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Abstract

In this paper we present a detailed analysis of a single server Markovian queue with impatient customers.

Instead of the standard assumption that customers perform independent abandonments, we consider situations

where customers abandon the system simultaneously. Moreover, we distinguish two abandonment scenarios,

in the first one all present customers become impatient and perform synchronized abandonments, while in the

second scenario we exclude the customer in service from the abandonment procedure. Furthermore, we extend

our analysis to the M/M/c queue under the second abandonment scenario.

For these models we carry out an extensive analysis including the stationary, the busy period and the con-

ditional sojourn time distributions deriving exact formulas and iterative algorithmic schemes. We, also, obtain

explicit results under various limiting regimes that demonstrate the effect of the level of synchronization to the

performance of the systems.

Keywords: queueing system, impatient customers, synchronization, basic q-hypergeometric series, markov chain,

stationary distribution, mean conditional sojourn time, busy period distribution.

Classification: 90B22, 60K25

1 Introduction

Queueing systems with reneging (i.e., impatient customers) have been studied extensively (see, e.g. Boxma and

de Waal (1994), Daley (1965), Palm (1953) and (1957), Takacs (1974)). The main assumption in the literature

is that customers perform independent abandonments, that is, each one of them sets an impatience clock and

abandons the system as soon as the clock expires. For Markovian models, this type of abandonments introduces

state-inhomogeneous transition rate matrices, which complicates the computation of the performance measures.

This type of spatial inhomogeneity is usually stydied by applying generating function methods. However, such

systems are usually intractable or can be solved in terms of hypergeometric series (see e.g. Altman and Yechiali

(2006) and (2008), Artalejo and Gomez-Corral (1997), Baykal-Gursoy and Xiao (2004), Keilson and Servi (1993),

Krishnamoorthy et al. (2005), Perel and Yechiali (2009), Yechiali (2007)).

In the present paper we concentrate on the study of a single server Markovian queue with impatient customers

that perform synchronized abandonments. This basic model is motivated by remote systems where customers

have to wait for a certain transport facility to abandon the system. Then, whenever the facility visits the system,

the present customers decide whether to leave the system or not. Therefore, we have synchronized departures
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for some of the customers.

We will distinguish two types of abandonment scenarios, in the first we assume that all present customers

become impatient and perform synchronized abandonments, while in the second scenario we exclude the cus-

tomer in service from the abandonment procedure. More specifically, in the first scenario, we suppose that the

abandonment epochs occur according to a Poisson process at rate ν, whenever there is at least one customer

present in the system. Then, at the abandonment epochs, every present customer remains in the system with

probability q or abandons the system with probability p = 1− q, independently of the others. This implies that

there exist binomial transition rates of the form
(
n
n′

)
pn−n′

qn
′
ν, from a state n to states n′, for 0 ≤ n′ ≤ n. In

the second scenario, we, again, assume a Poisson abandonment process at rate ν, which is, now, set on whenever

there is at least one customer in the waiting line. Then, at the abandonment epochs, every waiting customer

remains in the queue with probability q or abandons the queue with probability p = 1− q, independently of the

others. This implies that from a state of n+1 present customers, for n > 0, there exist binomial transition rates

of the form
(
n
n′

)
pn−n′

qn
′
ν to states n′ + 1, for 0 ≤ n′ ≤ n.

Markov chains with binomial type transitions occur in Mathematical Biology in the study of population

processes subject to binomial catastrophes (see, e.g. Artalejo et al. (2007), Brockwell et al. (1982), Economou

(2004), Economou and Fakinos (2008)). Moreover, Neuts (1994) studied a 1-dimensional discrete-time model

with similar dynamics. In the same framework, Economou and Kapodistria (2009) and Economou et al. (2010)

studied systems with synchronized services, while Adan et al. (2009) and Economou and Kapodistria (2010)

studied systems with server vacations and synchronized abandonments. We have to mention that in all the

Markovian models with binomial transitions that have been studied so far in the queueing literature the com-

mon factor is that the binomial rates, when appearing, are the only backwards rates affecting the number of

customer/units in the system:

• in the case of binomial catastrophes the number of units in the system is only reduced when a catastrophe

occurs, since no death is considered in this type of systems

• in the case of synchronized services the number of customers in the system receiving service is reduced

according to the binomial distribution at a service completion epoch and no other event occurs that would

reduce the number of customers in service

• in the case of synchronized abandonments the authors have only considered systems with server vacations

in which abandonments only occur during the absence of the server, hence abandonments and service, or

any other event that might reduce the number of customers, don’t coexist in the same time period.

The primary aim of this paper is to introduce and study a basic queueing model combining synchronized aban-

donments. The analysis of this paper extends the analysis of the aforementioned papers since this is a first effort

to solve a Markovian model where binomial transition rates coexist with service rates, i.e. we have transition

rates of the form
(
n
n′

)
pn−n′

qn
′
ν + μ δn′,n−1, 0 ≤ n′ ≤ n, where δn′,n−1 denotes the Kronecker delta, being equal

to 1, if n′ = n− 1, and equal to 0, otherwise.

The paper is divided in three sections, consisting three parts one for each model we study. In section 2 we

study the M/M/1 queue under the first abandonment scenario, while in sections 3 and 4 we study the M/M/1

and the M/M/c queues, respectively, under the second abandonment scenario. Section 2 is further divided

into several subsections: In section 2.1 we present the first model and give the appropriate notation, in the

next section, 2.2, we prove the stability of the model and in section 2.3 we study the stationary probability

generating function of the queue length. In section 2.4 we present the factorial moments of the queue length.

We proceed with section 2.5 where we demonstrate the effect of the level of synchronization to the performance

of the system. In sections 2.7 and 2.8 we treat the mean conditional sojourn time of a tagged customer and the

system busy period distribution. In section 3 we study the stationary probability generating function (section

3.2), the factorial moments of the queue length (section 3.3), the mean conditional sojourn time (section 3.4)
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and the busy period (section 3.5) distribution for the second model. Finally, in section 4 we extend the analysis

of the previous section to the M/M/c queue with synchronized abandonments, but not for the customers in

service.

2 The M/M/1 queue with synchronized abandonments

2.1 Model description and notation

We consider anM/M/1 queueing system in which customers arrive according to a Poisson process at rate λ. The

service is provided by a single server, who serves the customers according to a FCFS discipline. The successive

service times are independent exponentially distributed random variables with rate μ. Customers become im-

patient and perform synchronized abandonments in the following way: A transportation facility is set on and it

arrives at the system according to a Poisson process at rate ν. Every arrival epoch of the transportation facility

constitutes an abandonment opportunity for the present customers. We suppose that each one of them decides

to abandon the system with probability p or remains in the system with probability q = 1− p, independently of

the others.

The system is represented by a continuous time Markov chain {Q(t) : t ≥ 0}, where Q(t) denotes the number

of customers in the system at time t, t ≥ 0. The corresponding transition rate diagram is given in figure 1.

From figure 1 it is apparent that the continuous time Markov chain is irreducible and aperiodic. In subsection

2.2, we will show that it is also always positive recurrent.

0
λ

�� 1

pν+μ

��
λ

�� 2

(21)pqν+μ

��

p2ν

��

λ
�� 3

(31)pq
2ν+μ

��

(32)p
2qν

��

p3ν

��

λ
�� · · ·

Figure 1: Transition rate diagram of {Q(t) : t ≥ 0}.

2.2 Stability of the Model

Let us consider the embedded Markov chain {Qn : n ≥ 0}, where Qn denotes the number of customers in the

system left behind by the nth departure. Then, since we have two types of departures those due to service

completion and those due to the abandonment process we have that

{Qn+1|Qn > 0} = Qn +Mn − �{Bn<An} − (

Qn+Mn∑

j=1

Ij) · �{Bn≥An} ,

where Mn is the number of Poisson arrivals at rate λ during the minimum of a service time, denoted by Bn,

and of an inter-abandonment time, denoted by An, with Pr[Bn < An] =
μ

ν+μ , and {Ij}j∈N are identical and

independent bernoulli random variables with P [Ij = 1] = p, j ∈ N, independent of the other random variables.

The embedded Markov chain {Qn} can be easily shown to be positive recurrent using Pakes’ (1969) theorem:

an irreducible and aperiodic Markov chain {Qn} is ergodic provided that for all but finitely many values of i,
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the drift at state i, E[Qn+1 −Qn|Qn = i], is bounded above by a negative constant. For our model we observe

that {Qn} is irreducible, aperiodic and satisfies the condition of stability since

E[Qn+1 −Qn|Qn = i, i > 0] = E[Mn]−
μ

μ+ ν
− ν

μ+ ν

(
i+

λ

ν

)
p

=
λ− μ− ipν − λp

μ+ ν
< 0 , ∀ i ≥

⌊
λq − μ

pν

⌋
+ 1 .

Therefore, the continuous time Markov chain {Q(t) : t ≥ 0} is irreducible and always positive recurrent.

Let {πn : n ≥ 0} denote the stationary distribution of {Q(t) : t ≥ 0}. We also define the probability

generating function Π(z) by

Π(z) =
∞∑

n=0

πnz
n .

In subsection 2.3 we will determine Π(z) in terms of q-hypergeometric series (also known as basic hypergeo-

metric series). In subsection 2.4 with the use of some properties of the q-hypergeometric series we will calculate

the factorial moments of the queue length. Moreover, in subsections 2.6 and 2.7 we will also see that the study of

the mean conditional sojourn time given the state of the system and the busy period distribution of the system

are also facilitated using the theory of q-hypergeometric series.

There exists a rich theory for the class of q-hypergeometric series and their q-calculus which enables fast

calculations and simplifications. In the queueing theory literature there exist only few papers where this theory

has been applied (see e.g. Ismail (1985), Kemp and Newton (1990) and Kemp (2005)). For this reason we will

briefly summarize the basic definitions bellow and present some results of the q-calculus in Appendix A. The

interested reader can find more details on the definitions and the results (with proofs and extensions) in Gasper

and Rahman (2004), Chapters 1-3 and Appendices I-III.

The q-hypergeometric series are series of the form
∑∞

n=0 cn where c0 = 1 and cn+1

cn
is a rational function of

qn for a deformation parameter q, which is taken to satisfy |q| < 1. Observing that the ratio cn+1

cn
, being rational

in qn, can be written in the form

cn+1

cn
=

(1− a1q
n)(1 − a2q

n) · · · (1− arq
n)

(1 − qn+1)(1− b1qn) · · · (1 − bsqn)
(−qn)1+s−rz, r, s ∈ N0,

we have that every such series assumes the canonical form

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

)
≡ rφs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z)

=

∞∑

n=0

(a1; q)n(a2; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn, (2.1)

where (a; q)0 = 1 and (a; q)n = (1−a)(1−aq)(1−aq2) · · · (1−aqn−1), n ≥ 1. The quantity (a; q)n is referred to

as the q-shifted factorial. We also define (a; q)∞ =
∏∞

k=0(1 − aqk) and use the abbreviation (a1, a2, . . . , ar; q)∞
to denote the product (a1; q)∞(a2; q)∞ . . . (ar; q)∞. In the definition of a q-series through (2.1), it is assumed

that bi �= q−m for m = 0, 1, . . . and i = 1, 2, . . . , s. For |q| < 1, the rφs series converges absolutely for all z when

r ≤ s, and for |z| < 1 when r = s+ 1.
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2.3 The steady state distribution

The set of balance equations of the model is given as follows:

λπ0 = μπ1 + νpπ1 + νp2π2 + νp3π3 + · · ·

(λ+ μ+ ν)πn = λπn−1 + μπn+1 + νqnπn + ν

(
n+ 1

n

)
pqnπn+1 + · · · , n ≥ 1.

These equations can be solved efficiently by employing generating function methods and we obtain the following.

Theorem 1 The probability generating function Π(z) is given by

Π(z) =
1

(− 1−z
z1−1 ; q)∞

2φ1

(
− 1−z

z1−1 , 1− z0
− 1−z0

z1−1q
; q, q

)

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

) , |z| < z1, (2.2)

where

z0 =
λ+ μ+ ν −

√
(λ+ μ+ ν)2 − 4λμ

2λ
∈ (0, 1) (2.3)

z1 =
λ+ μ+ ν +

√
(λ+ μ+ ν)2 − 4λμ

2λ
∈ (1,∞) . (2.4)

The convergence of Π(z) is absolute in the corresponding open disks and uniform in every compact subset of

them.

Proof. The set of balance equations of the model can be written as:

(λ+ ν)π0 = μπ1 + ν

∞∑

j=0

pjπj (2.5)

(λ + μ+ ν)πn = λπn−1 + μπn+1 + ν

∞∑

j=n

(
j

n

)
pj−nqnπj , n ≥ 1. (2.6)

Multiplying both sides of equations (2.5) and (2.6) by z0 and zn, respectively, and summing for all n = 0, 1, 2, . . .

we obtain

(λ + μ+ ν)Π(z)− μπ0 = λzΠ(z) +
μ

z
Π(z)− μ

z
π0 + ν

∞∑

j=0

πj

j∑

n=0

(
j

n

)
(qz)

n
pj−n

= λzΠ(z) +
μ

z
Π(z)− μ

z
π0 + νΠ(p+ qz) .

Hence

Π(z) =
(z − 1)μπ0

(λ+ μ+ ν)z − λz2 − μ
+

νz

(λ+ μ+ ν)z − λz2 − μ
Π(p+ qz) . (2.7)

We observe that the quadratic polynomial A(z) = (λ+ μ+ ν)z − λz2 − μ has two real roots given by (2.3) and

(2.4) such that A(z) = λ(z − z0)(z1 − z) and λ(1− z0)(z1 − 1) = ν.

Iterating equation (2.7) yields

Π(z) =
z − 1

A(z)
μπ0

n∑

j=0

νjqj
∏j−1

k=0(1 − qk + qkz)
∏j

k=1 A(1 − qk + qkz)

+Π(1 − qn+1 + qn+1z)
νn+1

A(z)

∏n
k=0(1− qk + qkz)

∏n
k=1 A(1− qk + qkz)

, ∀n ≥ 0 . (2.8)

5



QUES9219_source.tex; 7/03/2011; 10:54 p. 6

Taking into consideration that

A(1− qk + qkz) = λ(1 − qk + qkz − z0)(z1 − 1 + qk − qkz)

= ν(1− 1− z

1− z0
qk)(1 +

1− z

z1 − 1
qk)

equation (2.8) assumes the form

Π(z) =
z − 1

A(z)
μπ0

n∑

j=0

qj
∏j−1

k=0(1− (1− z)qk)
∏j

k=1(1 − 1−z
1−z0

qk)(1 + 1−z
z1−1q

k)

+Π(1− qn+1 + qn+1z)
ν

A(z)

∏n
k=0(1− (1 − z)qk)

∏n
k=1(1− 1−z

1−z0
qk)(1 + 1−z

z1−1q
k)
, ∀n ≥ 0 .

Taking in both sides of this last equation the limit as n → ∞ and using the q-shifted factorial notation, i.e.

(a; q)j = (1− a)(1− aq) · · · (1− aqj−1), we derive

Π(z) =
z − 1

A(z)
μπ0

∞∑

j=0

qj
(1 − z; q)j

( 1−z
1−z0

q; q)j(− 1−z
z1−1q; q)j

+
ν

A(z)

∏∞
k=0(1− (1 − z)qk)

∏∞
k=1(1− 1−z

1−z0
qk)(1 + 1−z

z1−1q
k)

=
z − 1

A(z)
μπ0 3φ2

(
q, 1− z, 0

− 1−z
z1−1q,

1−z
1−z0

q
; q, q

)

+
ν

A(z)

(1− z; q)∞

( 1−z
1−z0

q,− 1−z
z1−1q; q)∞

. (2.9)

Multiplying equation (2.9) with A(z) and setting z = z0 we can solve for π0

π0 =
ν

(1− z0)μ

(1 − z0; q)∞

(q,− 1−z0
z1−1q; q)∞

1

2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, q

) . (2.10)

Plugging (2.10) into (2.9) we obtain

Π(z) =
z − 1

A(z)

ν

1− z0

(1− z0; q)∞

(q,− 1−z0
z1−1q; q)∞

3φ2

(
q, 1− z, 0

− 1−z
z1−1q,

1−z
1−z0

q
; q, q

)

2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, q

)

+
ν

A(z)

(1− z; q)∞

( 1−z
1−z0

q,− 1−z
z1−1q; q)∞

. (2.11)

We will now express the 3φ2 series that appear in equation (2.11) as the sum of two 2φ1 series in order to simplify

the expression of Π(z). To do so, we use Jackson’s transformation formula of the 2φ1 series (see Appendix A,

formula (A.11)). Equation (A.11) for a = q, b = − q
z1−1 , c = − 1−z

z1−1q and x = 1− z0, and observing that for the

specific selection of a we have that abx/c = bxq/c and (bx/c; q)∞ = (1− bx/c)(abx/c; q)∞, assumes the form

2φ1

(
q,− q

z1−1

− 1−z
z1−1q

; q, 1− z0

)

= − z − 1

z0 − z
3φ2

(
q, 1− z, 0

− 1−z
z1−1q,

1−z
1−z0

q
; q, q

)

+
(q,− 1−z0

z1−1q, 1− z; q)∞

(− 1−z
z1−1q,−

1−z
1−z0

, 1− z0; q)∞
2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, q

)

. (2.12)

Furthermore, we interchange the arguments of the 2φ1 series that appears on the left hand of equation (2.12)

using the first of Heine’s transformation formula of the 2φ1 series (see Appendix A, formula (A.8)) Plugging

equation (A.8), for a = q, b = − q
z1−1 , c = − 1−z

z1−1q and x = 1− z0, into (2.12) and solving for the 3φ2 series we

6
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obtain

3φ2

(
q, 1− z, 0

− 1−z
z1−1q,

1−z
1−z0

q
; q, q

)

=
z − z0
z − 1

(q,− 1−z0
z1−1q; q)∞

(− 1−z
z1−1q, 1− z0; q)∞

2φ1

(
− 1−z

z1−1 , 1− z0
− 1−z0

z1−1q
; q, q

)

−z − z0
z − 1

(q,− 1−z0
z1−1q, 1− z; q)∞

(− 1−z
z1−1q,

1−z
1−z0

, 1− z0; q)∞
2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, q

)

. (2.13)

Plugging equation (2.13) into (2.11) after some manipulations we obtain

Π(z) =
z − z0
A(z)

ν

1− z0

1

(− 1−z
z1−1q; q)∞

2φ1

(
− 1−z

z1−1 , 1− z0
− 1−z0

z1−1q
; q, q

)

2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, q

)

− ν

A(z)

z − z0
1 − z0

(1− z; q)∞

( 1−z
1−z0

,− 1−z
z1−1q; q)∞

+
ν

A(z)

(1− z; q)∞

( 1−z
1−z0

q,− 1−z
z1−1q; q)∞

. (2.14)

Observing that z−z0
A(z)

ν
1−z0

= z1−1
z1−z and taking twice into consideration that (a; q)∞ = (1 − a)(aq; q)∞, once for

a = − 1−z
z1−1 and once for a = 1−z

1−z0
, equation (2.14) reduces to (2.2). �

2.4 Factorial moments of the queue length

In order to proceed with the calculation of the moments of the queue length distribution in the stationary state

we could differentiate every term of equation (2.2). We are allowed to do so because of the uniform convergence

we have achieved in theorem 1. However, using the fact that Π(z) is by definition analytic (since it is represented

by a power series) we can differentiate directly every term of equation (2.7) as stated in the next remark.

Remark 1 Differentiating relation (2.7) and setting z = 1 we have that

Π(1)(1) =
μπ0 + λ− μ

ν(1 − q)
.

Differentiating relation (2.7) n times and setting z = 1 we have that

ν(1− qn)Π(n)(1) + n(ν(1− qn−1) + μ− λ)Π(n−1)(1)− n(n− 1)λΠ(n−2)(1) = 0, n ≥ 2.

Nevertheless, a closed form for Π(n)(1) can be obtained by applying results from the theory of q-series, as can

be seen in the following theorem.

Theorem 2 The factorial moments m(n) = E[Q(Q − 1)(Q − 2) · · · (Q − n + 1)] of the stationary number of

customers in the system are given by

m(n) =
n!

(z1 − 1)n(q; q)n

2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, qn+1

)

2φ1

(
1− z0, 0

− 1−z0
z1−1q

; q, q

) , n ≥ 1, (2.15)

where z0 and z1 are given in equations (2.3) and (2.4), respectively.

Proof. The factorial moments exponential generating function M(z) is given by

M(z) =

∞∑

n=0

m(n)
zn

n!
= E

[ ∞∑

n=0

(
Q

n

)
zn

]

= E[(1 + z)Q] = Π(1 + z). (2.16)

7
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We have already shown in theorem 1 that Π(z) converges in a neighborhood of 1, hence M(z) is well defined in

a neighborhood of 0. Equation (2.2) assumes the form

Π(1 + z) =
1

( z
z1−1 ; q)∞

2φ1

(
z

z1−1 , 1− z0
− 1−z0

z1−1q
; q, q

)

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)

=
1

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)
∞∑

k=0

(1− z0; q)k

(q; q)k(− 1−z0
z1−1q; q)k

qk
( z
z1−1 ; q)k

( z
z1−1 ; q)∞

. (2.17)

Observing that ( z
z1−1 ; q)k(

z
z1−1q

k; q)∞ = ( z
z1−1 ; q)∞ equation (2.17) assumes the form

Π(1 + z) =
1

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)
∞∑

k=0

(1− z0; q)k

(q; q)k(− 1−z0
z1−1q; q)k

qk
1

( z
z1−1q

k; q)∞
. (2.18)

Using now the q-binomial theorem (see Appendix A, formula (A.2)) we have that equation (2.18) can be written

as

Π(1 + z) =
1

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)
∞∑

k=0

(1− z0; q)k

(q; q)k(− 1−z0
z1−1q; q)k

qk
∞∑

n=0

1

(q; q)n
(

z

z1 − 1
qk)n

=
1

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)
∞∑

n=0

1

(q; q)n
(

z

z1 − 1
)n

∞∑

k=0

(1− z0; q)k

(q; q)k(− 1−z0
z1−1q; q)k

q(n+1)k

=
1

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)
∞∑

n=0

zn
1

(q; q)n(z1 − 1)n
2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, qn+1

)

which concludes the proof. �

2.5 Limiting regimes

We now turn our attention to the behavior of the model under certain limiting regimes. To emphasize the de-

pendence on the parameters of the model in the rest of this section, we will denote πn and Π(z) by π(n;λ, μ, ν, p)

and Π(z;λ, μ, ν, p), respectively. Note that νp can be thought of as the effective abandonment rate per customer.

Indeed the overall abandonment time of a customer is a geometric sum of exponentially distributed random vari-

ables with rate ν and so we can easily see that it is also exponentially distributed with parameter νp. Under this

perspective, if we have two models with the same parameters λ, μ that differ only in ν and p, but with νp = ν∗

fixed, we can think that the models have identical arrival rates λ, service rates μ and effective abandonment

rates per customer ν∗ and differ only in the ‘level of synchronization’ p. Indeed, the case p → 0+ corresponds to

no synchronization, since then ν = ν∗/p → ∞, hence the customers depart almost singly at the abandonment

epochs. On the contrary, the case p → 1− corresponds to full synchronization, since then ν = ν∗/p → ν∗, hence

almost all present customers depart simultaneously from the system when an abandonment opportunity occurs.

We are interested in studying the stationary behavior of the system for the case where λ, μ and ν∗ are kept

fixed in the two limiting cases p → 0+ (q → 1−) and p → 1− (q → 0+). The case p → 0+ corresponds exactly to

8
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the M/M/1 queue with exponentially distributed patience times, where patience refers to the sojourn time, i.e.

customers being served may run out of patience and abandon the system. This system following the Kendall

notation can be denoted as M/M/1 + M s, where the superscript s refers to the sojourn time. Then for this

system the set of balance equations, with patience rate ν∗, is given as follows

λpn = (μ+ (n+ 1)ν∗)pn+1, n ≥ 0.

These recursive equations can be easily solved. However, note that, it is enough to solve the M/M/1 queue,

with exponentially distributed patience times, where patience refers to the waiting time, i.e. the M/M/1 +M

queue (see, e.g. Palm (1957), Zeltyn (2005)), with balance equations

λpn = (μ+ nν∗)pn+1, n ≥ 0,

and replace μ by μ+ ν∗.

For the limiting case p → 0+, where λ, μ and ν∗ are kept fixed, we derive the steady state probability

generating function in theorem 3 and obtain the factorial moments of the state distribution in theorem 4. One

can compare our results with the results presented in Zeltyn (2005) section 6.1, after setting n = 1 and replacing

μ by μ+ ν∗.

Theorem 3 For a system with arrival rate λ, service rate μ and effective abandonment rate per customer ν∗

the generating function

Π(I)(z) = lim
q→1−

Π(z;λ, μ,
ν∗

1− q
, 1− q),

and the steady state probabilities

π(I)
n = lim

q→1−
π(n;λ, μ,

ν∗

1− q
, 1− q),

in the limiting case of no synchronization are given by

Π(I)(z) =
1F1(1; 1 +

μ
ν∗ ;

λ
ν∗ z)

1F1(1; 1 +
μ
ν∗ ;

λ
ν∗ )

(2.19)

π(I)
n =

(
λ

ν∗

)n Γ(1 + μ
ν∗ )

Γ(n+ 1 + μ
ν∗ )

1

1F1(1; 1 +
μ
ν∗ ;

λ
ν∗ )

, n ≥ 0, (2.20)

with 1F1(a; b; z) = Γ(b)
Γ(a)Γ(b−a)

∫ 1

0
eztta−1(1 − t)b−a−1dt being the Kummer (confluent hypergeometric) function

and Γ(a) =
∫∞
0

ta−1e−tdt the Gamma function.

Proof. We will write Π(z) in terms of the q-integral and take advantage of the convergence of the q-integral to

the usual integral, as q → 1− (see Appendix, formula (A.3)). More concretely, we have that the two 2φ1 series,

that appear in the expression of Π(z), as given in equation (2.2), can be written as q-integrals, using the r+1φr

series transformation formula to the q-integral (see Appendix A, formula (A.12)) and obtain

2φ1

(
− 1−z

z1−1 , 1− z0
− 1−z0

z1−1q
; q, q

)

=
(− 1−z

z1−1 , 1− z0; q)∞

(1 − q)(q,− 1−z0
z1−1q; q)∞

∫ 1

0

(qt,− 1−z0
z1−1qt; q)∞

(− 1−z
z1−1 t, (1− z0)t; q)∞

dqt (2.21)

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

)

=
(1− z0; q)∞

(1 − q)(q,− 1−z0
z1−1q; q)∞

∫ 1

0

(qt,− 1−z0
z1−1qt; q)∞

((1− z0)t; q)∞
dqt. (2.22)

Plugging (2.21) and (2.22) into (2.2) and simplifying several terms we have that (2.2) assumes the form

Π(z) =

∫ 1

0

(qt,− 1−z0
z1−1 qt;q)∞

(− 1−z
z1−1 t,(1−z0)t;q)∞

dqt

∫ 1

0

(qt,− 1−z0
z1−1 qt;q)∞

((1−z0)t;q)∞
dqt

. (2.23)

9
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In order to obtain the limit of Π(z) as q → 1−, under the condition ν(1 − q) = ν∗ is kept fixed, we need to

calculate the limit of the terms (qt;q)∞
((1−z0)t;q)∞

, (− 1−z
z1−1 t; q)∞ and (− 1−z0

z1−1qt; q)∞ that appear in expression (2.23).

On what the first of the terms is concerned using formula (A.5), we obtain that

lim
q→1−

(qt; q)∞
((1− z0)t; q)∞

= lim
q→1−

( q
1−z0

(1− z0)t; q)∞

((1 − z0)t; q)∞
= (1 − lim

q→1−
(1− z0)t)

− lim
q→1−

d
dq

q
1−z0

. (2.24)

Replacing ν by ν∗

1−q and taking the limit as q → 1− we have that

lim
q→1−

z0 = 0 (2.25)

lim
q→1−

d

dq

q

1− z0
= 1− μ

ν∗
. (2.26)

Under the light of these two results equation (2.24) becomes

lim
q→1−

(qt; q)∞
((1− z0)t; q)∞

= (1 − t)
μ
ν∗ −1. (2.27)

Moreover, to calculate the limit of the second and third term we will use formula (A.4) and obtain that

lim
q→1−

(− 1− z

z1 − 1
t; q)∞ = e

lim
q→1−

(1−z)t
(z1−1)(1−q)

(2.28)

lim
q→1−

(−1− z0
z1 − 1

qt; q)∞ = e
lim

q→1−
(1−z0)qt

(z1−1)(1−q)

. (2.29)

Replacing ν by ν∗

1−q and taking the limit as q → 1− we have that

lim
q→1−

(z1 − 1)(1− q) =
ν∗

λ
. (2.30)

Under the light of equations (2.25) and (2.30) we have that (2.28) and (2.29) assume the form

lim
q→1−

(− 1− z

z1 − 1
t; q)∞ = e

λ
ν∗ (1−z)t (2.31)

lim
q→1−

(−1− z0
z1 − 1

qt; q)∞ = e
λ
ν∗ t. (2.32)

Taking, now, the limit as q → 1− in (2.23), taking into account equations (2.27), (2.31) and (2.32) yields

Π(I)(z) =

∫ 1

0
(1− t)

μ
ν∗ −1e

λ
ν∗ ztdt

∫ 1

0 (1− t)
μ
ν∗ −1e

λ
ν∗ tdt

. (2.33)

Using, now, the Kummer function notation yields (2.19). Furthermore, from equation (2.33) after expanding

e
λ
ν∗ zt, that appears in the numerator, as series we have that

Π(I)(z) =
1

∫ 1

0
(1− t)

μ
ν∗ −1e

λ
ν∗ tdt

∫ 1

0

(1− t)
μ
ν∗ −1

∞∑

n=0

(
λ
ν∗ zt

)n

n!
dt

=
1

∫ 1

0 (1− t)
μ
ν∗ −1e

λ
ν∗ tdt

∞∑

n=0

zn
(

λ
ν∗

)n

n!

∫ 1

0

(1− t)
μ
ν∗ −1tndt

=
1

∫ 1

0
(1− t)

μ
ν∗ −1e

λ
ν∗ tdt

∞∑

n=0

zn
(

λ

ν∗

)n
Γ(μ/ν∗)

Γ(n+ 1 + μ/ν∗)
.

Equating the coefficients of zn and using the Kummer function notation yields (2.20). �

10
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Theorem 4 The factorial moments m
(I)
(n) = E[Q(Q − 1)(Q − 2) · · · (Q − n + 1)] of the stationary number of

customers in the system are given by

m
(I)
(n) =

(
λ

ν∗

)n n! Γ(1 + μ
ν∗ )

Γ(n+ 1 + μ
ν∗ )

1F1(n+ 1;n+ 1 + μ
ν∗ ;

λ
ν∗ )

1F1(1; 1 +
μ
ν∗ ;

λ
ν∗ )

, (2.34)

with 1F1(a; b; z) = Γ(b)
Γ(a)Γ(b−a)

∫ 1

0
eztta−1(1 − t)b−a−1dt being the Kummer (confluent hypergeometric) function

and Γ(a) =
∫∞
0

ta−1e−tdt the Gamma function.

Proof. As in the proof of the previous theorem we will express the two 2φ1 series that appear in the formula

of the factorial moments m(n), as given by (2.15), in terms of the q-integral. More concretely using (A.12) we

can easily see that

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, qn+1

)

=
1

1− q

(1− z0; q)∞

(q,− 1−z0
z1−1q; q)∞

∫ 1

0

tn
(qt,− 1−z0

z1−1qt; q)∞

((1− z0)t; q)∞
dqt. (2.35)

Plugging (2.22) and (2.35) into (2.15) and simplifying several terms we have that (2.15) assumes the form

m(n) =
n!

(z1 − 1)n(q; q)n

∫ 1

0 tn
(qt,− 1−z0

z1−1 qt;q)∞

((1−z0)t;q)∞
dqt

∫ 1

0

(qt,− 1−z0
z1−1 qt;q)∞

((1−z0)t;q)∞
dqt

. (2.36)

We have already calculated the limit of the terms (qt;q)∞
((1−z0)t;q)∞

and (− 1−z0
z1−1qt; q)∞ in equations (2.27) and (2.32),

respectively. So, we only need to calculate the limit of the expression (z1 − 1)n(q; q)n, as q → 1−, under the

condition that ν(1− q) = ν∗ is kept fixed. Replacing ν by ν∗

1−q and taking the limit as q → 1− we have that

lim
q→1−

(z1 − 1)n(q; q)n = n!

(
ν∗

λ

)n

. (2.37)

Taking the limit as q → 1− in (2.36), taking into account equations (2.27), (2.32) and (2.37) yields

m
(I)
(n) =

(
λ

ν∗

)n ∫ 1

0
tn(1− t)

μ
ν∗ −1e

λ
ν∗ tdt

∫ 1

0 (1 − t)
μ
ν∗ −1e

λ
ν∗ tdt

.

Using the Kummer function notation yields (2.34). �

We now derive the corresponding results for the other extreme case of full synchronization, i.e. when p → 1−.

In this case our model converges to the M/M/1 queue with total catastrophes (see, e.g. Di Crescenzo et al.

(2003)). In theorem 5 we derive the steady state probability generating function, while in theorem 6 we obtain

the factorial moments of the state distribution. One can easily compare our results to the results presented in

the paper of Di Crescenzo et al. (2003) p. 330 formula (3) and p. 331 formula (5).

Theorem 5 For a system with arrival rate λ, service rate μ and effective abandonment rate per customer ν∗,

the steady state distribution π
(C)
n = limq→0+ π(n;λ, μ, ν∗

1−q , 1 − q) in the limiting case of full synchronization is

given by

π(C)
n =

(
1− 1

z∗1

)(
1

z∗1

)n

, n ≥ 0, (2.38)

where

z∗1 =
λ+ μ+ ν∗ +

√
(λ + μ+ ν∗)2 − 4λμ

2λ
∈ (1,∞). (2.39)

11
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Proof. In order to calculate the limit of Π(z) as q → 0+, we will take advantage of the convergence of the

2φ1(a, b; c; q, q) series to 1, as q → 0+, which can be easily proven by using the definition of the 2φ1 series. Taking

the limit as q → 0+ in (2.2), yields

Π(C)(z) = lim
q→0+

1

(− 1−z
z1−1 ; q)∞

2φ1

(
− 1−z

z1−1 , 1− z0
− 1−z0

z1−1q
; q, q

)

2φ1

(
0, 1− z0
− 1−z0

z1−1q
; q, q

) . (2.40)

Using that the q-shifted factorial (a; q)∞ converges to 1−a and that the two 2φ1 series converge to 1, as q → 0+,

we obtain that

Π(C)(z) =
1

1 + 1−z
z∗
1−1

=
z∗1 − 1

z∗1 − z
, (2.41)

where z∗1 denotes the limit of z1, as q → 0+, under the condition that ν(1 − q) = ν∗ is kept fixed. Expanding

(z∗1 − z)−1 in power series and equating the coefficients of zn yields (2.38). �

Theorem 6 The factorial moments m
(C)
(n) = E[Q(Q − 1)(Q − 2) · · · (Q − n + 1)] of the stationary number of

customers in the system are given by

m
(C)
(n) =

n!

(z∗1 − 1)n
, n ≥ 1, (2.42)

where z∗1 is given in equation (2.39) .

Proof. We replace ν by ν∗

1−q in (2.15) and we take the limit as q → 0+. �

2.6 Sojourn time

Let Y denote the unconditional total sojourn time of an arbitrary customer in the system, regardless of whether

he completes service or not. Moreover, let Yn denote the conditional total sojourn time of a tagged customer in

the system, given that upon arrival he finds the system in state n.

We employ first-step analysis excluding arrivals, because future arrivals do not influence the tagged customer.

Indeed, by conditioning on whether the next transition is a service completion or an abandonment opportunity

we obtain the equation

E[Yn] =
1

μ+ ν
+

μ

μ+ ν
E[Yn−1] +

νq

μ+ ν

n∑

i=0

(
n

i

)
pn−iqiE[Yi], n ≥ 0, (2.43)

where we have assumed that E[Y−1] ≡ 0. The system of recursive relation (2.43) can be solved explicitly

employing a generating function approach and using the theory of q-hypergeometric series. The solution is

summarized in the following theorem.

Theorem 7 The conditional expected total sojourn time of a tagged customer in the system Yn, given that upon

his arrival he finds the system in state n, is given as follows

E[Yn] =
1

μ+ ν(1 − q)

n∑

i=0

(− ν

μ+ ν
)i

(q2; q)i

( νq2

μ+ν ; q)i

n∑

j=i

(
j

i

)
, n ≥ 0. (2.44)

12
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Proof. We define the generating function of the mean conditional expected total sojourn time Y (z) given as

Y (z) =

∞∑

n=0

E[Yn]z
n, |z| < 1.

The generating function Y (z) do converges for |z| < 1, since |Y (z)| ≤
∑∞

n=0 E[Yn]|z|n ≤ 1
νp

∑∞
n=0 |z|n < ∞,

where we have used that E[Yn] is less or equal to the mean overall abandonment time of a customer.

Multiplying equation (2.43) with (μ+ ν)zn and adding for all n ≥ 0 results to

(μ+ ν)Y (z) =
1

1− z
+ μzY (z) + νq

∞∑

n=0

n∑

i=0

(
n

i

)
pn−iqiE[Yi]z

n

=
1

1− z
+ μzY (z) + νq

∞∑

i=0

E[Yi]

(
q

p

)i ∞∑

n=i

(
n

i

)
(pz)n. (2.45)

Using now the binomial theorem (see Gasper and Rahman 2004, p. 8 formula (1.3.1))

∞∑

n=i

(
n

i

)
xn =

xi

(1 − x)i+1
, |x| < 1, (2.46)

we have that (2.45) assumes the form

(μ(1 − z) + ν)Y (z) =
1

1− z
+

νq

1− (1− q)z
Y (

qz

1 − (1− q)z
). (2.47)

We observe that equation (2.47) can be put in the form

Y (z) =
H(z)

G(z)
Y (T (z)) +

K(z)

G(z)
, (2.48)

where

T (z) =
qz

1− (1− q)z
(2.49)

and

G(z) = μ(1 − z) + ν, H(z) = ν T (z)
z , K(z) =

1

1− z
.

The solution of (2.48) can be done by iteration. To this end it seems convenient to introduce here an operator

notation: The transformation T (z) defined by (2.49) is a linear fractional transformation and therefore its k-th

compositions defined by T0(z) = z and Tk(z) = T (Tk−1(z)), k ≥ 1, can be computed in closed form. Indeed, it

can be proved inductively that

Tk(z) =
qkz

1− (1− qk)z
, k ≥ 0.

By iterating (2.48) n times we obtain

Y (z) =

n∑

k=0

K(Tk(z))

H(Tk(z))

k∏

i=0

H(Ti(z))

G(Ti(z))
+ Y (Tn+1(z))

n∏

i=0

H(Ti(z))

G(Ti(z))
. (2.50)

However, note that

H(Ti(z))

G(Ti(z))
=

νTi+1(z)

Ti(z)

1

μ(1− Ti(z)) + ν
=

νTi+1(z)

Ti(z)

1− (1− qi)z

(μ+ ν)(1 − z) + νzqi

and
K(Tk(z))

H(Tk(z))
=

(
1

1− Tk(z)

)
Tk(z)

νTk+1(z)
=

1− (1− qk)z

1− z

Tk(z)

νTk+1(z)

13
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so (2.50) assumes the form

Y (z) =
1

(1− z)((μ+ ν)(1 − z) + νz)

n∑

k=0

(
νq

μ+ ν

)k (− z
1−z q; q)k

(− z
1−z

ν
μ+ν q; q)k

+Y (Tn+1(z))

(
νq

μ+ ν

)n+1
1

1− (1− qn+1)z

(− z
1−z ; q)n+1

(− z
1−z

ν
μ+ν ; q)n+1

and by taking the limit as n → ∞ we obtain

Y (z) =
1

(1− z)((μ+ ν)(1 − z) + νz)

∞∑

k=0

(
νq

μ+ ν

)k (− z
1−z q; q)k

(− z
1−z

ν
μ+ν q; q)k

=
1

(1− z)((μ+ ν)(1 − z) + νz)
2φ1

(
− z

1−z q, q

− z
1−z

ν
μ+ν q

; q,
ν

μ+ ν
q

)

. (2.51)

Interchanging the arguments of the 2φ1 series, using the second of Heine’s transformation formula of the 2φ1

series (see Appendix A, formula (A.9)) for a = − z
1−z q, b = q, c = − z

1−z
ν

μ+ν q and x = ν
μ+ν q, and substituting

the result into (2.51) we have that

Y (z) =
1

(1− z)((μ+ ν)(1 − z) + νz)

(− z
1−z

ν
μ+ν ,

ν
μ+ν q

2; q)∞

(− z
1−z

ν
μ+ν q,

ν
μ+ν q; q)∞

2φ1

(
q2, q
ν

μ+ν q
2 ; q,− z

1− z

ν

μ+ ν

)

. (2.52)

Using twice that (a; q)∞ = (1− a)(aq; q)∞ and expanding the 2φ1 series, equation (2.52) assumes the form

Y (z) =
1

μ+ ν(1− q)

∞∑

i=0

(− ν

μ+ ν
)i

(q2; q)i

( νq2

μ+ν ; q)i

zi

(1− z)i+1

1

1− z
. (2.53)

Using (2.46) equation (2.53) assumes the form

Y (z) =
1

μ+ ν(1 − q)

∞∑

i=0

(− ν

μ+ ν
)i

(q2; q)i

( νq2

μ+ν ; q)i

∞∑

n=i

n∑

j=i

(
j

i

)
zn

=
1

μ+ ν(1 − q)

∞∑

n=0

zn
n∑

i=0

(− ν

μ+ ν
)i

(q2; q)i

( νq2

μ+ν ; q)i

n∑

j=i

(
j

i

)
. (2.54)

Now (2.54) implies readily (2.44). �

In the two limiting regimes that we have considered in the previous section, where λ, μ and ν∗ are kept fixed,

we can proceed a bit further and give the results for the conditional expected total sojourn times in the case

of no synchronization (p → 0+) and full synchronization (p → 1−). The results are immediate by taking the

appropriate limits in (2.44). More specifically we have the following theorems.

Theorem 8 Consider a system with arrival rate λ, service rate μ and effective abandonment rate per customer

ν∗. In the limiting case of no synchronization (ν = ν∗

1−q , q → 1−), the conditional expected total sojourn time

of a tagged customer in the system Y
(I)
n , given that upon his arrival he finds the system in state n, is given as

follows

E[Y (I)
n ] =

1

μ+ ν∗

n∑

i=0

(−1)i
(i + 1)!

∏i+1
k=2(

μ
ν∗ + k)

n∑

j=i

(
j

i

)
, n ≥ 0. (2.55)

Proof. We replace ν by ν∗

1−q in (2.44) and observing that

lim
q→1−

1− qk

1− ν∗

μ(1−q)+ν∗ qk
=

k
μ
ν∗ + k

lim
q→1−

(q2; q)i

( νq2

μ+ν ; q)i
=

(i + 1)!
∏i+1

k=2(
μ
ν∗ + k)

(2.56)

14
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yields easily (2.55). �

Theorem 9 Consider a system with arrival rate λ, service rate μ and effective abandonment rate per customer

ν∗. In the limiting case of full synchronization (ν = ν∗

1−q , q → 0+), the conditional expected total sojourn time

of a tagged customer in the system Y
(C)
n , given that upon his arrival he finds the system in state n, is given as

follows

E[Y (C)
n ] =

1

μ+ ν∗

n∑

i=0

(− ν∗

μ+ ν∗
)i

n∑

j=i

(
j

i

)
, n ≥ 0. (2.57)

2.7 Busy period

We define Ln to be the first passage time to state 0 starting from n. Then the busy period is given by L1.

We consider the Laplace-Stieltjes transformation, which we denote by θn(s) = E[e−sLn ], s ≥ 0. By first step

analysis we obtain that

θ0(s) = 1 , (2.58)

θn(s) =
λ

λ+ μ+ ν + s
θn+1(s) +

μ

λ+ μ+ ν + s
θn−1(s)

+
ν

λ+ μ+ ν + s

n∑

j=0

(
n

n− j

)
pn−jqjθj(s), n ≥ 1. (2.59)

Solving the recursive scheme of equations (2.58) and (2.59) we obtain the expression for θ1(s) as seen in the

following theorem.

Theorem 10 The LST of the busy period of the system is given as

θ1(s) =
λ+ μ+ s

λ
− 1

z0(s)

1φ1

(
− z0(s)

1−z0(s)
q

z0(s)
1−z0(s)

1−z1(s)
z1(s)

q
; q, νz0(s)

λ(1−z0(s))

)

1φ1

(
− z0(s)

1−z0(s)
z0(s)

1−z0(s)
1−z1(s)
z1(s)

q
; q, νz0(s)

λ(1−z0(s))
q

) , s ≥ 0, (2.60)

where

z0(s) =
λ+ μ+ ν + s−

√
(λ+ μ+ ν + s)2 − 4λμ

2μ
and |z0(s)| < 1 ∀ s > 0 (2.61)

z1(s) =
λ+ μ+ ν + s+

√
(λ+ μ+ ν + s)2 − 4λμ

2μ
and |z1(s)| > 1 ∀ s > 0 . (2.62)

Proof. We define the generating function of θn(s) as

Θ(s, z) =
∞∑

n=0

θn(s)z
n, s ≥ 0, |z| < 1.

This mixed transform Θ(s, z) do converges for s ≥ 0 and |z| < 1. Indeed the LST θn(s) = E[e−sLn ] are well-

defined for s ≥ 0. Moreover, for s ≥ 0 we have that |θn(s)| ≤ 1 and hence |Θ(s, z)| ≤
∑∞

n=0 |θn(s)| |z|n ≤∑∞
n=0 |z|n < ∞.

First of all through equations (2.58) and (2.59) we will determine the generating function Θ(s, z) which will lead

us to the calculation of θ1(s).

15



QUES9219_source.tex; 7/03/2011; 10:54 p. 16

Multiplying both sides of the equations (2.58) and (2.59) by z0 and zn, respectively, and summing them for all

n = 0, 1, . . . we obtain

Θ(s, z) = 1 +
λ

z(λ+ μ+ ν + s)
(Θ(s, z)− θ1(s)z − 1) +

μz

λ+ μ+ ν + s
Θ(s, z)

+
ν

(1− pz)(λ+ μ+ ν + s)
Θ

(
s,

qz

1− pz

)
− ν

λ+ μ+ ν + s
.

So we conclude that

B(s, z)Θ(s, z) = z(λ+ μ+ s)− λzθ1(s)− λ+
νz

1− pz
Θ

(
s,

qz

1− pz

)
(2.63)

where B(s, z) = −μz2 + (λ+ μ+ ν + s)z − λ and we can easily ckeck that B(s, z) has two roots given by (2.61)

and (2.62), such that B(s, z) = −μ(z − z0(s))(z − z1(s)) and μz0(s)z1(s) = λ.

By setting

B(s, z)Θ(s, z) = Θ�(s, z)

we can conclude that

Θ�(s, z) = z(λ+ μ+ s)− λzθ1(s)− λ+
νT (z)

qB(s, T (z))
Θ� (s, T (z)) , (2.64)

where T (z) is the operator introduced in (2.49). Iterating (2.64) as in the proof of theorem 7 we obtain that

Θ�(s, z) = z(λ+ μ+ s)− λzθ1(s)− λ

+
n∑

k=1

k∏

j=1

νTj(z)

qB(s, Tj(z))
[Tk(z)(λ+ μ+ s)− λTk(z)θ1(s)− λ]

+

n+1∏

k=1

νTj(z)

qB(s, Tj(z))
Θ� (s, Tn+1(z)) .

Taking the limit as n → ∞ in this last expression, and keeping in mind that

lim
n→∞

Tn(z) = 0 lim
n→∞

B(s, Tn(z)) = −λ

lim
n→∞

νTn(z)
qB(s,Tn(z))

= 0 lim
n→∞

Θ� (s, Tn+1(z)) = 1,

we obtain that

Θ�(s, z) =
∞∑

k=0

k∏

j=1

νTj(z)

qB(s, Tj(z))
[Tk(z)(λ+ μ+ s)− λTk(z)θ1(s)− λ] . (2.65)

We can easily verify that

Ti(z)

B(s, Ti(z))
=

(−1)qiz

λ(1− z)

1 + z
1−z q

i

(1− 1−z0(s)
z0(s)

z
1−z q

i)(1 − 1−z1(s)
z1(s)

z
1−z q

i)
, i ≥ 1

consequently,

k∏

i=1

νTi(z)

qB(s, Ti(z))
= (−1)k

(
νz

λ(1 − z)

)k

q(
k
2)

(− z
1−z q; q)k

(1−z0(s)
z0(s)

z
1−z q; q)k(

1−z1(s)
z1(s)

z
1−z q; q)k

.
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Hence, equation (2.65) assumes the form

B(s, z)Θ (s, z) = (λ+ μ+ s− λθ1(s))

∞∑

k=0

Tk(z)

k∏

j=1

νTj(z)

qB(s, Tj(z))
− λ

∞∑

k=0

k∏

j=1

νTj(z)

qB(s, Tj(z))
, (2.66)

where the two series can be written in terms of q-series as follows

∞∑

k=0

k∏

j=1

νTj(z)

qB(s, Tj(z))
= 2φ2

(
q,− z

1−z q
1−z0(s)
z0(s)

z
1−z q,

1−z1(s)
z1(s)

z
1−z q

; q,
νz

λ(1 − z)

)

∞∑

k=0

Tk(z)

k∏

j=1

νTj(z)

qB(s, Tj(z))
= z 2φ2

(
q,− z

1−z
1−z0(s)
z0(s)

z
1−z q,

1−z1(s)
z1(s)

z
1−z q

; q,
νzq

λ(1 − z)

)

.

In order to calculate θ1(s) we set z = z0(s) in (2.66) and since the left side of the equation is equal to zero we

can solve to obtain θ1(s)

θ1(s) =
λ+ μ+ s

λ
−

∑∞
k=0

∏k
j=1

νTj(z0(s))
qB(s,Tj(z0(s)))

∑∞
k=0 Tk(z0(s))

∏k
j=1

νTj(z0(s))
qB(s,Tj(z0(s)))

.

Writing the two series of the last expression in the canonical form of q-series and observing that for z = z0(s)

the term 1−z0(s)
z0(s)

z
1−z q reduces to q we obtain equation (2.60). �

3 The M/M/1 queue with synchronized abandonments but not for

the customer in service

We proceed with the study of the second abandonment scenario, where we have excluded the customer in service

from the abandonment procedure.

3.1 Model description and notation

We consider anM/M/1 queueing system in which customers arrive according to a Poisson process at rate λ. The

service is provided by a single server, who serves the customers according to a FCFS discipline. The successive

service times are independent exponentially distributed random variables with rate μ. Customers waiting in

the queue become impatient and perform synchronized abandonments at the epochs of a Poisson abandonment

process at rate ν. Every waiting customer at the epochs of the Poisson process decides to abandon the system

with probability p or remains in the system with probability q = 1− p, independently of the others.

The system is represented by a continuous time Markov chain {Q̃(t) : t ≥ 0}, where Q̃(t) is the number of

customers in the system at time t, t ≥ 0. The corresponding transition rate diagram is given in figure 2.

0
λ

�� 1

μ

��
λ

�� 2

(11)pν+μ

��
λ

�� 3

(21)pqν+μ

��

(22)p
2ν

��

λ
�� · · ·

Figure 2: Transition rate diagram of {Q̃(t) : t ≥ 0}.
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Let {pn : n ≥ 0} denote the equilibrium distribution of {Q̃(t) : t ≥ 0}. We also define the probability

generating function P (z) by

P (z) =

∞∑

n=0

pnz
n .

3.2 The steady state distribution

We partition the set space S = {0} ∪ {1, 2, . . .} and we set A = {1, 2, . . .}. We will calculate the stationary

distribution of the censored Markov chain over the set A. Let {pAn }n∈A denote the steady-state distribution of

the censored Markov chain and PA(z) the corresponding probability generating function. We observe then that

the generator of the censored Markov chain, denoted by G(A), is given as

G(A) =

⎡

⎢
⎢⎢
⎣

−(λ+ μ) λ 0 · · ·
μ+ νp −(λ+ μ+ pν) λ · · ·
νp2 μ+ ν

(
2
1

)
pq −(λ+ μ+ νp2 + ν

(
2
1

)
pq) · · ·

...
...

...
. . .

⎤

⎥
⎥⎥
⎦
+

⎡

⎢
⎣

μ

0
...

⎤

⎥
⎦ (λ)−1

[
λ 0 0 · · ·

]

=

⎡

⎢⎢
⎢
⎣

−λ λ 0 · · ·
μ+ νp −(λ+ μ+ ν(1 − q)) λ · · ·
νp2 μ+ ν

(
2
1

)
pq −(λ+ μ+ ν(1− q2)) · · ·

...
...

...
. . .

⎤

⎥⎥
⎥
⎦

Thus the generator of the censored Markov chain is identical to the generator of the first model we have studied

and so we can directly write down the probability generating function for the censored queue from theorem 1.

We also know that the censored queue and the original queue are connected via the following relation

pAn =
pn

1− p0
, ∀n ≥ 1. (3.1)

Taking into consideration equation (3.1) and that pAn = πn−1, for all n ≥ 1, we obtain that

P (z) = (1− p0)zΠ(z) + p0, (3.2)

where Π(z) is given in equation (2.2) and p0 can be calculated from equation (3.1) and the balance equation for

state 0, λp0 = μp1, so we conclude that

π0 =
λ

μ

p0
1− p0

⇒ p0 =
μπ0

λ+ μπ0
,

where π0 = Π(0).

3.3 Factorial moments of the queue length

Differentiating n times equation (3.2) and setting z = 1 we have that

P (n)(1) = (1− p0)[m(n) + nm(n−1)], n ≥ 1,

where m(n) is given in equation (2.15).

3.4 Sojourn time

Let S denote the unconditional total sojourn time of an arbitrary customer in the system, regardless of whether

he completes service or not. Moreover, let Sn denote the conditional total sojourn time of a tagged customer in
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the system, given that upon arrival he finds the system in state n.

By conditioning on whether the next transition is a service completion or an abandonment opportunity we

obtain the equations

E[S0] =
1

μ
, (3.3)

E[Sn+1] =
1

μ+ ν
+

μ

μ+ ν
E[Sn] +

νq

μ+ ν

n∑

i=0

(
n

i

)
pn−iqiE[Si+1], n ≥ 0. (3.4)

We observe that if we replace E[Sn+1] by E[Yn] in equation (3.4) we obtain equation (2.43), and therefore we

have an ‘identical’ recursive scheme to solve with a different initial condition. Based on this observation the

solution of the recursive relations (3.3) and (3.4) is summarized in the following theorem.

Theorem 11 The conditional expected total sojourn time of a tagged customer in the system Sn, given that

upon his arrival he finds the system in state n, is given as follows

E[Sn] = E[Yn−1] +
1

μ
(1− νpE[Yn−1]), n ≥ 0, (3.5)

where E[Y−1] = 0 and E[Yn], n ≥ 0, are given in equation (2.44).

Proof. Let us first define the homogeneous recursive scheme of equation (2.43), this is of the form

xn =
μ

μ+ ν
xn−1 +

νq

μ+ ν

n∑

i=0

(
n

i

)
pn−iqixi, n ≥ 0, (3.6)

and select initial condition x−1 = 1. Then the solution of the non-homogeneous recursive scheme of equation

(3.4), with initial condition (3.3), can be obtained in terms of the solution of the homogeneous equation, xn,

and the non-homogeneous one, E[Yn], in which the initial condition is set to 0. For more details on this theory

the interested reader is referred to the book of Elaydi (2005), chapter 6, p. 306, theorem 6.27. More specifically,

the solution of the non-homegeneous equation (3.4) with non-zero initial condition is given as

E[Sn] = xn−1E[S0] + E[Yn−1], n ≥ 0. (3.7)

Furthermore, we need to connect the two solutions xn and E[Yn]. To this end we observe that the equilibrium

point of the non-homogeneous recursion given by equation (2.43) is 1/νp, hence, the homogeneous recursion,

xn, and the non-homogeneous one, E[Yn], after changing the coordinates to match the initial conditions, are

connected via the following relationship

E[Yn−1] = (1− xn−1)
1

νp
, n ≥ 0. (3.8)

Solving for xn−1 and substituting in (3.7) we obtain the result. �

Remark 2 We observe that the sequence xn = 1−νpE[Yn], that satisfies the recursive scheme (3.6), with initial

condition x−1 = 1, has a probabilistic interpretation, xn−1 can be seen as the probability that a tagged customer,

who upon arrival finds n, n ≥ 0, customers in the system, never abandons the system and stays until his service

starts. Then E[Sn] = E[Yn−1] +
1
μ (1− νpE[Yn−1]) can be analyzed as the sojourn time from state n+1 to state

1, which is equivalent to the sojourn time of the first model given that upon arrival there were n− 1 customers

in front of our customer, plus the service time of the tagged customer given that he has not abandon the system

till his service starts.
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3.5 Busy period

Let J(n,i) be the first passage time to state i starting from n and let ϕn(s) denote the Laplace-Stieltjes trans-

formation of J(n,0). Then J(n,0), for n ≥ 2, can be analyzed as the first passage time from n to state 1, J(n,1),

plus the time starting from state 1 until the first time we enter state 0, J(1,0). However the time J(n,1) is equal

to the first passage time from state n − 1 to state 0 of the first model denoted by Ln−1. Thus, in terms of

Laplace-Stieltjes tranforms we have that ϕn(s) = θn−1(s)ϕ1(s), for all n ≥ 2. Furthermore, by first step analysis

we obtain that

ϕ1(s) =
λ

λ+ μ+ s
ϕ2(s) +

μ

λ+ μ+ s
ϕ0(s)

=
λ

λ+ μ+ s
ϕ2(s) +

μ

λ+ μ+ s

=
λ

λ+ μ+ s
θ1(s)ϕ1(s) +

μ

λ+ μ+ s
.

Consequently,

ϕ1(s) =
μ

λ+ μ+ s− λθ1(s)
.

Substituting θ1(s) from equation (2.60) we obtain that

ϕ1(s) = z0(s)
μ

λ

1φ1

(
− z0(s)

1−z0(s)
z0(s)

1−z0(s)
1−z1(s)
z1(s)

q
; q, νz0(s)

λ(1−z0(s))
q

)

1φ1

(
− z0(s)

1−z0(s)
q

z0(s)
1−z0(s)

1−z1(s)
z1(s)

q
; q, νz0(s)

λ(1−z0(s))

) , s > 0, (3.9)

where z0(s) and z1(s) are given in equations (2.61) and (2.62), respectively.

4 The M/M/c queue with synchronized abandonments but not for

the customers in service

We consider a multi-server M/M/c queue with c identical servers, where customers arrive according to a Poisson

process with rate λ and the service times of the customers are independent exponentially distributed random

variables with common mean 1/cμ and we assume that customers in the waiting line perform synchronized

abandonments, in the same manner as in section 3. We have rescaled the maximum service rate to μ to match

the results of this section to the previous ones.

For this model we have produced similar results following the methodology of the M/M/1 queue with syn-

chronized abandonments for only the waiting customers presented in section 3. More concretely, let pcn, n ≥ 0,

denote the steady state distribution of the number of customers in the system and Pc(z) =
∑∞

n=0 p
c
n the corre-

sponding probability generating function, for the M/M/c model under investigation.

Partitioning the set space S = {0, 1, . . . , c − 1} ∪ {c, c + 1, . . .} and observing that the generator of the

censored Markov chain over the set {c, c+1, . . .} is identical to the generator of the first model, we can connect

the censored queue and the model under consideration and have that Pc(z) is given as

Pc(z) = (1− pc0

c−1∑

i=0

(cλ)i

i!μi
)zcΠ(z) + pc0

c−1∑

i=0

(cλ)i

i!μi
zi, (4.1)
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where Π(z) is given in equation (2.2) and

pc0 =
π0

(cλ)c

c!μc + π0

∑c−1
i=0

(cλ)i

i!μi

and π0 = Π(0).

On what the factorial moments of the queue length are concerned we obtain that by differentiating n times

equation (4.1) and setting z = 1 we have that

P (n)
c (1) =

{
(1 − pc0

∑c−1
i=0

(cλ)i

i!μi )
∑n

k=0

(
n
k

)
c!

(c−k)!m(n−k) + pc0
∑c−1

i=n
(cλ)i

(i−n)!μi , n < c

(1 − pc0
∑c−1

i=0
(cλ)i

i!μi )
∑c

k=0

(
n
k

)
c!

(c−k)!m(n−k), n ≥ c,
(4.2)

where m(n) is given in equation (2.15).

Furthermore, the conditional expected total sojourn time of a tagged customer in the system Sc
n, given that

upon his arrival he finds the system in state n, can be analyzed, for the case n ≥ c, as the time from state n+1

to state c, which is equivalent to E[Yn−c], plus his service time given he has not abandon the system till his

service starts, while for the case n < c, it is just the service time. Hence, E[Sc
n] is given as follows

E[Sc
n] =

c

μ
, n < c, (4.3)

E[Sc
n] = E[Yn−c] +

c

μ
(1− νpE[Yn−c]), n ≥ c, (4.4)

where E[Yn] is given in equation (2.44).

Finally, let ϕc
n(s) denote the Laplace-Stieltjes transformation of the first passage time to state 0 starting

from state n, n ≥ 0. It can be proven using first step analysis that ϕc
n(s), for 1 ≤ n ≤ c, satisfy the following

recursive scheme

ϕc
n(s) =

cλ

cλ+ nμ+ cs
ϕc
n+1(s) +

nμ

cλ+ nμ+ cs
ϕc
n−1(s), 1 ≤ n ≤ c. (4.5)

With conditions ϕc
0(s) = 1 and ϕc

c+1(s) = ϕc
c(s)θ1(s), where θ1(s) is given in equation (2.60).

Corollary 1 An algorithmic solution of the recursive scheme presented in (4.5) can be obtain by observing

that if we divide all terms of (4.5) by ϕc
n(s) and set un(s) = ϕc

n(s)/ϕ
c
n−1(s) we obtain the following first order

recursion

un(s) =
nμ
cλ

1 + s
λ + nμ

cλ − un+1(s)
, 1 ≤ n ≤ c, (4.6)

with conditions u1(s) = ϕc
1(s) and uc+1(s) = θ1(s). Hence,

ϕc
1(s) =

μ
cλ

1 + s
λ + μ

cλ −
2μ
cλ

1 + s
λ + 2μ

cλ − ... μ
λ

1 + s
λ + μ

λ − θ1(s)

, (4.7)

where θ1(s) is given in equation (2.60).
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Artalejo and Lopez-Herrero (2001), p. 211, Corollary 2.1, propose the following algorithmic approach for the

solution of the recursive scheme of equation (4.5)

ϕc
i (s) = −

i−1∑

j=1

j!

(cλ/μ)j
+ ϕc

1(s)

⎛

⎝1 + (1 +
cs

μ
)

i−1∑

j=1

j!

(cλ/μ)j

⎞

⎠

+
s

λ

i−1∑

k=2

ϕc
k(s)

(cλ/μ)k

k!

i−1∑

j=k

j!

(cλ/μ)j
, 2 ≤ i ≤ c+ 1. (4.8)

Keeping in mind that ϕc
c+1(s) = ϕc

c(s)θ1(s), where θ1(s) is known, the problem reduces to solving a simple

recursive system on the unknowns ϕc
i (s), 1 ≤ i ≤ c+ 1.

However, we must note that the homogeneous second order linear difference equation with polynomial coef-

ficients of equation (4.5) can be explicitly solved (see Jagerman (2000), p. 230, formula 2.229a) and we obtain

that

ϕc
n(s) = C0(s)an(s) + C1(s)bn(s), 0 ≤ n ≤ c+ 1, (4.9)

where

an(s) =

n∑

k=0

(
n

k

)(
Γ(μc + 1)

Γ(λ+ 1)Γ(μc − λ+ 1)

)k Γ(k + cs
μ )

Γ( csμ )
, n ≥ 0

bn(s) =
Γ(n+ 1)

Γ(n+ 1 + cs
μ )

1F1(
cs

μ
; n+ 1 +

cs

μ
;
cλ

μ
) , n ≥ 0,

with 1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b−a)

∫ 1

0 eztta−1(1 − t)b−a−1dt being the Kummer (confluent hypergeometric) function

and Γ(a) =
∫∞
0 ta−1e−tdt the Gamma function. Furthermore, C0(s) and C1(s) can be determined from the two

conditions ϕc
0(s) = 1 and ϕc

c+1(s) = ϕc
c(s)θ1(s), more explicitly

C0(s) = 1− C1(s)b0(s)

C1(s) =
ac+1(s)− θ1(s)ac(s)

b0(s)ac+1(s)− bc+1(s)− θ1(s)(b0(s)ac(s)− bc(s))
.

Setting, now n = 1 in equation (4.9) we can obtain the Laplace-Stieltjes transform of the busy period.

Appendix A

Definitions and results of q-hypergeometric series

The q-hypergeometric series are defined as

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, x

)
≡ rφs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, x)

=

∞∑

n=0

(a1, a2, · · · , ar; q)n
(q; q)n(b1, · · · , bs; q)n

[
(−1)nq(

n
2)
]1+s−r

xn, (A.1)

where r and s are non-negative integers, (a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n . . . (ar; q)n and, (a; q)0 = 1 and

(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1), n ≥ 1. The product (a; q)n is referred to as q-shifted factorial.

We also define (a; q)∞ =
∏∞

k=0(1 − aqk) and use the abbreviation (a1, a2, . . . , ar; q)∞ to denote the product

(a1; q)∞(a2; q)∞ . . . (ar; q)∞. In the definition of a q-series through (A.1), it is assumed that bi �= q−m for

m = 0, 1, . . . and i = 1, 2, . . . , s. For |q| < 1, the rφs series converges absolutely for all x when r ≤ s and for
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|x| < 1 when r = s+ 1.

A q-calculus has been developed that parallels the theory of hypergeometric functions. The most important

summation formula for the q-hypergeometric series is given by the q-binomial theorem (see Gasper and Rahman

(2004) p. 8, formula (1.3.2))

1φ0(a;−; q, x) =

∞∑

n=0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

, |x| < 1. (A.2)

The q-binomial theorem enables to express the q-shifted factorials in the form of q-series.

A very important future of the q-calculus is the definition of the q-integral on an interval [0, a] (see Gasper

and Rahman (2004) section 1.11) as

∫ a

0

f(t)dqt = a(1 − q)

∞∑

n=0

f(aqn)qn. (A.3)

As q → 1− the q-analogues reduce to their standard counterparts. In particular we have the relationships:

lim
q→1−

(x(1 − q); q)∞ = e−x, (A.4)

lim
q→1−

(qax; q)∞
(x; q)∞

= (1− x)−a, (A.5)

lim
q→1−

∫ a

0

f(t)dqt =

∫ a

0

f(t)dt. (A.6)

As q → 0+ we can easily see that

lim
q→0+

(x; q)∞ = 1− x, lim
q→0+

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, q

)
= 1. (A.7)

Finally some very important transformation formulas of q-hypergeometric series are listed beneath. The

first ones are Heine’s transformations formula of the 2φ1 series (see Gasper and Rahman (2004) p.359, formulas

(III.1)-(III.3)). It enables one to interchange the arguments of a 2φ1 function in certain ways. More concretely,

it states that

2φ1(a, b; c; q, x) =
(b, ax; q)∞
(c, x; q)∞

2φ1(c/b, x; ax; q, b) (A.8)

2φ1(a, b; c; q, x) =
(c/b, bx; q)∞
(c, x; q)∞

2φ1(abx/c, b; bx; q, c/b) (A.9)

2φ1(a, b; c; q, x) =
(abx/c; q)∞
(x, q)∞

2φ1(c/a, c/b; c; q, abz/c). (A.10)

The second one is Jackson’s three term transformation formula of the 2φ1 series (see Gasper and Rahman (2004)

p. 359, formula (III.5))

2φ1(a, b; c; q, x) =
(abx/c; q)∞
(bx/c; q)∞

3φ2

(
a, c/b, 0

c, cq/bx
; q, q

)
+

(a, bx, c/b; q)∞
(c, x, c/bx; q)∞

3φ2

(
x, abx/c, 0

bx, bxq/c
; q, q

)
. (A.11)

The third one enables the transformation of a r+1φr function to a q-integral (see Gasper and Rahman (2004) p.

26, exercise 1.4 (iii)):

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, qx

)
=

(a1, . . . , ar+1; q)∞
(1− q)(q, b1, . . . , br; q)∞

∫ 1

0

tx−1 (qt, b1t, . . . , brt; q)∞
(a1t, . . . , ar+1t; q)∞

dqt. (A.12)
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