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Abstract

This article analyzes the organization of the mental lexicon based on neu-

rophysiological data. The neuroscience literature has devoted many studies

to the semantic processing of words. However, the research remains specific

to certain categories, studied separately, and does not address the lexicon as

a system. In order to provide further insight into the neuronal organization

of the lexicon, we conducted an EEG-based semantic decision experiment

using words from eight categories (four living and four nonliving categories)

as the material. A data-analysis method (correspondence analysis or CA)

commonly used in computational linguistics was applied to the electrophys-

iological signals. The results revealed a two-factor structure: an ontological

organization separating the living from the nonliving, and an organization

with a human referential structured by proximity to the person. A com-

parison of the ERP-CA and the linguistic-CA data revealed organizational

analogies. Lastly, a tomography software (Loretar) was used to estimate

the cerebral sources associated with the ERP signals.

Keywords: mental lexicon, ERP-derived semantic distances, NLP-derived

semantic distances.
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Since ancient times, the lexicon and its organization have been studied from various

angles: philosophical, linguistic, psychological, computational, and neurological. Without

looking in depth at these different points of view, which are far beyond the scope of the

present article, we will first briefly recall that a key element interrelating these different

points of view is the notion of system.

In a philosophical perspective, the classic approach (also called Aristotelian) posited

an ontological system of categories of the world that was founded on logic. This system

derives its hierarchical organization from the transitive inheritance of properties, a logical

process that applies to all categories. The psychological approach breaks away from the

purely theoretical point of view. It no longer attempts to account for all categories, taken

to be objects of the world, but looks instead at how they are acquired and processed. This

change of paradigm from objects of the world, to objects of human cognition, has ushered

in new approaches. The experimental approach has replaced the a priori, solely theoretical

approach, and the results of experiments have cast doubt –from the standpoint of human

cognition– on the purely logical and hierarchical Aristotelian organization. Accordingly,

Rosch and Mervis (1975), who take a cognitive approach, suggest that categories are or-

ganized around prototypes by a membership gradient. The proposals of Rosch and her

colleagues, along with those of many studies dealing with this issue (Smith, Shoben, and

Rips (1974), Collins and Quillian (1969), etc.), have been tested using behavioral protocols

essentially founded on the analysis of subjects’ reaction times on tasks involving verbal or

graphic stimuli. In the present study, we worked on neurophysiological data. Although

the debate opposing a hierarchical, logical organization to a similarity- and difference-based

organization has divided many researchers over the years, it is still a current issue both from

the philosophical point of view and in terms of its cognitive relevance (Reboul (2007) Chap-

ter 2, Caplan (1992)). In this debate, the systemic aspect remains a key element shared by

the various different approaches.

Finally, we will not discuss the large body of research on the question of lexical se-
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mantics from the language standpoint. Most of these studies have attempted to describe the

multifaceted relationship between words and concepts, and have found context effects in the

construction or selection (depending on the school of thought) of word meanings. The issue

of lexical polysemy will not be addressed here because the experiment reported in this paper

uses isolated words and does not look at the differential effects of context. Note, however,

that, as we have just recalled for the philosophical and psychological approaches, the notion

of system remains important for those linguists who, following Saussure (1972), think that

the meaning of any word in a language is given by its difference from the meanings of all

other words and not solely by its own characteristic(s).

Recently, researchers in two domains have begun to use new technologies to study

concepts and their links with words: computers and brain imaging. The computer has

enabled the development of computational linguistics through the automatic analysis of

corpora (see, for example, Mitkov (2005)); words and their meanings are analyzed via a large

sampling of their uses in the language. Neuroimaging techniques have enabled the study of

the neuronal processing of the semantics of words and concepts, by way of experiments whose

results are no longer based on behavioral data alone but now include neurophysiological

signal analysis. While automatic language processing seeks to track down the organization

of the lexical system as a whole by studying links between words (co-occurrence, synonymy,

homonymy, etc.), the debate about lexical semantics in the neurosciences focuses on locating

the brain regions where specific categories are processed. Various hypotheses are proposed to

explain category processing location, several of them are based on semantic-category deficits

among brain-damaged patients (see Forde and Humphreys (2002)). The question most often

raised in this domain concerns whether neuronal processing is modular and encapsulated,

or on the contrary, distributed across neural networks specific to the concept referred to

by a given word. In a historical literature overview, Jeannerod (2008) reminds us that

according to a mainstream traditional view1, the brain areas involved in word processing,

and in particular, word semantics are located in the left hemisphere (along the sylvian

fissure), whereas more recent studies using brain imaging have shown that word processing
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is distributed across regions extending beyond the "classical" language areas. Color words,

for instance, additionally engage visual areas, and action words activate motor areas. Hauk,

Johnsrude, and Pulvermüller (2004) showed that brain activation patterns are closely tied

to word content, in such a way that the part of the motor and premotor areas associated

with hand movement, for instance, is activated for processing the verb to pick, whereas for

the verb to kick, the authors noted activation of the parts of the areas associated with foot

movement.

The present article presents a method of automatic language processing aimed at

studying concepts and their processing, not in a category-by-category fashion, but as a

system taken as a whole. We use correspondence analysis (CA), developed by Benzécri

(1980), which is a multivariate statistical technique typically applied to lexicology, where it

produces maps of semantic proximities among words based on their use in text corpora. CA

differs from other data-analysis techniques in that it establishes a correspondence between

two types of variables, e.g., words and sociodemographic variables (sex, age, etc.) as in

survey analyses (Lebart, Piron, and Steiner (2003)), or words and semantic subunits (Ploux

and Victorri (1998)), etc. Here we will use it to uncover a correspondence between semantic

categories of words and event-related potentials (ERPs) associated with the processing of

these words.

Below, we will set forth a few arguments justifying the choice of this method to meet

the objectives set for this study. Note to begin that Mitchell et al. (2008) used functional

magnetic resonance imaging (fMRI) to locate individual noun processing and showed that

it could be deduced from a limited set of 25 verbs most typically found in the context

in which the noun was used. Their simulation system gives a good approximation of the

pattern of brain activity involved in processing the word celery, for example, when the verbs

eat, taste, and so forth are used as factors. The authors compared the real brain activity

obtained for processing the word, to that simulated by a combination of activities for the

processing of associated verbs. This model connects data obtained via automatic language

processing (the method employed is LSA (Landauer, Foltz, and Laham (1998)), a statistics-
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based corpus-analysis method), which reflects language production, to neurophysiological

data, which reflect semantic processing in the brain. The present study was also aimed at

interrelating these two domains (computational linguistics and language production on the

one hand, neurophysiology and the study of the neural substrates of language processing

on the other), which until very recently have been blind to each other. As stated above,

however, our approach stands apart from others by the fact that it searches for a global

organization describing the semantic processing of the whole lexical system.

Why use correspondence analysis? CA (see (Benzécri, 1980)) assesses the extent of

matching between two variables. It determines the first n factors of a system of orthogonal

axes that capture the greatest amount of variance in the matrix. The first axis (or fac-

tor) captures the largest variations, the second axis captures the second largest, and so on.

The basic underlying idea is to eliminate redundancy in the original data while trying to

capture the variation with a smaller number of factors that combine the original variables.

This method was chosen for several reasons. Firstly, it is a data-analysis technique that

automatically detects the greatest differences between the conditions, which frees one from

dependency on human expertise likely to be subjected to the forgetting or ignoring of im-

portant phenomena. Secondly, as its name indicates, this method can be used to establish a

correspondence between two types of variables, e.g. ERPs and the experimental conditions,

by systematically computing the greatest variations between the electrophysiological signals

associated with those conditions. This is an advantage over other data-analysis methods

–such as principal component analysis (see Dien and Frishkoff (2005) for an introduction to

its use on ERPs)– which also reveal the internal structure of the data in a way that best

explains the variance, but they do not establish this correspondence. Thirdly, unlike in most

studies which are either spatial or temporal, CA as applied here reveals networks organized

by electrode location, and by location in time. Although Pulvermüller and his colleagues

(Pulvermüller (2005)) demonstrated networks that are both time-based and location-based,

their approach (which applies to electrophysiological EEG or MEG signals, or is based on



TOWARD A NEUROLEXICOLOGY 6

fMRI) differs from ours because it does not directly and automatically supply a summary of

the similarities and differences between the various conditions. This point brings up a fourth

argument in favor of using CA: conditions are processed as a whole, which as we shall see be-

low, helps in understanding the organization underlying the whole set of conditions rather

than simply studying differences taken two at a time, as in most current work. Finally,

CA has already been used in computational linguistics to analyze the meanings of word

in terms of how they are employed (e.g. (Ploux & Victorri, 1998), Ji, Ploux, and Wehrli

(2003)). Applying one and the same method to word-usage data and neurophysiological

word-processing data should enable the researcher to compare the organizations revealed by

these two processes.

Method: General Description

Without going into mathematical details, which are more precisely specified in the

Recording and Data Processing section, the CA will reveal electrodes and time windows

within which the amplitude difference between the eight tested categories is maximal. Fig-

ure 1 schematically illustrates this approach to the ERPs of three hypothetical conceptual

categories, measured from 0 ms to 500 ms after stimulus onset. The grey frames in the figure

indicate time slots within which a specific pattern of relation between the three conditions

becomes repeatedly evident. The amplitude extrema for the category are indicated by red

and blue lines; intermediate amplitudes, by green lines. The black arrows point to another

such pattern ([blue, red, green]). The CA, as applied here, identified these patterns over the

time window (0 ms − 500 ms) at all electrodes, and classified these patterns from the most

to the least significant in terms of magnitude and frequency. The theoretical assumption un-

derlying this analysis is that systematic ERP variation on the different word categories (e.g.,

[red, green, blue]) is caused by the same factors. For instance, if red lines are observed while

participants process words referring to fish, green during the processing of words referring

to birds, and blue during the processing of words referring to apes, the factor that might

underlie the depicted ERP variations in the identified frames could code for something that
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relates to modes of animal locomotion. With this method, we can thus detect –and follow

over time and in terms of head location (electrode position)– the evolution of a specific ERP

pattern that indexes the processing of a variable.

In parallel, the CA will also uncover semantic relations between the words used in the

ERP experiment, as defined by synonymy (and parasynonymy) and co-occurrence in corpora.

This analysis was applied to databases of synonyms Ploux and Ji (2003) and databases of

associated words Ploux and Ji (2003). Associated words are the most specific co-occurrences

of a word in a sentence (e.g., wings is an associated word of the word bird). These two types

of data have complementary linguistic characteristics since synonyms (and parasynonyms)

specify categories while associated words specify syntagmatic links. For instance, one can

substitute the synonym wildcat for feline in the sentence The feline caught its prey, without

significantly modifying the meaning, whereas the words feline and prey –which are closely

associated semantically– cannot be interchanged without modifying the sentence’s meaning.

As with the ERP data, CA applied to word corpora was used to determine the first n factors

that capture the greatest amount of variance in the data. Comparing CA applied to ERPs

with CA applied to word corpora will thus allow us to link the neural processes underlying

semantic classification, with the semantic relations between words as defined by their use.

Insert Figure 1 about here

Experiment

Experimental Task

The experiment conducted here involved a semantic decision task. The words pre-

sented to subjects were nouns belonging to eight conceptual categories: four containing

living entities and four containing nonliving entities. The living-nonliving distinction is

known to be significant from both the philosophical and experimental angles. In addition,

all eight categories (clothing, parts of a house, tools, vehicles, fruits/vegetables, animals, body

parts, and people) have often been studied in the literature.
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Materials and Methods

Participants. Sixteen native-French-speaking students (14 women and 2 men) between

the ages of 20 and 29 (mean age 23) attending Lyon 2 University participated in the ex-

periment. All were right-handed and were tested on the Edinburgh Handedness Inventory

(mean 0.8). None had any known neurological disorders or were taking any medication.

They all reported having normal or corrected-to-normal vision. All subjects signed an in-

formed consent form before the experiment.

Stimuli. The stimuli were nouns, divided into two categories: living and nonliving

entities. Each category had four subcategories of 30 nouns each, making for a total of 240

nouns. The stimuli in the nonliving category were chosen from the clothing (dress, etc.),

parts of a house (kitchen, staircase, etc.), tools (hammer, etc.), and vehicles (plane, etc.)

categories; those in the living category were chosen from the fruits/vegetables (lemon, etc.),

animals (cow, etc.), body parts (neck, etc.), and people (brother, novelist, etc.) categories.

The words were selected from the Lexique lexical database (New, Pallier, Brysbaert, and

Ferrand (2004)). The following features were controlled for the set of words as a whole, and

for each of the eight categories: lexical frequency (mean(log10) = 0.9, std = 0.9), number

of letters (mean = 6.4, std = 1.6), number of syllables (mean = 1.8, std = 0.6), number

of phonemes (mean = 4.7, std = 1.3 ), grammatical gender (equal number of masculine as

feminine nouns), and frequency of orthographic (mean = 2.9, std = 3.6) and phonological

(mean = 8.0, std = 8.3) neighbors.

Experimental Procedure. The subjects had to state whether the words presented re-

ferred to biological or non-biological entities. This terminology seemed preferable to living vs

nonliving things because it is less semantically ambiguous (Is a piece of fruit a living thing or

not?). The subjects were seated 60 cm from the screen and had to right-click or left-click on

the mouse hold in their right hand if they thought the displayed word fell into the biological

category, and click on the opposite side (right or left) if they thought the word fell into the

non-biological category. The clicking sides for the biological and non-biological categories
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were assigned randomly to each subject. The experiment included an initial training phase

during which words from each category were presented. None of these words belonged to the

material used during the signal-recording phase. In the experiment proper, the stimuli were

presented in three blocks lasting an average of eight minutes each. During a given block,

all 240 words were presented once, in random order. The display timing was a follows: a

mid-screen fixation cross was displayed for 250 ms, followed by a word for 800 ms, then a

fixation cross until the subject responded. Subjects were explicitly instructed to respond

only after the second fixation cross appeared. A black screen lasting 500 ms followed the

offset of the second fixation cross. Subjects were asked not to blink their eyes until the end

of a trial.

Recording and Data Processing. E-prime software was used to program the experi-

mental task. The EEG signals were recorded by a Brainvision Recorder connected to 30

electrodes placed on a Fast’n Easycap helmet in which the impedances were kept under

10 kΩ. The electrodes were positioned according to the 10/20 system. The sampling fre-

quency was 500 Hz. To detect ocular artifacts, electro-oculograms (EOGs) were recorded

using two electrodes, one located on the outer corner the left eye and the other approximately

1 cm under the left eye.

EEG data were analyzed with Brainvision Analyser software. Phase shift-free Butter-

worth filters were applied (high-pass: 0.1 Hz; low-pass: 40 Hz; slope: 48 dB/octave). EEG

channels were re-referenced offline to the average reference2, and then segmented to extract

the portions of the signal containing a marker for each of the eight categories. Segmenta-

tion windows started 250 ms before and ended 1600 ms after the appearance of the word.

Segments containing an amplitude greater than ±100 mV were rejected. The mean of the

segments was then calculated for each of the eight conditions and for each subject, along

with the grand mean per condition for all subjects. A baseline correction was applied using

a [-250 ms, 0 ms] window before stimulus onset.

CA and subsequent analyses were performed using a dedicated software platform

written in Matlabr (source code is available upon request to the corresponding author).
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Purely statistical tests, on the other hand, were done in Statisticar. Since lexical access

has been estimated to occur within the first 500 ms after word onset (Friederici (2002)),

our analysis focused a time window from 150 ms to 500 ms after word onset. The CA was

performed on the matrix denoted M150−500, which has eight lines, one per condition (i.e.,

category), and 900 columns. The columns correspond to a sampling done every 11.5 ms (see

below) of the amplitude of the grand means of the ERP signals between 150 and 500 ms

after stimulus onset, on the series of 30 electrodes. Wavelet decimation was used to reduce

the size of the matrix3 while avoiding sampling noise. The sampling period is calculated

automatically by applying this procedure; it was equal to 11.5 ms in the present study.

M150−500 =



















ATools
150−150+δ,Fp

1

. . . ATools
500−500+δ,Fp

1

. . . ATools
150−150+δ,O2

. . . ATools
500−500+δ,O2

AVehicles
150−150+δ,Fp

1

. . . AVehicles
500−500+δ,Fp

1

. . . AVehicles
150−150+δ,O2

. . . AVehicles
500−500+δ,O2

...
. . .

...

A
People
150−150+δ,Fp

1

. . . A
People
500−500+δ,Fp

1

. . . A
People
150−150+δ,O2

. . . A
People
500−500+δ,O2



















where

Acond
time,elec = V cond

time,elec − min
t,e,c

V c
t,e

and

V cond
t,e = ERPcond

t,e −
1

8

8
∑

c=1

ERPc
t,e

and δ is the sampling period; Fp1 and O2 are electrodes.

Note that the CA involved normalization of the ERP amplitudes, similar to that

proposed by McCarthy and Wood (1985), without which an analysis of variance (ANOVA)

of the scalp distribution of ERPs by condition could be erroneous. A matrix of row profiles

was calculated by dividing the rows (conditions) in M150−500 by their respective row sums.

In the same manner, a matrix of column profiles was calculated by dividing the columns

(electrode, time) in M150−500 by their respective column sums. The profile matrices are

thus based on normalized data. The CA calculated a low-dimensional approximation of the
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original data matrix M150−500 representing both the row and column profiles.

From the CA map to neural spatio-temporal networks. The principal plane output by

the CA leads to a map on which categories are plotted as a function of their coordinates on

the first two axes, i.e. the two variables that capture the greatest amount of variance in the

data. The first step was to test the significance of the maps (ERP map and linguistic data

maps) and their topology. Recall that the CA identified spatiotemporal patterns of ERPs (or

patterns of interest, PI) (see Figure 1) that made a significant contribution to calculating the

main axes and coordinates, and thus the location, of each semantic category of words on the

principal plane. The next step was to compute the organization revealed by the axes, from

the standpoint of the PIs involved and the PIs correlated with the different categories. The

last step was to provide support for the hypothesis that the underlying semantic processing

is distributed across specific networks. This was done using Loretar source-reconstruction

software (Pascual-Marqui, Michel, and Lehmann (1994)), which made it possible to compute

the differences between the activation levels of the cortex regions for the time windows

associated with the previously detected PIs.

Testing the Significance of the ERP Map and its Topology. The significance of the

map’s typology was tested for all subjects by projecting the ERP CA results (category means,

by subject) on the principal plane. The method consisted of determining the coordinates,

on this plane, of the categories for each subject. The coordinates (output by the CA) were

calculated by multiplying matrix MT
subjecti,150−500

∗Coordelec,time (where Msubjecti,150−500 is

the matrix of the mean signal amplitudes for subject i, generated in an analogous way to

matrix M150−500 of the grand means) and MT
subjecti,150−500

, its transpose. Coordelect,time

is the matrix of the coordinates of the column vectors of matrix M150−500 on the principal

plane. An ANOVA was conducted to test the category from the values of the category’s

coordinates associated with the first (variable denoted x) and second (variable denoted y)

axes, for all subjects pooled.
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Comparing the ERP Map and Maps Computed from Linguistic Data. The map ob-

tained from the electrophysiological signals was compared to maps obtained from word usage

in the language. Two types of linguistic data were used as input: a database of synonyms

or parasynonyms compiled by merging seven published dictionaries of synonyms (Ploux &

Victorri, 1998), and a database of associated words (Ji et al., 2003) (the most frequent

and specific co-occurrences of a word in a sentence). The associated words were compiled

from co-occurrences taken from a 10-year journalism corpus containing 77 million words.

The exact procedure used to compile these databases is described in the two publications

cited above, which can be browsed freely on our website http://dico.isc.cnrs.fr. The two

corpus-based maps were constructed by applying the geometric model called Semantic At-

lases (Ploux & Ji, 2003) –generated from the above databases by a CA– to the set of words

presented to the subjects in the experiment, for each data type (synonyms and associated

words). The semantic space retained for each map was the one containing the greatest num-

ber of words. The coordinates on the two linguistic data maps of each of the eight categories

under study were calculated by taking the mean of the coordinates of the words belonging

to that category. The method is described in detail in (Ji et al., 2003). This method was

chosen rather than a vector model (like LSA (Landauer et al., 1998) used by (Mitchell et al.,

2008), as mentioned above) on the basis of an earlier study (Ji, Lemaire, Choo, & Ploux,

2008) showing that the geometric model was better than the vector model at simulating

association-task execution by subjects.

Results

The Maps

Figure 2a below gives the map of the categories on the principal plane of the ERP

CA. Figure 2b pertains to synonyms and parasynonyms and Figure 2c, to co-occurrences of

words in word corpora.

Insert Figure 2 about here
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Visual inspection of the maps immediately reveals a clear separation between living

and nonliving categories (i.e. the second axis) in the ERP data as well as in the synonym

data. However, for the ERPs, the greatest variations in the data are those separating

the living entities from each other, especially people from fruits/vegetables. In fact, the

first axis for ERP data exhibits a gradient ranging from people to fruits/vegetables for living

entities, and from clothing to tools for nonliving entities, suggesting that this gradient brings

out an opposition between person-related categories and attributes, and categories that are

farther removed from the human referential. Accordingly, the categories closest to the people

category are clothing (for nonliving entities) and body parts (for living entities) and the

farthest categories are tools (for nonliving entities) and fruits/vegetables (for living entities).

We can also see a greater dispersion for living categories as opposed to nonliving ones, in

both the ERP and the synonym data. However, discrepancies in the category distribution

can also be seen between the ERP and synonym maps. This could be due to the following:

given that the words in the language have a primary sense but also many figurative senses,

and that the map was built from all synonyms corresponding to a diversity of senses, it is

reasonable to assume that subjects in the experiment favored the primary sense (mug = cup

and not mug = face) because the words were presented in isolation here. The results of the

tests conducted on this organization are presented below. Three points will be examined:

the ERP map’s topology, the relative dispersion of the living and nonliving categories, and

a comparison with maps resulting from applying a CA to lexicographic data obtained by

automatic corpora processing.

Significance of the ERP Map’s Topology. The result of this test was significant

(ANOVA, Wilks’ Lambda = .351, F (14, 238) = 11.682, p < .001, Figure 3). A post-

hoc within-category analysis (Duncan’s test) for each of the variables x and y showed that

the second axis (Table 2) indeed distinguishes the living from the nonliving entities, and

that the first axis (Table 1) significantly separates clothing from tools, and people from

fruits/vegetables. Also along this axis, we can also see that the clothing category differs

significantly from fruits/vegetables, and from tools, and that the body parts category differs
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from tools and from fruits/vegetables.

Insert Figure 3 about here

Insert Table 1 about here

Insert Table 2 about here

The second point tested was the dispersion on the map of the categories associated

with the living vs the nonliving entities. This was done by comparing, for all subjects pooled,

the area on the principal plane of the smallest rectangle containing the living categories and

the area of the smallest rectangle containing the nonliving categories. The results indicated

a significant difference (t-test for matched values, t = 2.668, df = 15, p < .02). Given

that CA is a linear model, the greater dispersion of the living categories reflects a greater

dispersion of the amplitudes of the ERP signals more specifically involved in living-category

processing, than of those involved in nonliving-category processing.

Comparing the ERP Map and Maps Computed from Linguistic Data. Tests on the syn-

onym data (Figure 2b) showed (1) a separation into two living-nonliving clusters (ANOVA,

F (2, 124) = 9.9, p < .001), as on the ERP map, and (2) a greater dispersion of living cate-

gories than of nonliving ones (t-test on the distances between the living-cluster nouns and

the distances between the nonliving-cluster nouns, t = 9.9, df = 4077, p < .001). The map

generated from the co-occurrence data did not preserve the separation between the living

and nonliving categories, but did indicate that the greatest distances between pairs of cat-

egories were between people and fruits/vegetables, and between people and tools (ANOVA,

F (6, 8825) = 77.222, p < .001; probabilities of Dunnett post-hoc tests (M < control), Error:

MSE − inter = 2.258, df = 8825.0, p < .01).

For a better understanding of the relation between that categories captured by the CA,

we compared the map generated from the ERP data to the maps generated from the synonym

data and the word co-occurrence data. Figure 2d provides linear regression and correlation

coefficients for the principal axes of the ERP and word-corpus maps. Two correlations stand



TOWARD A NEUROLEXICOLOGY 15

out. The first is the correlation between ERP Axis 2 and synonym Axis 2, which distinguishes

living and nonliving entities; the second is between ERP Axis 1 and co-occurrence Axis 1.

The ERP-synonym correlation reveals that the separation into living and nonliving entities

is not categorical but continuous. With the exception of the fruits/vegetables category,

which appears as an outlier in this figure (and was thus excluded from the analysis), word

categories span from animals to parts of houses, along a gradient that could depict the

degree of animateness of the entities described by the words (y = .087+2.021 ∗x, R = .813,

p < 0.05). Figure 2d (bottom), which gives the correlation between the ERPs and the

co-occurrence data, reveals another aspect of the data (y = .471 + 2.037 ∗ x, R = .724,

p < 0.05). The co-occurrence statistics provide an estimation of how likely it is that a given

word occur in association with another word in a sentence. The correlation depicted in

Figure 2d, which spans from people to fruits/vegetables, thus suggests that ERP amplitudes

capture aspects of how words relate to each other in language usage.

The ERP Patterns of Interest

Analysis by axis. The CA ordered the PIs by their relative contributions to defining

each axis. For each axis, the results were then sorted and all PIs whose cos2 to the axis

was greater than 0.7 were retained (this value makes sure that the contribution of a PI is

greater for the axis under study than for the other axis). Below is the list of the PIs found

and tested.

Axis 1 The four main PIs –the ones that contributed the most to the gradient in question

(first axis) seen in Figure 2a– were as follows: Fp1 (383-477 ms), Fpz (383-477 ms), Fp2

(383-477 ms), and F7 (383-418 ms). The values in parentheses give the corresponding time

window, which was concatenated whenever the regions were contiguous. For these four

electrodes, which contributed strongly to the calculation of this axis, the figure 4 plots the

amplitude of the signal for each condition, minus the mean amplitude of all conditions. We

can see that in the 383-476 ms window calculated by the CA, there are differences between

the conditions, that are similar to the differences between their coordinates along the first
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axis. However, the CA detected the entire spatiotemporal network used in calculating this

axis. The same figure (lower) gives the linear combination of the amplitudes of all electrodes,

with their coefficients output by the CA for the first axis, and of each electrode-time unit.

Compared to the individual graphs of the four main PIs, this graph offers a clearer picture

of the analogy between the values of the linear combinations of the ERPs, and the values

of the first-axis coordinates calculated by the CA. In order to test the validity of the four

PIs’ contributions for all subjects, the coordinates on the principal plane generated solely

from the contribution of these PIs were computed for each subject and each category. These

coordinates were obtained by taking the vector containing the amplitudes of the PIs (and

zero for the other electrode-time units), and multiplying it by the Coordelec,time matrix

containing the coordinates of the column vectors of matrix M150−500. An ANOVA yielded

a significant result (F (14, 238) = 11.192, p < .001). The upper part of the Table 3 gives the

results of a post-hoc test (Duncan) on the eight categories compared with the value of the

linear combination of the Axis-1 PIs. The results showed that those categories located at

the extremities of the axis were differentiated by this test. That is, the people and clothing

categories differed from the fruits/vegetables and tools categories on all four PIs. There

were also some significant differences between certain more centrally-located categories like

animals, which differed from the more off-centered categories people, and fruits/vegetables.

As a whole, the results of this test are in line with the topology of the ERP axis-1 gradient,

insofar as the categories that are the most clearly differentiated (based on the p − level

obtained on the test) were also the farthest away from each other on this gradient.

Insert Tab 3 about here

Axis 2 The PIs that contributed the most to this axis, which reflects the living/nonliving

opposition, are clustered around two areas: left occipital-parietal O1 (267-325 ms), P7

(278-325 ms), and Oz (267-313 ms), and frontal Fp2 (290-325 ms), Fpz (290-325 ms), Fp1

(290-325 ms), and F7 (290-325 ms). The distinction revealed by this second axis thus seems

to have occurred earlier (about 270 to 320 ms after stimulus presentation) than it did in the
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organization detected by the first axis (about 380 to 470 ms after stimulus presentation),

but it was not as great insofar as it was ranked as the second factor by the CA. Axis 2

indicated a categorical type of differentiation between the living and the nonliving entities.

In order to test the significance of this distinction, the result for Axis 2 of the linear com-

bination given by the CA on the grand means of these PIs was calculated for each subject

and each category. An ANOVA showed that the living/nonliving distinction was significant

(F (1, 126) = 51.355, p < .0001). Figure 5 shows the amplitude curve for the detected PIs,

along with the linear combination of the amplitudes for the entire set of electrode signals,

with the second-axis coefficients computed by the CA.

Analysis by Semantic Category of Words. Although the CA showed that the set of

electrode-time units discriminated every category from every other category except for the

pairs tools-parts of a house, vehicles-parts of a house, and vehicles-clothing, as demonstrated

in the first analysis, it seemed interesting to try to determine which PIs participated the

most in distinguishing each category. This was done by calculating the contributions to χ2,

in the manner described previously (see Analysis by axis paragraph). For each category, the

vector containing the contribution to χ2 of each electrode-time unit was computed, and the

values were ranked in decreasing order in view of retaining only the largest ones. The cutoff

point was set at 0.5. Note that for vehicles and parts of a house, the set of PIs was empty

because all the electrode-time units had χ2 contributions below 0.5. For each of the other

six categories, Table 4 gives the set of PIs, along with the result of comparisons with the

other categories. The same procedure was applied for each category: a repeated-measures

ANOVA on the combinations of PIs associated with the coefficients on Axis 1 (first variable)

and Axis 2 (second variable) and a post-hoc test (Dunnet) between the category and each

of the other categories.

Insert Tab 4 about here

Lastly, for the animals and people categories, Figures 6 and 7 present the linear com-

binations of the PIs most strongly involved in differentiating these categories (see Table 4).
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The linear combination given for the animals category was obtained from the CA coefficients

along the second axis, which best discriminates this category; the linear combination for the

people category was obtained from the CA coefficients of the first axis, which discriminates

it the best.

Insert Figures 6, 7 about here

In sum, for six of the eight categories tested, the method detected a network of PIs that

participated in their differentiation. We can conclude from the results of these tests that the

map adequately depicts the combination of PI networks that determine both the organizing

factors, and also the finer differentiations between the categories themselves.

Analysis by Detection of Sources

Despite the distribution of ERP-based PIs uncovered by these results, it was not

possible on this step of the study to answer the question about the distribution of networks

of regions that might be differentially involved in category processing. Indeed, Urbach and

Kutas (2002) showed that differences in ERP signals do not necessarily involve differences

between the brain areas activated. In an attempt to gain further insight into this issue,

we used the Loreta source-reconstruction software. In this system, ERP signals are entered

as the input, and a linear method (Pascual-Marqui et al., 1994) is applied to compute

the corresponding activity levels in the cortex for each value of the time variable. It is

important to note that Loreta puts out calculated solutions, not measured ones. Like all

source-reconstruction models, it must solve problems that have multiple solutions and the

results must therefore be taken with caution. However, many studies –Pascual-Marqui,

Esslen, Kochi, and Lehmann (2002) cited about forty such studies published between 1998

and 2002– have made it possible to validate the areas calculated by Loreta by showing that

they are similar to those measured on the same tasks by brain imaging (fRMI, PET), even

when there is a limited number of electrodes, as in our protocol. Accordingly, next to the

results obtained by Loreta in our study, we show the results we found (when available) in

the literature on the localization of processing for the categories examined here. Thus, even
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though they are calculated, our results provide a useful indication for finding out whether

this method –despite its lack of resolution– can support the hypothesized distribution of

regions, and thus, the link between the semantic processing of a word and its conceptual

content.

Reconstruction method The matrix of cortical activity was reconstructed for the living

and nonliving conditions, for each of the six categories selected above on the basis of their

signal contributions in the CA, and for the corresponding time windows (given above). Then

the voxels for which the difference between the condition tested and the overall condition

mean was the greatest (more than 0.9 times the maximum difference) were selected. Once

the selected voxels were classified according to the Brodmann area that Loreta associated

with each voxel, the significance of the activity differences between the conditions in these

areas was tested. The width of the time windows for calculating the differences was set at

30 ms.

Sources associated with the principal factors of the organization output by the

CA The anatomical correlate of the gradient associated with ERP Axis 1 was not directly

testable using a method based on the difference-of-means between groups of conditions since

it exhibited a gradual variation rather than a categorical difference. Thus, no statistical

results are available for this axis4.

Comparison of the second axis associated with the living/nonliving differ-

ence The results indicated a significant difference (sign test for matched samples) between

the means of the activity amplitudes for the living and nonliving categories in left middle

temporal gyrus (BA21) (C. -55, -10, -20; S. 77)5 (Z = 2.25, p < .05), and in the left inferior

temporal gyrus (BA20) (C. -45, -20, -30; S. 91) (Z = 2.25, p < .05) between 280 and 310 ms

after stimulus onset. In these connected areas, the calculated activity was greater for living

entities than for nonliving ones. This result can be linked to the data obtained for patients

with temporal lobe lesions and deficits in living-category processing and whose left inferior
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temporal lobe (Brodmann’s area 20) is damaged (Moss, Tyler, Durrant-Peatfield, and Bunn

(1998)). More generally and as stated by Caramazza, Hersch, and Torgerson (1976), given

that "most of the patients with selective impairment of the living category had sustained

damage to (at least) the left temporal lobe, it might be further surmised that the latter

neural structure is part of a neural network specifically dedicated to representing conceptual

knowledge about living objects."

Sources associated with the tested categories For the remaining results, a matched-

sample ANOVA was applied and whenever the result was significant (p < .05), a post-hoc

Dunnett test was applied.

Animals. The results indicated greater activity for the animals condition than for

the other conditions (except fruits/vegetables) in the occipital lobe (BA19) (C. +/-25, 50,

-5; S. 22 on the right; S. 16 on the left) between 240-270 ms on the right and 250-280 ms

on the left. This zone is located in the lower part of the occipital lobe and in the fusiform

gyrus, which is consistent with studies on the localization of areas involved in the semantic

processing of concepts in the animals category (Chao, Martin, and Haxby (1999) and Tyler et

al. (2003)). The results also showed greater activation of the animals category in perirhinal

temporal areas (BA30) between 260 and 290 ms after stimulus onset (C. +/-10, -45, -5; S. 27

on the left; S. 8 on the right), in the limbic lobe (parahippocampal gyrus) (BA35) between

250 and 290 ms (C. 25, -25, -20; S. 12 on the right), and in BA36 between 250 and 290 ms

(C. 30, -30, -20; S. 24 on the right). The post-hoc test on these areas differentiated this

category from all others except tools and fruits/vegetables. This result is consistent with the

Chao et al. (1999) and Tyler et al. (2003) studies.

People. The people condition differed from all others on left occipital areas (middle

and inferior occipital gyri) (BA18) (C. -30,-90,-5; S. 38), (middle occipital) (BA19) (C. -40,

-80, 5; S. 82), and left occipitotemporal area (BA37) (C. -50, -60, -5; S. 35) at 390-420 ms,

and from all conditions except animals and body parts in parietal lobe (BA39) (C. -50,-70,
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20; S. 48). The activity mean for the people condition in these areas was greater than for

the other categories.

Tools. The tools condition differed from the people, body parts, and vehicles condi-

tions in left frontal lobe (inferior frontal gyrus) (BA47) (C. -30,-20, -15; S. 54) at 350-380 ms.

It also differed from vehicles, fruits/vegetables, and body parts in dorsolateral prefrontal lobe

(medial frontal gyrus) (BA9) (C. -10, 50, 39; S. 48) at 400-430 ms, from fruits/vegetables,

body parts, and people in left anterior temporal lobe (BA38) (C. -40, 10, -30; S. 71) at

360-390 ms, and from clothing, fruits/vegetables, body parts, and people in left superior tem-

poral area (BA34) (C. -20,0,-20; S. 16) at 340-370 ms. In each of these areas, the activity

level calculated by Loreta for the tools category was below that of the other categories.

Clothing. Clothing differed from body parts and people in left insular cortex (C.

-40,-40, 20; S. 21) at 270-300 ms. The computed activity level for the clothing condition in

this area was lower than for these other two conditions.

Discussion

In the first step of this study, subjects performed a specially designed semantic deci-

sion task and the ERP signals obtained were analyzed using a correspondence analysis. The

results revealed that the lexical concepts tested are structurally underlain by two principal

axes. The first axis, which detected the greatest differences, seems to be the organizing

principle of a human referential opposing person-centered entities –i.e., relations or social

positions, which were included here on the stimulus list for the people category (brother,

novelist, etc.), and also clothing– from entities that are farther removed from this referen-

tial (tools, fruits/vegetables). Processes characterized by this axis occurred approximately

380 ms after stimulus onset and showed up mainly on frontal electrodes. The elements sit-

uated at the extremities of this axis are two living categories, people and fruits/vegetables.

The second axis, which can be called ontological, separates categories associated with living

entities from those associated with the nonliving. The underlying processing occurred sooner
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after stimulus onset (at around 270-320 ms) and involved left occipital-parietal electrodes as

well as frontal ones. The topology of the map output by the CA proved significant for the

subjects as a whole, and the greater dispersion of living categories than of nonliving ones

was also validated. This greater spread reflects larger within-category differences for living

entities on the ERP signals. The living vs nonliving distinction, and the more scattered

processing of living entities, echoes the proposal of Caramazza and Shelton (1998) of a cat-

egorical organization structured by the phylogenetic past of our species. Indeed, the ability

to discriminate congeners from predators, and also from prey and edible things, is thought

to be essential to the survival of the species and would thus necessitate a differentiation

faculty that is both deep (fine-grained) and broad. The ability to discriminate artifacts and

tools would come later on the scale of human evolution. For this reason, it would give rise

to a lesser degree of specialization but could nevertheless be selectively damaged, as shown

by the handful of cases described in the literature. Furthermore, differentiating living from

nonliving entities has been observed very early in childhood (at the age of 4 years for Gelman

and Wellman (1991)).

Note that while the task required a categorization that may have underlain the ob-

served differentiation between the living and the nonliving, this differentiation was not the

greater one detected in the signal analysis. In addition, the results obtained are more pre-

cise and more complex than a simple binary categorization (living-nonliving). The animals

category, for instance, stands well apart from the others on Axis 2. One can interpret this

difference as a more clear-cut, more prototypical attribution of aliveness to animals as op-

posed to fruits/vegetables, body parts, or people (this last category’s attributes being at least

as social as biological).

The map derived here from ERP signals is analogous to maps obtained from lexical

links in the language. As on the ERP map, the synonym-based map preserves the ontolog-

ical separation between the living and the nonliving. The map generated from contextual

links preserves a maximal distance between people and fruits/vegetables, and to a lesser

degree, between people and tools. Thus, the ERP map seems to retain the distances rep-
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resenting the categorical links and the contextual links presented as the two main axes of

the linguistic analysis of texts. These results therefore support the idea of an organizational

resemblance between the neurophysiological processing of categories and the semantic struc-

ture of language productions. It corroborates an ontological and hierarchical6 organization

of categories, while adding an organization underlain by a gradient of proximity and distance

from the person. The next step in this study was to find the networks most highly correlated

with the various categories in order to define networks of PIs that participate in differentiat-

ing certain categories from others, and the last step was to use Loreta source-reconstruction

software in order to compute the source networks at play in these different ways of process-

ing and organizing categories. Although this method gives computed results, not measured

ones, and remains imprecise when applied to EEG signals from only 30 electrodes, it was

nevertheless able to detect some differences and point out some dynamic category-specific

source networks that are in line with the findings of fMRI and PET studies.

All of the present results argue in favor of a conceptual approach to word semantics.

In this view, the neuronal processing of word meaning is not encapsulated solely in the

language areas but involves more extensive spatiotemporal patterns linked to the processing

of categories designated by words.

In sum, the map obtained here directly from the automatic processing of electro-

physiological signals, without electrode pre-selection, provides a relatively rich synthesis. It

should also be stressed that, while the data in the literature are congruent with the present

ERP map analysis, the categorical organization and differentiation detected by the CA are

not composed of networks of areas but of patterns of spatiotemporal differences. This last

point goes against some widely acknowledged hypotheses according to which the semantic

processing of words or concepts is attributed in an absolute and non-relative fashion to the

consistently positive activity of certain areas of the brain. On the other hand, it aligns with

Ferdinand de Saussure’s structural view whereby language is a system of differences. The

topology defined by the CA for this "system of differences" makes it possible to detect prox-

imities and major distinctions between word categories. (Ploux, Dabic, Paulignan, Cheylus,
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& Nazir, 2012)
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Footnotes

1Note, however, that this prevailing point of view, which came out of Broca and Wernicke’s work, triggered

immediate rejection by opposers such as Hughlings Jackson (1835-1911), who cast doubt on the hypothesized

language-specific area of the brain.

2This procedure was justified by the uniform distribution of the electrodes Junghöfer, Elberta, Tuckerb,

and Braun (1999) (Bertrand, Perrin, and Pernier (1985)). Note, however, that since the calculation of the

reference value and the CA are linear, this procedure did not cause a distorting effect.

3The signals were smoothed in advance by applying the wavedec and wrcoef functions of Matlab. The

wavedec function processes the signal’s wavelets. The family of wavelets retained was daubechies (db1) on 5

levels, [C, L] = wavedec(signal, 5, db1) . The function wrcoef uses the coefficients calculated by wavedec to

reconstruct the smoothed signal. The signal was reconstructed at level 3.

4Note, however, that the greatest differences, shared by the category pairs people-fruits/vegetables and

clothing-tools, are located in right areas BA47 between 420 and 450 ms, and BA38 between 460 and 490 ms af-

ter stimulus presentation. The activity calculated by Loreta was greater for people than for fruits/vegetables,

and for clothing than for tools. This intermediate result, which needs further evaluation, can nevertheless

be compared to the Zahn et al. (2007) study, which showed that Brodmann’s area 38 is selectively activated

when participants "judge the meaning relatedness of social concepts (e.g., honor-brave) as compared with

concepts describing general animal functions (e.g., nutritious-useful)", and also to the Gerretsen et al. (2010)

study suggesting that area BA47 is involved in establishing and maintaining social links.

5C. stands for the coordinates of the zone’s barycenter in the Loreta software; S. stands for its area in

Loreta units, measured in 5-voxel steps.

6Here, the hierarchy is two-tiered: the first tier is the level of the superordinate categories "living" and

"nonliving"; the second is the level of the 4x2 categories used in the experiment.
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Table 1: Dimension 1, Duncan Post-hoc test (∗10−3) on the coordinates for all subjects pooled
(repeated-measures ANOVA).

Categories Vehicles Tools Clothing House Animals Fruits
Veg.

Body
Parts

People

Vehicles
Tools 9.185
Clothing 72.274 0.044
House 337.291 71.032 9.458
Animals 603.331 27.962 30.488 610.203
Fruits
Veg.

1.623 533.660 0.022 21.124 6.502

Body
Parts

813.229 14.954 54.152 437.698 748.860 2.961

People 0.256 0.020 35.920 0.029 0.065 0.017 0.149

Table 2: Dimension 2, Duncan Post-hoc test (∗10−3) on the coordinates for all subjects pooled
(repeated-measures ANOVA).

Categories Vehicles Tools Clothing House Animals Fruits
Veg.

Body
Parts

People

Vehicles
Tools 302.365
Clothing 393.762 804.462
House 229.586 818.212 655.818
Animals 0.028 0.020 0.025 0.017
Fruits/Veg.39.936 2.881 5.134 1.610 0.561
Body
Parts

41.594 2.816 5.188 1.530 0.522 958.337

People 46.216 4.044 6.744 2.375 0.397 86.683 837.511



Table 3: Duncan Post-hoc test significance (∗10−3) (repeated-measures ANOVA) between the eight
conditions and the linear combination of PIs whose contribution to Axis 1 was greater than 0.7. The
four main PIs were frontal: Fp1 (383-477 ms), Fpz (383-477 ms), Fp2 (383-477 ms), and F7 (383-418
ms).

Categories Vehicles Tools Clothing House Animals Fruits
Veg.

Body
Parts

People

Vehicles
Tools 6.109
Clothing 110.850 0.049
House 228.558 92.236 7.914
Animals 358.049 53.856 17.593 724.895
Fruits/Veg.0.517 411.318 0.021 17.393 8.209
Body
Parts

865.693 8.435 95.564 275.105 416.673 0.794

People 1.072 0.020 64.070 0.037 0.069 0.017 0.768



Table 4: Main PIs associated with category distinctions.

Categories PIs with χ2 contribu-
tion > 0.5

Repeated-
mesures ANOVA
(F (14, 238), p)

Post-hoc test
(Dunnet)(p < .05)

Tools Fpz (325−360ms, 383−
407ms), Fp2 (325 −

360ms), Fp1 (325 −

360ms, 372 − 383ms).

(2.0, < .05) people

Clothing Fp2 (407 − 418ms),
Fp1 (430 − 453ms),
Fpz (407 − 418ms), P7
(267 − 278ms).

(2.4, < .05) tools, animals,
fruits/vegetables, body
parts

Animals O1 (267 − 313ms),
Oz (267 − 278ms),
O2 (243 − 278ms),
P7 (278 − 290ms,
313 − 325ms), Fp1
(313 − 325ms), Fpz
(290 − 325ms).

(2.1, < .02) Each of the other
categories except
fruits/vegetables

Fruits/Veg.Fp1(418 − 500ms),
Fpz(465 − 500ms),
Fp2(477 − 500ms),
O1(243 − 267ms,
278 − 290ms).

(2, < 0.05) vehicles, clothing, part
of a house, people

Body
Parts

P8 (243 − 267ms). (3.35, < .01) vehicles, tools, animals

People O1 (232 − 243ms), Oz
(232 − 243ms), Fp2
(383 − 407ms), F7
(372 − 407ms), Fp1
(383 − 407ms), Fpz
(383 − 407ms), P4
(407 − 418ms).

(3.4, < .01) Each of the other cat-
egories except clothing
and animals



Electrode 1 

Electrode 2 

0 ms 500 ms 

amplitude 

Figure 1. Hypothetical ERP curves for words referring to three categories (fish = red; birds =
green; apes = blue). Grey frames delineate time slots within which a specific relational pattern
between the three conditions is evident (i.e., the amplitude extrema for the category are indicated
by red and blue lines, intermediate amplitudes are shown as green lines). The black arrows point
to another such pattern (i.e., [blue, red, green]). The CA identified these patterns over a defined
time window at all electrodes, and classified them from the most to the least significant in terms of
magnitude and frequency.
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Figure 2. (a) ERP map obtained from grand average signals 150-500 ms after stimulus presentation.
These two axes account for 65.12% of the total inertia of the initial matrix: 37.6% for Axis 1, 27.5%
for Axis 2, and 10% for Axis 3, which is not represented here. (b, c) Maps based on synonym and
co-occurrence links. For the corpus-based maps, the principal axes account for less than 10% of the
total inertia, in line with analogous results obtained from linguistic data whose axes have a slowly
decreasing variance. (d) Regression lines between ERP Axis 2 and Synonym Axis 2 (upper), and
ERP Axis 1 and Co-occurrence Axis 1 (lower).



Figure 3. Repeated-measures ANOVA on categories. The dependent variables are the coordinates
on the two dimensions.
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Figure 4. Axis 1. Signal amplitude on the electrodes with the greatest contributions to defining
Axis 1. The mean amplitude of all conditions was subtracted from the amplitude of each condition.
Bottom graph: linear combination of signals for the whole set of electrodes, with first-axis coefficients
calculated by the CA.
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Figure 5. Axis 2. Signal amplitude on the electrodes with the greatest contributions to defining
Axis 2. The mean amplitude of all conditions was subtracted from the amplitude of each condi-
tion. Bottom graph: linear combination of signals for the whole set of electrodes, with second-axis
coefficients calculated by the CA.



Figure 6. Main PIs for animals. Combination of signals from occipito-parietal electrodes O1,
Oz, O2, and P7 (upper) and frontal electrodes Fp1 and Fpz (lower), according to the second-axis
coefficients calculated by the CA.

Figure 7. Main PIs for people. Combination of signals from occipito-parietal electrodes O1, Oz,
and P4 (upper) and frontal electrodes Fp2, Fp1, F7, and Fpz (lower), according to the first-axis
coefficients calculated by the CA.


