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Abstract

The objective of reliability sensitivity analysis is to determine input variables that mostly contribute to the variability
of the failure probability. In this paper, we study a recently introduced method for the reliability sensitivity analysis
based on a perturbation of the original probability distribution of the input variables. The objective is to determine
the most influential input variables and to analyze their impact on the failure probability. We propose a moment
independent sensitivity measure that is based on a perturbation of the original probability density independently for
each input variable. The variables providing the highest variation of the original failure probability are settled to be
more influential. These variables will need a proper characterization in terms of uncertainty. The method is intended
to work in applications involving a computationally expensive simulation code for evaluating the failure probability
such as the CO2 storage risk analysis. An application of the method to a synthetic CO2 storage case study is provided
together with some analytical examples.

Keywords: sensitivity analysis, reliability analysis, uncertainty analysis, failure probability

1. Introduction

Carbon Capture and Storage (CCS) stands for the collection of CO2 from industrial sources and its injection
into deep geological formations for a permanent storage. There are three possible sites for injection: unmined coalbed
formations, saline aquifers and depleted oil and gas reservoirs [1]. Nevertheless, the following principal environmental
question arises: what is the probability that CO2 will remain underground for hundreds to thousands of years after its
capture and injection into a storage formation?

The primary risk of CO2 geological storage is unintended gas leakage from the storage reservoir [2, 3]. In this
work, we focus on a leakage from the storage formation through a fault or a fracture. This can happen when the
reservoir pressure is higher than the caprock fracture pressure. Numerical modelling and simulation has become an
integral component of CO2 storage assessment and monitoring. The reservoir simulation models are constructed based
on the reservoir and production data. They are used to predict and analyze CO2 plume distribution and the reservoir
pressure development during the injection and the storage periods. With the help of the numerical simulation models
it is possible to forecast CO2 storage performance and to evaluate the risks of a possible leakage.

Risk and uncertainty analysis has been recognized as a principal part of safety and risk assessment. Generally
speaking, when the main sources of uncertainty have been identified, Uncertainty Analysis (UA) is focused on quanti-
fying the uncertainty in the model output resulting from uncertainty in the model inputs. At the same time, Sensitivity
Analysis (SA) aims to identify the contributions of each model uncertain input to the variability of the model out-
put. Uncertainty analysis may be equally performed to assess the reliability of the system. A typical example of a
failure probability estimation in the CO2 storage risk analysis is the estimation of the probability of exceeding the
caprock fracturing pressure during the CO2 injection phase. If we denote Preservoir the reservoir pressure and P f racture

the caprock fracturing pressure, then we consider the following failure probability:

p f = P(Preservoir ≥ P f racture).
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In practice, uncertainty and sensitivity analysis require a large number of reservoir simulator runs to explore all the
input variables space. However, higher accuracy of a simulator usually results in a higher simulation time. One
simulator run can take from few minutes up to several hours or even days. Therefore, when the simulation time
becomes too high, uncertainty analysis may become unfeasible. For this reason, in this work, in order to estimate the
failure probability p f for the expensive reservoir simulator, we use Gaussian Process (GP) response surface model,
also known as kriging [4, 5, 6]. The kriging method was originally introduced in the field of geostatistics by Krige
in the 1950’s [7] and formalized in 1960’s by Matheron [8]. In [4] Sacks et al. proposed the statistical approach to
uncertainty analysis of complex computer codes referred to as the Design of Computer Experiments. In a nutshell, the
approach consists in building an approximation of the reservoir simulator input/output relationship starting from a set
of simulation runs at a carefully chosen input variables configurations referred to as experimental design or training
set. The obtained response surface model can then be used to predict the model output for a new non simulated input
with a negligible computational time. Therefore, uncertainty and sensitivity analysis become affordable.

One of the most challenging problems in risk analysis is to identify the failure region and to compute the failure
probability. However, the failure probability will usually depend strongly on the probability distribution of the input
variables. Reliability Sensitivity Analysis can help in understanding the relationship between each input variable
uncertainty and the failure probability. The problem is to identify the set of input variables that need to be well
characterized in terms of uncertainty distribution.

For the time being, numerous approximation and simulation methods are available for estimating the failure prob-
ability such as First / Second Order Reliability Methods, Monte Carlo sampling, importance sampling, directional
sampling, subset simulation, etc. [9, 10, 11, 12]. However, there are few sensitivity analysis methods developed for
the failure probability analysis. The widely used methods for sensitivity analysis are based on a variance decomposi-
tion of the output. Given the probability distribution of the input variables, Sobol indices are expressed by the ratio of
the variance due to a given input on the total output variance [13]. Knowing the probability distribution of the input
variables and the output, we can so define sensitivity indices for each of the input variables. Variance based indices
are usually interesting for measuring the input/output sensitivity, however they can be poorly relevant to our problem
of evaluating the impact on failure probability.

There have been few attempts to develop sensitivity analysis methods well suited for reliability analysis. First,
as complementary results of the First Order Reliability Method, sensitivity to the distribution of the input variables
can be obtained. Sensitivity is expressed as the partial derivative of the reliability index β [9]. Another approach was
proposed by Morio [14]. Therein, the author uses the variance decomposition and Sobol’ sensitivity indices to study
the rate of change in the failure probability due to the changes of the input distribution density parameters. Borgonovo
et al. [15] suggested some moment independent importance measure in the reliability analysis. This measure does not
involve the variance. For a fixed variable xi it quantifies the effect of knowing xi by computing the L1 norm between
the unconditional joint density fx̄(·) and the conditional density fx̄|xi (·).

In this paper, we study a moment independent approach for sensitivity analysis of a failure probability [16].
The influence of the input variables on the failure probability is obtained by perturbing the prior probability density
function fx̄(x̄). In particular, we estimate the effect of the perturbation on the value of the failure probability p f .
Here, we propose to distinguish distributions classes by their supports. For the case of a bounded support, such as the
uniform or the triangular distributions, the main source of uncertainty is about the boundaries of the support. On the
other hand, in the case of infinite support, such as normal or log-normal distributions, the main source of uncertainty
comes from the distribution parameters, such as mean and variance. The estimation method has the advantage of
being very efficient in terms of number of simulator calls. In order to estimate the sensitivity indices for all the input
variables, the performance function is evaluated only once on a Monte Carlo sample used to estimate the reference
failure probability p f .

Our paper is organized as follows. First, we introduce some density perturbations for different families of dis-
tributions. Later, we introduce the technique to compute a perturbed failure probability using the same Monte Carlo
sample. This is based on an inverse importance sampling technique [17]. Finally, we present the formulation for the
moment independent sensitivity indices and demonstrate its applicability on an analytical and a CO2 storage reservoir
case examples.
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2. Density perturbation influence to failure probability

Let us denote by g(x̄) the performance function of the system, x̄ ∈ Ω ⊂ Rd is a set of independent input variables
with the joint density fx̄(x̄) =

∏d
i=1 fxi (xi). The failure probability is expressed as:

p f = P(g(x̄) ≤ 0) = E fx̄

[
Ig(x̄)≤0

]
=

∫
Ω f

fx̄(x̄)dx̄,

where Ω f = {x̄ ∈ Ω : g(x̄) ≤ 0} is the failure region.
In general, the distribution density fx̄(·) is provided by experts on the basis of some indirect measurements or

some limited observation data [18]. Here, we study how a perturbation of the original probability density fx̄(·) affects
the failure probability of the system p f . We assume that the input variables xi, i = 1, . . . , d are independent random
variables with marginal densities fxi . So that, fx̄(x̄) =

∏d
i=1 fxi (xi).

This work is inspired by previous work [18, 16]. Originally the method was applicable only to the normal distri-
butions. Here, the method is extended to the more general case of an exponential family. The objective of this study
is to estimate the influence of the input random variable from the vector x̄ to the failure probability of the system p f .
The proposed approach consists in perturbing the original density for a given fixed variable xi while keeping constant
the probability density functions for all the other variables x̄−i = (x1, . . . , xi−1, xi+1, . . . , xd). Then, a new value for the
failure probability is computed. If this new value piδ differs significantly from the reference value p f , it means that
this selected input variable xi is influential. Conversely, if the new failure probability piδ is close to p f , then the input
xi has low influence on the failure probability.

2.1. Density perturbation for an exponential family

To define the probability density perturbation, first recall the definition of an exponential family. An exponential
family is a set of distribution having density function that can be expressed in the form of:

fx(x|θ) = h(x) exp (η(θ)T(x) − A(θ)) , (1)

where θ is a vector of distribution parameters, η(θ) is a natural parameter, T(x) is a vector of sufficient statistics, h(x)
is an underlying weight function and A(θ) is the cumulant generating function [19]. The cumulant generating function
ensures that the distribution integrates to one, i.e.:

A(θ) = log
∫

h(x) exp(η(θ)T(x))µ(dx),

where µ is the reference measure (for example Lebesgue measure). It could be continuous or discrete. In this paper,
we mainly consider continuous measure. However, all the calculations are valid for a discrete measure as well. Expo-
nential family contains most of the standard discrete and continuous distributions that we use for practical modelling,
such as the normal, Poisson, Binomial, exponential, Gamma, multivariate normal, etc.

To define the density perturbation for this family of distributions, we use some ideas coming from information
theory [20]. Kullback-Leibler (KL) divergence is used to measure the magnitude of a perturbation. KL divergence
quantifies the ”closeness” of two probability distribution P and Q. Suppose that P and Q are continuous probability
distributions with densities p(x̄) and q(x̄) (with respect to Lebesgue measure). Then, the KL divergence between P
and Q is given by:

DKL(P,Q) =

∫ ∞

−∞

p(x̄) log
p(x̄)
q(x̄)

dx̄ (2)

For δ > 0, let us denote for the variable xi the new (perturbed) density as fxiτ (·),. We select fxiτ (·) in such way that:

DKL( fxiτ , fxi ) = δ. (3)

Possible values of the perturbation δ may be restricted by some inequalities on Kullback-Leibler divergence [21]. If
we define the function r(x̄) := p(x̄)

q(x̄) ,
(
x ∈ Ω ⊂ Rd

)
and assume that 0 < r < r(x̄) < R for all x̄ ∈ Ω ⊂ Rd. Then,
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according to [21], we have:

DKL(p, q) ≥ 0

DKL(p, q) ≤
(R − r)2

4rR
= δmax

According to these inequalities, we choose δ ∈ [0, δmax], where δmax =
(R−r)2

4rR can be computed precisely.
Let us consider the original density fxi (x) = h(x) exp(η(θ)T(x)− A(θ)) from exponential family. In order to stay in

the same family, we propose to restrict the choice of possible perturbations among the following class of densities:

fxiτ (x) = exp(τT(x) − ψ(τ)) fxi (x) = h(x) exp (T(x)(η(θ) − τ) − (A(θ) + ψ(τ))) , (4)

Here, τ is a constant depending on δ (it is chosen under the condition (3)). The function ψ(τ) is a normalization
function and it may be expressed as:

ψ(τ) = log
[∫ ∞

−∞

exp(τT(t)) fxi (t)dt
]
.

It is the cumulant generating function for the perturbed probability distribution fxiτ (x). Moreover, if µ and σ2 are the
mean and the variance of the original probability distribution, then:

ψ(0) = 0
ψ′(0) = µ
ψ′′(0) = σ2

(5)

We aim to perturb fxi in such a way that the KL divergence between the original density fxi and the perturbed density
fxiτ is equal to δ. Notice that:

DKL( fxiτ , fxi ) =

∫ ∞

−∞

fxiτ (t) log
fxiτ (t)
fxi (t)

dt =

∫ ∞

−∞

fxiτ (t) (τT(t) − ψ(τ)) dt (6)

= τψ′(τ) − ψ(τ).

Hence, τ should satisfy the equation:
τψ′(τ) − ψ(τ) = δ. (7)

Let τ∗ = τ(δ) be one solution of (7). We use this parameter in order to define the perturbed density modification fxiτ (·)
defined by (4).

Now, let us consider the function:
G(τ) = τψ′(τ) − ψ(τ) − δ.

This function has a global minimum at τ = 0: G′(τ)|τ=0 = 0, G′′(τ)|τ=0 = ψ′′(τ) > 0 and G(0) = −δ < 0 for δ > 0.
Moreover, G′(τ) = τψ′′(τ): G′(τ) < 0, (τ < 0) and G′(τ) > 0, (τ > 0). Thus, G(τ) is strictly decreasing for τ < 0 and
G(τ) is strictly increasing for τ > 0. Hence, the function G(τ) has not more than two zeros τ1 < 0 and τ2 > 0, if both
of them τ1 and τ2 fall into domain of the function ψ(τ).

For every fixed level of δ, we can study two possible effects of the perturbation (4). We denote the corresponding
perturbed densities by fxiτ1

and fxiτ2
. Then, the joint perturbed probability density is expressed as:

fx̄iτ j
(x̄) = fxiτ j

d∏
k=1,k,i

fxk (xk), j = 1, 2.

The corresponding value of the perturbed failure probability piδ j ( j = 1, 2) can be computed as the following integral:

piδ j = E fx̄iτ j

[
Ig(x̄)<0

]
=

∫
Ig(x̄)<0 fx̄iτ j

dx̄, j = 1, 2. (8)
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In the same way, the interaction effect can be estimated by perturbing two variables xi and x j at the same time by δ1
and δ2 respectively. Suppose that τ(δ1) = (τ1δ1 , τ2δ1 ) and τ(δ2) = (τ1δ2 , τ2δ2 ) are the solutions of equation (7), where δ1
and δ2 are the perturbations of KL divergence (3) for the variables xi and x j, respectively. The new joint probability
density function is:

fx̄i j,τ(δ1),τ(δ2) (x̄) = fxiτ(δ1) fx jτ(δ2)

d∏
k=1,k,i, j

fxk (xk). (9)

The corresponding value of the perturbed failure probability is estimated in the same way by putting in (8) the new
joint probability density fx̄i j,τ(δ1),τ(δ2) (·).

In the next section, we introduce a method to estimate efficiently the perturbed failure probability piδ using the
same Monte Carlo sample as for the estimation of the original failure probability p f . First, we study the effect of the
perturbation for different probability distributions.

2.2. Resulting distributions

Here, we provide a summary table for the considered distributions from exponential family with the resulting
perturbed distribution. For the case when the natural parameter η(θ) is a vector of functions (like normal and log-
normal distributions), we propose to analyze the perturbation effect separately for each of the components of η(θ). For
example, for the normal distribution:

T(x) =

[
x
x2

]
, η(µ, σ) =

[
µ/σ2

−1/2σ2

]
.

Then we propose to analyze two different density perturbations (4) by taking:

τ =

[
τ
0

]
or τ =

[
0
τ

]
.

Table 1 provides the results obtained for some distributions from the exponential family: normal, log-normal, expo-
nential and Poisson (as discussed all the calculations are valid for a discrete probability measure as well). As it can
be seen, the new perturbed density fxiτ is still in the same family of distributions with the perturbed distribution pa-
rameters. For the case of normal and log-normal distributions when we study the effect of perturbation of the second
component of the natural parameter, there is only one solution for τ: 1 − 2τσ2 > 0. This solution could not be found
analytically but with the help of a numerical solver. For the exponential and the Poisson distributions the solutions
for τ is expressed with the Lambert W function. This stands for the the multivalued inverse relation of the function
f (w) = w exp(w), where w is complex. We denote by W0(x) the upper real branch of the Lambert function on the
interval [−1/e, 0] and by W−1(x) the lower real branch on the same interval.

We will analyze the effect of these perturbations on an analytical example in Section 6.

Distribution Natural Parameter Sufficient Statistics New cumulant function τ1(δ) and Resulting distribution
η(θ) T(x) ψ(τ) τ2(δ)

Normal N(µ, σ2)
[

µ/σ2

−1/2σ2

] [
x
x2

]  µτ + τ2σ2

2

−
µ2τ

1−2τσ2 + 1
2 log(1 − 2τσ2)

 [
τ1,2 = ±

√
2δ
σ

Numerical solver

] [
N(µ + τσ2, σ2)
N( µ

1−2τσ2 ,
σ2

1−2τσ2 )

]

LogNormal logN(µ, σ2)
[

µ/σ2

−1/2σ2

] [
log x

(log x)2

]  µτ + τ2σ2

2

−
µ2τ

1−2τσ2 + 1
2 log(1 − 2τσ2)

 [
τ1,2 = ±

√
2δ
σ

Numerical solver

] [
logN(µ + τσ2, σ2)

logN( µ
1−2τσ2 ,

σ2

1−2τσ2 )

]

Exponential Exp(λ) −λ x log
(

λ
λ−τ

)
τ1,2(δ) =

λ(W−1,0(−e−1−δ)+1)
W−1,0(−e−1−δ)

Exp(λ − τ)

Poisson Pois(λ) log(λ) x λ(eτ − 1) τ1,2(δ) = W−1,0

(
− λ−δeλ

)
+ 1 Pois(λ exp(τ))

Table 1: Resulting distributions.
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3. Bounded support distribution

Now, let us consider xi ∼ U[a, b], the uniform distribution on the interval [a, b]. The density is expressed as:

fxi (x) =
1

b − a
Ix∈[a,b](x), (b > a).

The uniform distribution does not belong to the family of exponential distributions. It has a limited and a bounded
support [a, b]. If we apply the same perturbation as for exponential families, the normalization function becomes:

ψ(τ) = log
(

eτb − eτa

τ(b − a)

)
, τ ∈ R. (10)

Then the equation for τ(δ) is:
τbeτb − τaeτa − eτb + eτa

eτb − eτa − log
(

eτb − eτa

τ(b − a)

)
= δ.

This equation has no explicit solutions for τ. The solutions can be found using a numeric solver. Suppose that
τ∗ = τ(δ) is a solution of equation (10). Then, the perturbed density is:

fxiτ =
τ∗eτ

∗x

eτ∗b − eτ∗a
Ix∈[a,b](x).

Therefore, the new perturbed variable xiτ is no longer uniform on [a, b]. This density modification for a = −1, b = 1
and δ = 0.5 is displayed in Figure 1(a).

Notice that working with uncertain variables defined on a compact support, the main source of uncertainty is on
the boundaries of the support. For such distributions with a bounded support, we propose to apply another density
perturbation. The idea consists in perturbing the original boundaries by τ = ±δ. In the same way as with infinite
support we consider the effect of positive or negative perturbation. For example, consider xi ∼ U[a, b] to be uni-
formly distributed on the interval [a, b]. Then, in order to stay inside the support the perturbed random variable xiτ

is uniformly distributed either on U[a + δ, b] or on U[a, b − δ]. The corresponding density for perturbed uniform
distribution can be expressed as:

fτ1(x) =
1

b − a − δ
Ix∈[a+δ,b](x) or fτ2(x) =

1
b − a − δ

Ix∈[a,b−δ](x).

The same perturbation may be applied to a triangular or a trapezoidal distribution. It can be also applied to the
truncated Gaussian distribution if one is interested about the boundary influence on the failure probability p f . In this
case the density function should be corrected for the new boundaries.

(a) Exponential density modification (b) Boundaries perturbation

Figure 1: Uniform density perturbation.
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Next, we explain how to estimate efficiently a perturbed failure probability p fδ with no additional CPU cost.

4. Inverse importance sampling and sensitivity analysis

Monte Carlo sampling is one of the most popular simulation methods to estimate a failure probability. We consider
the input variables space Ω ∈ Rd. Recall that all the input variables are independent and that fx̄(x̄) =

∏d
k=1 fxk (xk) is

the joint density of the input variables. Let XN = {x̄1, . . . , x̄N}
i.i.d.∼ fx̄(·) be a sample of size N. Then, the estimation of

the failure probability p f is given by:

p̂ f =
1
N

N∑
k=1

Ig(x̄k)≤0. (11)

Now, assume that fxiτ is a new perturbed density for the input variable xi. Then the new joint density is fx̄iδ =

fx1 · · · fxi−1 fxiτ fxi+1 · · · fxd = fxiτ (xi)
∏d

k=1,k,i fxk (xk). The corresponding failure probability piδ is defined as an expecta-
tion of the indicator function:

piδ = E fx̄iδ

[
Ig(x̄)≤0

]
=

∫
Ω

Ig(x̄)≤0 fx̄iδ (x̄)dx̄

Here, we propose to apply the technique used in the Importance Sampling (IS) simulation method. We multiply the
integrand function by 1 =

fx̄(x̄)
fx̄(x̄) . Both density functions fx̄(x̄) and fx̄iδ are the products of the density functions of the

independent variables x̄ = (x1, . . . , xd) ∈ Ω ⊂ Rd with the only difference for the variable xi. Therefore, we obtain:

piδ =

∫
Ω

Ig(x̄)≤0 fx̄iδ (x̄)dx̄ =

∫
Ω

Ig(x̄)≤0
fxiτ (xi)
fxi (xi)

fx̄(x̄)dx̄ = E fx̄

[
Ig(x̄)≤0

fxiτ (xi)
fxi (xi)

]
.

By doing so, we do not need to throw a new sample according to the unknown density function fx̄iδ (x̄). We are

working in the same probability space integrating the function
[
Ig(x̄)≤0

fxiτ (xi)
fxi (xi)

]
. So that, to estimate the perturbed failure

probability piδ we keep the same sample points from the failure region: XN
f = {x̄ ∈ XN : g(x̄) ≤ 0} that provide

non-zero values of the indicator function Ig(x̄)≤0. The estimation of the failure probability for the perturbed density is
expressed as:

p̂iδ =
1
N

N∑
k=1

Ig(x̄)≤0
fxiτ (x̄ki)
fxi (x̄ki)

. (12)

If we are interested in the interaction effects, we perturb the probability densities for the variables xi and x j simulta-
neously. Then, the new joint density is:

fx̄i j,τ(δ1),τ(δ2) (x̄) = fxiτ(δ1) (xi) fx jτ(δ2) (x j)
d∏

k=1,k,i, j

fxk (xk).

Therefore, in this case the new failure probability can be estimated by:

p̂i j,δ1,δ2 =
1
N

N∑
k=1

Ig(x̄)≤0
fxiτ(δ1) (x̄ki) fx jτ(δ2) (x̄k j)

fxi (x̄ki) fx j (x̄k j)
.

This describes the interaction effects of two variables xi and x j on the failure probability p f .
The proposed reliability sensitivity analysis is based on the analysis of the value of the perturbed failure probability.

In order to clearly differentiate the magnitude of the influence to the failure probability, we propose a sensitivity
measure for the input variables. We provide the indices formulation in the next section and we study their statistical
properties in Appendix B.
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5. Sensitivity indices formulation

There are many possible choices of sensitivity indices. In this paper, we propose the sensitivity indices based on
the difference piδ − p f with the original failure probability p f . It is expressed as ratio:

S iδ =
piδ − p f

p f
(13)

Another possible formulation could be found in Lemaitre and Sergienko et. al, 2012 [16].
The support of S iδ formulated in (13) is [−1,+∞). A negative value of S iδ means that the proposed density

modification reduces the failure probability. Conversely, a positive value of this index means an increase in the failure
probability. Zero value of S iδ means that the variable xi has no impact on the failure probability.

In practice, p f is estimated by p̂ f with the Monte Carlo simulation method. In the same way, according to (12) piδ

is estimated by p̂iδ. The estimator of the indices Ŝ iδ can be expressed as:

Ŝ iδ =
p̂iδ − p̂ f

p̂ f
.

This estimation provides an asymptotic unbiased estimation of S iδ. Moreover, according to the Central Limit Theorem
(CLT) and the ∆ - method we have:

1√
VAR fx̄

[
Ŝ iδ

] (
Ŝ iδ − S iδ

) N→∞
→ N(0, 1)

The proof and an expression of the asymptotic variance can be found in Appendix B.2.
The above basic indices are computed separately for every fixed value of the density perturbation δ. It allows to

study the effect of perturbation by varying the value of δ. It can help in reliability design optimization by adjusting
the distribution parameters of the input variables x̄ = (x1, . . . , xd) in order to achieve the lowest failure probability p f .

6. Analytical function example

To investigate the previous indices, we consider a linear function of three independent normally distributed vari-
ables: x1, x2, x3 ∼ N(0, 1):

g(x1, x2, x3) = 3 − 0.1x1 − 0.5x2 − 1.0x3. (14)

As a linear combination of independent Gaussian random variables, g(x̄) is distributed as N(µ, σ), where µ = 3 and
σ2 = 0.12 + 0.52 + 1.02 = 1.26. The original failure probability can be explicitly computed:

p f = 1 − Φ(
µ

σ
) = 3.7 × 10−3.

The estimation provided by a Monte Carlo sample of size N = 106 yields p̂ f = 3.69 × 10−3. We use the same Monte
Carlo sample to estimate the perturbed failure probabilities piδ and the sensitivity indices S iδ.

Recall, that the natural parameter of the normal distribution is given by the vector:

η(µ, σ) =

[
µ/σ2

−1/2σ2

]
.

First, we consider the effect of the perturbation of the first component of natural parameter η. This perturbation refers
as a shifting of the original mean of the distribution (see Table 1). Figure 2 depicts sensitivity indices calculated for
δ ∈ [0, 1] with the positive (2(b)) and the negative (2(a)) values of perturbation parameter τ. It can be clearly observed
that the highest impact on the failure probability is due to the variable x3 and that the variable x1 has the lowest impact
for both cases of τ. Moreover, the higher the value of δ, the higher the influence of the variables.

8



(a) Negative perturbation (b) Positive perturbation

Figure 2: Basic sensitivity indices example. Mean shifting.

Now, we study the effect of the perturbation of the second component of the vector of natural parameters −1/2σ2.
In this case, we perturb both the mean and the variance of the original distribution (see Table 1). We use a numerical
solver to find the solutions for τ. In this case we consider the only possible effect of perturbation when the normal-
ization function ψ(τ) is defined and 1 − 2τσ2 > 0. Figure 3 displays the estimated sensitivity indices in this case. We
can observe the same relationship: the variable x3 has the highest influence on the failure probability. However, the
magnitude of the influence differs from the case where we only consider a mean shifting. The variable x1 still has
almost negligible impact.

Figure 3: Basic sensitivity indices example. Mean and variance shifting.

7. CO2 storage case example

In this section, we consider a CO2 storage reservoir simulation model. As discussed in the introduction, subsurface
CO2 storage is always associated with an excess reservoir pressure. One of the primary environmental risks is a
pressure-driven leakage of CO2 from the storage formation.

9



In order to assess the risk of CO2 leakage through the cap rock we consider a synthetic reservoir model. The
structure of the reservoir is reduced to its simplest expression. The model is made up of three zones (Figure (4)): a
reservoir made of 10 layers, a cap-rock made up of 1 layer, a zone-to-surface composed of 9 layers.

Figure 4: Reservoir model.

The XY size of the grid is set at 10 km total length representing 26x26x20 model grid. Each layer is 5m thick,
including the cell above the cap-rock. The zone above the cap-rock (up to the surface) is currently set to 1 layer. The
salinity of the water is 35gm/l. The temperature of the reservoir is set to 60C and the initial pressure is hydrostatic.
The injection bottom rate is set to 106 tons/year. The fracture pressure is estimated by geomechanical experts to be
P f racture = 122 bars. Exceeding this value during the injection can lead to a leakage. The simulation period is 55 years
that include an injection period of 15 years followed by 40 years of storage. In this study we analyze the possibility
of a leakage through a cap rock. Therefore, we consider pressure in the storage reservoir at the last year of injection
as an objective function.

The uncertain variables selected for this study characterize the reservoir and the fluid properties. It implies different
CO2 flowing possibilities between the reservoir layers. Table (2) represents the variables description with their range
of minimum and maximum values.

Name Description Min Max
PORO Reservoir Porosity 0.15 0.35

KSAND Reservoir Permeability 10 300
KRSAND Water relative permeability end-point 0.5 1.0

Table 2: Uncertain variables.

For sake of clarity we transform the original intervals into [−1, 1]. In this section, we assume the truncated standard
normal distribution for all the input variables N[−1,1](0, 1).

The performance function for this example can be formulated. Suppose that Preservoir(x̄) is a function of the
reservoir pressure depending on the input variables configuration x̄ ∈ Ω ⊂ Rd. Then, the performance function
defining the event of a gas leakage can be expressed as:

g(x̄) = P f racture − Preservoir(x̄).

The reservoir pressure Preservoir(x̄) is computed with a complex dynamic reservoir simulator. For this reason, we use
the Gaussian process based response surface model approximation P̂(x̄) [7, 4, 5, 6]. By approximating the function of
the reservoir pressure, we can quantify the risk and estimate the reliability of the system.

The original reference value of the failure probability computed by GP model approximation with Monte Carlo
sample of size N = 106 provides an estimation: p̂ f = 2.26 × 10−4. We keep this sample to estimate the perturbed
failure probability piδ and the sensitivity indices S iδ.

There are two possible ways to perturb the truncated Gaussian distribution. We can use the perturbation defined
for the exponential family or we can study the effect of the perturbation of the distribution support boundaries. In this
example, we compare the results for both cases. We start with the sensitivity indices calculated by the mean shifting.
Figure 5 displays the evolution of the sensitivity indices for δ ∈ [0, 1] for negative (Figure 5(a)) and positive (Figure
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5(b)) values of shifting. The variables ranking depends on the sign of τ. When τ > 0 (i.e. the positive mean shifting)
the porosity variable has the highest impact on the failure probability. It means that increasing the mean value of the
reservoir porosity PORO leads to increasing the failure probability. On the contrary, increasing the mean value of the
reservoir permeability KSAND and the water relative permeability end-point KRSAND has a negative effect on the
risk of leakage. For the negative mean shifting, the variables KSAND and KRSAND have the highest influence on
the failure probability. Reducing the reservoir permeability and the end-point water relative permeability impedes the
gas flow in the reservoir. It increases the risk of the leakage.

(a) Negative perturbation (b) Positive perturbation

Figure 5: Mean shifting.

Now, we consider the boundaries perturbation. It means that we are moving one of the the distribution boundaries
by δ in positive or negative directions keeping the values of mean and variance unchanged. Figure 6 depicts the
sensitivity indices for δ ∈ [0, 1] for negative (Figure 6(a)) and positive (Figure 6(b)) values of τ = ±δ.

(a) Negative shifting (b) Positive shifting

Figure 6: Boundaries shifting.

When τ < 0 (i.e. the resulting distribution isN[−1,1−δ](0, 1)) the porosity variable has the highest impact on the failure
probability. It means that by decreasing the maximum value of the reservoir porosity PORO the failure probability
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decreases. It is also shown by Figure 5(a). It can be also observed that for this variable the new perturbed failure
probability piδ is equal to zero when δ > 0.3. When τ > 0 the resulting distribution is N[−1+δ,1](0, 1). For this case,
increasing the reservoir permeability KSAND and the water relative permeability end-point KRSAND reduces the
failure probability piδ.

Both methods provide comprehensive and complementary results. If the main uncertainty is about the boundaries
the one can start with the boundaries perturbation. By moving the boundaries of the original distribution, the one can
determine the safe intervals for the input variables by detecting the value of δ: piδ = 0 or S iδ = −1. After that, the
effect of the mean perturbation can be studied.

8. Conclusions

In this paper, we have studied and adapted a recently introduced approach to the reliability sensitivity analysis.
Currently the majority of the methods for reliability analysis is based on the variance decomposition and Sobol’
sensitivity indices. We present a moment independent sensitivity measure. The method is based on a perturbation of
the original probability distribution of the input random variables. We can analyze the a priori assumption about the
input distributions and measure the effect of some possible deviations from this assumption. In particular, we select
the Kullback-Leibler divergence as a measure of the perturbation.

We have provided different possible density perturbations with the resulting distributions for the exponential fam-
ily of distributions. We have also studied the distributions with a bounded support and the effect of the boundaries
perturbation.

Considering a proposed perturbation for an input variable, we present an effective method to estimate the corre-
sponding perturbed failure probability. The method is based on a technique coming from the importance sampling
simulation method. It allows to estimate the new failure probability without supplementary performance function
evaluations. The new sensitivity indices formulation describes the relationship between the new failure probability piδ

and the original failure probability of the system p f . By varying the value of the perturbation δ, we can study how the
positive or negative probability density perturbation affects the failure probability. If the model has controllable input
variables, the method can help improving the system reliability and the design optimization. The presented analysis on
the statistical properties of the proposed estimators for the perturbed failure probability p̂iδ and the sensitivity indices
Ŝ iδ shows asymptotic normality of the estimators.

We investigated the method on an analytical and a CO2 storage reservoir cases. The method provides promising
results and can be applied in the reliability sensitivity analysis.

9. Acknowledgments

This work has been partially supported by the French National Research Agency (ANR) through COSINUS pro-
gram (project COSTA-BRAVA n ANR-09-COSI-015). The authors also would like to thank Nicolas Maurand and
Dan Bossie-Codreanu for the presented CO2 reservoir model. We thank Sébastien Da-Veiga, Nicolas Bousquet and
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Appendix A. Properties of the normalization function

For a given random variable x with probability density f (x). We propose the density modification xτ ∼ fτ(·) as
follows:

fτ(x) = exp(τx − ψ(τ)) f (x),
where ψ(τ) is a normalization function given by:

ψ(τ) = log
[∫ ∞

−∞

exp(τx) f (x)dx
]
.

Let us define D = {τ ∈ R : ψ(τ) < +∞}. D̊ defines the interior of D. We will also suppose, that ∃ε : D ⊃] − ε, ε[.
Here, we will study the properties of this normalization function.
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Appendix A.1. Derivatives
• ψ′(τ) = E[xτ], τ ∈ D̊

ψ′(τ) =

d
dτ

[∫ ∞
−∞

exp(τx) f (x)dx
]∫ ∞

−∞
exp(τx) f (x)dx

=

∫ ∞

−∞

x exp(τx − ψ(τ)) f (x)dx =

∫ ∞

−∞

x fτ(x)dx = E[xτ]

• ψ′′(τ) = E [xτ − E(xτ)]2 , τ ∈ D̊

ψ′′(τ) =
d
dτ

[∫ ∞

−∞

x exp(τx − ψ(τ)) f (x)dx
]

=

=

∫ ∞

−∞

[
x(x − ψ′(τ)) exp(τx − ψ(τ)) f (x)dx

]
=

=

∫ ∞

−∞

x2 fτ(x)dx − ψ′(τ)
∫ ∞

−∞

x fτ(x)dx =

∫ ∞

−∞

x2 fτ(x)dx − [E[xτ]]2 =

= E [xτ − E(xτ)]2 = VAR(xτ)

• ψ′′′(τ) = E [xτ − E(xτ)]3 , τ ∈ D̊

E [xτ − E(xτ)]3 =

∫ ∞

−∞

[
x − ψ′(τ)

]3 fτ(x)dx =

=

∫ ∞

−∞

x3 fτ(x)dx − 3ψ′(τ)
∫ ∞

−∞

x2 fτ(x)dx + 3ψ′(τ)2
∫ ∞

−∞

x fτ(x)dx − ψ′(τ)3

=

∫ ∞

−∞

x3 fτ(x)dx − 3ψ′(τ)
∫ ∞

−∞

x2 fτ(x)dx + 2ψ′(τ)3 = ψ′′′(τ)

Appendix B. Statistical properties of the indices estimator

Here, we will study statistical properties of the estimator of the perturbed failure probability p̂iδ and corresponding
estimator of the sensitivity indices S iδ =

p̂iδ−p̂ f

p̂ f
. We will start with studying the properties of p̂iδ.

Appendix B.1. Estimator of the perturbed failure probability
Suppose, fx(x) =

∏d
i=1 fxi (xi) is the input joint density and fxiτ is a perturbed probability density for the variable

xi. Recall that for a sample of size N: {x1, . . . , xN}
i.i.d.∼ fx(x), the estimation of p̂iδ is computed by:

p̂iδ =
1
N

N∑
k=1

Ig(xk<0)
fxiτ (xki )
fxi (xki )

.

First, we study the expectation and the variance of this estimator.

1. E fx
[
p̂iδ

]
= piδ

2. VAR fx
[
p̂iδ

]
= 1

N VAR fx

[
Ig(x)<0

fxiτ (xi)
fxi (xi)

]
= 1

N

[∫
Ig(x)<0

f 2
xiτ

(xi)

f 2
xi (xi)

fx(x)dx − p2
iδ

]
This variance tends to 0 when N → ∞. Furthermore, by the Central Limit Theorem (CLT):

1√
VAR fx

[
p̂iδ

] (
p̂iδ − piδ

) N→∞
→ N(0, 1)

Note that the covariance between the estimator p̂ f and p̂iδ does not vanish. Indeed, we use the same sample to
estimate p f and piδ. We can compute this covariance:

COV( p̂ f , p̂iδ) = E fx ( p̂ f p̂iδ) − E( p̂ f )E( p̂iδ) =

=
N
N2

∫
Ig(xk<0)

fxiτ (xi)
fxi (xi)

fxi (xi)dx − p f piδ =

=
1
N

piδ(1 − p f )
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The value of this covariance decreases when the sample size N increases.

Appendix B.2. Sensitivity indices estimator

Recall, that the first sensitivity index is:

S iδ =
piδ − p f

p f
=

piδ

p f
− 1, i = 1, . . . , d.

We estimate this value with the Monte Carlo method and the importance sampling by estimating consistently piδ and
p f . The estimator of this index is:

Ŝ iδ =
p̂iδ

p̂ f
− 1.

Here, we will study some proprieties of this estimator.

It is not straightforward to compute directly E fx

[
Ŝ iδ

]
= E fx

[
p̂iδ
p̂ f

]
− 1 and VAR fx

[
Ŝ iδ

]
= VAR fx

[
p̂iδ
p̂ f

]
. We propose

to use the Delta Method to approximate these values [22].
Let us recall the Taylor expansion with integral form for the remainder. Let φ be a two times differentiable function

on [t0, t], then:

φ(t) := φ(t0) + φ′(t0)(t − t0) +

∫ t

t0
(1 − u)φ′′(u)du (B.1)

We will define a function:
φ(t) =

y(t)
x(t)
− 1,

where x(t) = (1 − t)p f + t p̂ f and y(t) = (1 − t)piδ + t p̂iδ. For this function: φ(0) = S iδ and φ(1) = Ŝ iδ. Following the
Taylor expansion (B.1) we will expand φ(t) with t = 1 and t0 = 0. First, we will compute the derivatives.

1. x′(t) = p̂ f − p f

2. y′(t) = p̂iδ − piδ

Then,
φ′(t) =

y′(t)x(t) − x′(t)y(t)
x2(t)

=
p f p̂iδ − p̂ f piδ(

(1 − t)p f + t p̂ f

)2

φ′(t)
∣∣∣
t=0 =

p f p̂iδ − p̂ f piδ

p2
f

The second derivative is:

φ′′(t) =
2x(t)x′(t)

(
p̂ f piδ − p f p̂iδ

)
x4(t)

=
2x′(t)

(
p̂ f piδ − p f p̂iδ

)
x3(t)

=
2(p̂ f − p f )

(
p̂ f piδ − p f p̂iδ

)
x3(t)

.

Therefore, the reminder is:∫ 1

0

2(1 − t)(p̂ f − p f )
(
p̂ f piδ − p f p̂iδ

)
(
(1 − t)p f + t p̂ f

)3 dt =
( p̂ f − p f )(p f p̂iδ − p̂ f piδ)

p2
f p̂ f

.

So that, by the Taylor expansion (B.1) we obtain:

Ŝ iδ = S iδ +
p f p̂iδ − p̂ f piδ

p2
f

+
( p̂ f − p f )(p f p̂iδ − p̂ f piδ)

p2
f p̂ f

.

The last term R =
(p̂ f−p f )(p f p̂iδ− p̂ f piδ)

p2
f p̂ f

is the remainder. This remainder is bounded and we can neglect it for the

approximation.
Ŝ iδ ≈ S iδ +

p f p̂iδ − p̂ f piδ

p2
f

.

Now, we can approximate the mean and the variance of Ŝ iδ.
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1. E fx

[
Ŝ iδ

]
∼ S iδ

2. VAR fx

[
Ŝ iδ

]
∼ VAR fx

[
p̂iδ
p f

]
+ VAR fx

[
p̂ f piδ

p2
f

]
−

2piδ

p3
f

COV( p̂iδ, p̂ f ) = 1
p2

f
VAR fx

[
p̂iδ

]
−

p2
iδ(1−p f )

N p3
f
.

Therefore, the variance of the indices estimator tends to 0 when N → ∞. With some extra computations we can show
that: 1√

VAR fx

[
Ŝ iδ

] (
Ŝ iδ − S iδ

) N→∞
→ N(0, 1).

Knowing the variance of the estimator, the confidence region for the indices may be computed.
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43èmes Journées de Statistique, 2011.
[19] O. Barndorff-Nielsen, Information and exponential families in statistical theory, John Wiley & Sons Ltd., Chichester, 1978, Wiley Series in

Probability and Mathematical Statistics.
[20] T. M. Cover, J. A. Thomas, Elements of information theory, Wiley Series in Telecommunications, John Wiley & Sons Inc., New York, 1991.
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