}}{x^{\prime}+y^{\prime} \sqrt{\delta}} \quad \text { and } \quad v_{2}=\binom{x-y \sqrt{\delta}}{x^{\prime}-y^{\prime} \sqrt{\delta}}
$$

In the base $\left\{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right\}$, the matrix A can be written :

$$
\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right)
$$

with $a, b \in \mathbb{Q}_{p}$. As above, we can conclude that there exists $P \in S L_{2}\left(\mathbb{Q}_{p}\right)$ such that:

$$
A=P\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right) P^{-1}
$$

Theorem 4. The subgroups Q_{1} and $Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$ are the only Cartan subgroups up to conjugacy of $S L_{2}\left(\mathbb{Q}_{p}\right)$

Remark. By Fact 1and the previous remark, for $p \neq 2$ there are four Cartan subgroup up to conjugacy in $S L_{2}\left(\mathbb{Q}_{p}\right)$, and for $p=2$, there are eight.

Proof. For the demonstration we note $G=S L_{2}\left(\mathbb{Q}_{p}\right)$ and B the following subgroup of $S L_{2}\left(\mathbb{Q}_{p}\right):$

$$
B=\left\{\left.\left(\begin{array}{cc}
t & u \\
0 & t^{-1}
\end{array}\right) \right\rvert\, t \in \mathbb{Q}_{p}^{\times}, u \in \mathbb{Q}_{p}\right\}
$$

With these notations, we can easily check for $g \in U \backslash\{I,-I\}$ that $C_{G}(g)=U$ and $N_{G}(U)=$ B. Moreover it is kown that every $q \in B$ can be written as $q=t u$ where $t \in Q_{1}$ and $u \in U$.

Consider K a Cartan subgroup of $S L_{2}\left(\mathbb{Q}_{p}\right)$. We will show that K is a conjugate of Q_{1} or $Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$. First we prove K cannot contain a unipotent element other than I or $-I$. Since a conjugate of a Cartan subgroup is still a Cartan subgroup, it suffice to show that $K \cap U=\{I,-I\}$.

In order to find a contradiction, let $u \in K$ be a element of U different of I or $-I, u$ is in $K \cap B$. If $\alpha \in N_{G}(K \cap B)$, then we have that $u^{\alpha} \in K \cap B$, and since $\operatorname{tr}\left(u^{\alpha}\right)=\operatorname{tr}(u)= \pm 2, u^{\alpha}$ is still in U. Therefore $U=C_{G}(u)=C_{G}\left(u^{\alpha}\right)=C_{G}(u)^{\alpha}=U^{\alpha}$ and so α is in $N_{G}(U)=B$. It follows $N_{K}(K \cap B) \leq B$ and finally $N_{K}(K \cap B)=K \cap B$. By the normalizer condition $K \cap B$ cannot be proper in K, then $K \leq B$.

It is known (see for example [5, Lemma 0.1.10]) that if K is a nilpotent group and $H \unlhd K$ a non trivial normal subgroup, then $H \cap Z(K)$ is not trivial. If we assume that $K \npreceq U$, since $K \leq B=N_{G}(U), K \cap U$ is normal in K, and so $K \cap U$ contains an element x of the center $Z(K)$. For $q \in K \backslash U$, there are $t \in Q_{1} \backslash\{I,-I\}$ and $u \in U$ such that $q=t u$. We have $[x, q]=I$ so $[x, t]=I$, that is impossible because $C_{G}(x)=U$. Therefore $K \leq U$. Since K is maximal nilpotent and U abelian, $K=U$. But U is not a cartan subgroup, because it is of infinite index in its normalizer B. A contradiction.

Since K does not contain a unipotent element, K intersects a conjugate of Q_{1} or $Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$ by Corollary 3, we note Q this subgroup. Let us show that $K=Q$. Let be x in $K \cap Q$, and $\alpha \in N_{K}(K \cap Q)$, then $x^{\alpha} \in Q$, and, by lemma 1, $Q=C_{G}\left(x^{\alpha}\right)=C_{G}(x)^{\alpha}=Q^{\alpha}$. Thus $\alpha \in N_{G}(Q)$, and $N_{K}(K \cap Q) \leq N_{G}(Q)$.

1 rst case Q is a conjugate of Q_{1}, then $N_{G}(Q)=Q \cdot<w^{\prime}>$ where $w^{\prime}=w^{g}$ if $Q=Q_{1}^{g}$. We have also $w^{\prime 2} \in Q$ and $t^{w^{\prime}}=t^{-1}$ for $t \in Q$. If $w^{\prime} \in K$ then $P=Q \cdot\left\langle w^{\prime}\right\rangle \cap K$ is a subgroup of K, but $P^{\prime}=P^{2}$ which is K-invariant and P is not nilpotent. A contradiction, so $w^{\prime} \notin K$. Then $N_{K}(Q \cap K) \leq Q \cap K$, it follows by normalizer condition that $K \leq Q$, and by maximality of $K, K=Q$.

2nd case Q is a conjuguate of $Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$, then $N_{G}(Q)=Q$. It follows similarly that $K=Q$.

Generosity of the Cartan subgroups

Our purpose is now to show the generosity of the Cartan subgroup Q_{1}. It follows from the next more general proposition :

Proposition 5. 1. The set $W=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid v_{p}(\operatorname{tr}(A))<0\right\}$ is generic in $S L_{2}\left(\mathbb{Q}_{p}\right)$.
2. The set $W^{\prime}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid v_{p}(\operatorname{tr}(A)) \geq 0\right\}$ is not generic in $S L_{2}\left(\mathbb{Q}_{p}\right)$.

Proof. 1. We consider the matrices :

$$
A_{1}=I, \quad A_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & a
\end{array}\right) \quad \text { and } \quad A_{4}=\left(\begin{array}{cc}
0 & -b^{-1} \\
b & 0
\end{array}\right)
$$

with $v_{p}(a)>0$ and $v_{p}(b)>0$.
We show that $S L_{2}\left(\mathbb{Q}_{p}\right)=\bigcup_{i=1}^{4} A_{i} W$. Suppose there exists

$$
M=\left(\begin{array}{ll}
x & y \\
u & v
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right)
$$

such that $M \notin \bigcup_{i=1}^{4} A_{i} W$.

Since $M \notin A_{1} W \cup A_{2} W$, we have $x+v=\varepsilon$ and $y-u=\delta$ with $v_{p}(\varepsilon) \geq 0$ and $v_{p}(\delta) \geq 0$. Since $M \notin A_{3} W$, we have $a x+a^{-1} v=\eta$ with $v_{p}(\eta) \geq 0$. We deduce $a(\varepsilon-v)+a^{-1} v=\eta$ and $v=\frac{\eta-a \varepsilon}{a^{-1}-a}$. Similarly, it follows from $M \notin A_{4} W$ that $u=\frac{\theta-b \delta}{b^{-1}-b}$ with some θ such that $v_{p}(\theta) \geq 0$.

Since $v_{p}(a)>0$, we have $v_{p}\left(a+a^{-1}\right)<0$. From $v_{p}(\eta-a \varepsilon) \geq \min \left\{v_{p}(\eta) ; v_{p}(a \varepsilon)\right\} \geq 0$, we deduce that $v_{p}(v)=v_{p}\left(\frac{\eta-a \varepsilon}{a+a^{-1}}\right)=v_{p}(\eta-a \varepsilon)-v_{p}\left(a+a^{-1}\right)>0$. Similarly $v_{p}(u)>0$. It follows that $v_{p}(x)=v_{p}(\varepsilon-v) \geq 0$ and $v_{p}(y) \geq 0$.

Therefore $v_{p}(\operatorname{det}(M))=v_{p}(x v-u y) \geq \min \left\{v_{p}(x v), v_{p}(u y)\right\}>0$ and thus $\operatorname{det}(M) \neq 1$, a contradiction .
2. We show that the family of matrices $\left(M_{x}\right)_{x \in \mathbb{Q}_{p}^{\times}}$cannot be covered by finitely many $S L_{2}\left(\mathbb{Q}_{p}\right)$-translates of W^{\prime}, where :

$$
M_{x}=\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right)
$$

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right)$. Then $\operatorname{tr}\left(A^{-1} M_{x}\right)=d x+a x^{-1}$. If $v_{p}(x)>\max \left\{\left|v_{p}(a)\right|,\left|v_{p}(d)\right|\right\}$ then $v_{p}\left(\operatorname{tr}\left(A^{-1} M_{x}\right)\right)<0$ and $M_{x} \notin A W^{\prime}$.

Therefore for every finite family $\left\{A_{j}\right\}_{i \leq n}$, there exist $x \in \mathbb{Q}_{p}$ such that $M_{x} \notin \bigcup_{j=1}^{n} A_{j} W^{\prime}$.

Remark. We remark that the sets W and W^{\prime} form a partition of $S L_{2}\left(\mathbb{Q}_{p}\right)$. There are both definable because the valuation v_{p} is definable in \mathbb{Q}_{p}.

Lemma 2. $W \subseteq Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$ and for $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}, Q_{\delta}^{S L_{2}\left(\mathbb{Q}_{p}\right)} \subseteq W^{\prime}$
Proof. Let be $A \in S L_{2}\left(\mathbb{Q}_{p}\right)$ with $v_{p}(\operatorname{tr}(A))<0$.
For $p \neq 2$, since $v_{p}(\operatorname{tr}(A))<0, v_{p}\left(\operatorname{tr}(A)^{2}-4\right)=2 v_{p}(\operatorname{tr}(A))$ and $\operatorname{ac}\left(\operatorname{tr}(A)^{2}-4\right)=$ $\operatorname{ac}\left(\operatorname{tr}(A)^{2}\right)$, so $\operatorname{tr}(A)^{2}-4$ is a square in \mathbb{Q}_{p}.
For $p=2$, we can write $\operatorname{tr}(A)=2^{n} u$ with $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$. Then $\operatorname{tr}(A)^{2}-4=$ $2^{2 n}\left(u^{2}-4 \cdot 2^{-2 n}\right)$. Since $n \leq-1, u^{2}-4 \cdot 2^{-2 n} \equiv u^{2} \equiv 1(\bmod 8)$, so $\operatorname{tr}(A)^{2}-A \in\left(\mathbb{Q}_{2}^{\times}\right)^{2}$.

In all cases, by the proposition $2, W \subseteq Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$ and ,by complementarity, $Q_{\delta}^{S L_{2}\left(\mathbb{Q}_{p}\right)} \subseteq$ W^{\prime}.

We can now conclude with the following corollary, similar to [1, Remark 9.8] :
Corollary 6. 1. The Cartan subgroup Q_{1} is generous in $S L_{2}\left(\mathbb{Q}_{p}\right)$.
2. The Cartan subgroups $Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$ are not generous in $S L_{2}\left(\mathbb{Q}_{p}\right)$.

References

[1] Elias Baro, Eric Jaligot, and Margarita Otero. Cartan subgroups of groups definable in o-minimal structures. arXiv:1109.4349v2 [math.GR], 2011.
[2] Eric Jaligot. Generix never gives up. J. Symbolic Logic, 71(2):599-610, 2006.
[3] Bruno Poizat. Groupes stables. Nur al-Mantiq wal-Ma'rifah [Light of Logic and Knowledge], 2. Bruno Poizat, Lyon, 1987. Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic].
[4] Jean-Pierre Serre. Cours d'arithmétique. puf, 1970.
[5] Frank Wagner. Stable groups, volume 240. London Mathematical Society Lecure Note Series, 1997.

[^0]: *Université de Grenoble I, Département de Mathématiques, Institut Fourier, UMR 5582 du CNRS, 38402 Saint-Martin d'Hères Cedex, France. email : Benjamin.Druart@ujf-grenoble.fr
 ${ }^{\dagger}$ The research leading to these results has recieved funding from the European Research Council under the European Community's Seventh Framework Programme FP7/2007-2013 Grant Agreement no. 278722.

