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Generation of non-Gaussian tensor-valued random fields using an
ISDE-based algorithm

J. Guilleminot & C. Soize
Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS
Université Paris-Est, Marne la Vallée, France

ABSTRACT: This work is concerned with the construction of a random generator for non-Gaussian tensor-
valued random fields. Specifically, it focuses on the generation of the class of Prior Algebraic Stochastic Models
associated with elliptic operators, for which the family of first-order marginal probability distributions is con-
structed using the MaxEnt principle. The strategy essentially relies on the definition of a family of diffusion
processes, the invariant measures of which coincide with the target system of first-order marginal probabil-
ity distributions. Those processes are classically defined as the unique stationary solutions of a family of Itd
stochastic differential equations, the definition of which involves the construction of a family of normalized
Wiener processes. The definition of the later allows spatial dependencies to be generated and the algorithm turns
out to be very efficient for high probabilistic dimensions — it does not suffer from the curse of dimensionnality
that is inherently exhibited by Gaussian chaos expansions, for instance. The algorithm is finally exemplified

through the generation of a matrix-valued non-Gaussian random field.

1 INTRODUCTION

This work is concerned with the construction of a ran-
dom generator for non-Gaussian tensor-valued ran-
dom fields. More precisely, we consider the class of
Prior Algebraic Stochastic Models (PASM) associ-
ated with elliptic operators, for which the family of
first-order marginal probability distributions is con-
structed through the MaxEnt principle (Jaynes 1957).
The construction of such a class has been pioneered
— for the tensor case — in (Soize 2006), where the
spatial dependencies are introduced through a non-
linear memoryless mapping acting on a set of R-
valued Gaussian homogeneous random fields (see
(Guilleminot, Noshadravan, Soize, & Ghanem 2011)
and (Guilleminot & Soize 2011) as well).

In this paper, we follow a similar path and extend
the construction performed in (Soize 2006) to a more
general case where the definition of the aforemen-
tioned mapping cannot be readily obtained in a closed
form (Guilleminot & Soize 2013). From a computa-
tional standpoint, the approach essentially relies on
the definition of a family of diffusion processes, the
invariant measures of which coincide by construc-
tion with the system of first-order marginal probabil-
ity distributions to be prescribed. Those processes are
defined as the unique stationary solutions of a fam-
ily of Itd stochastic differential equations (ISDE). In
particular, this family of ISDE involves the definition

of a family of normalized Wiener processes in such
a way that some spatial dependencies are generated
through the generation procedure. We exemplify the
efficiency of the approach through the generation of
a vector-valued random field involved in multiscale
analysis of linear microstructures.

2 PROBLEM STATEMENT

2.1 Definition of a set of Gaussian stochastic germs

Here, we denote by {{&(z),x € ]R{d}}l1 a set of in-
dependent second-order centered homogeneous real-
valued Gaussian random fields, defined on some prob-
ability space g@, T, P) and indexed by R¢, such that
for all ¢ in RY, E{¢;(x)?} = 1,Vi € {1,...,n} (with
£ the mathematical expectation). We further denote
by {@ — pg, (x) }=} the set of associated normalized
continuous autocorrelation functions, with pg, (0) = 1
for all 4 in {1,...,n}. Let {£(x),z € R?} be the
R™-valued Gaussian random field such that &(x) :=
(& (x), ..., & (x)). Note that random field {&(x), x €
R?} is then mean-square continuous on R,

2.2 Definition of the random field

Let {A(x),x € Q} be the non-Gaussian R"-valued
random field (with 2 an open bounded domain in R%)
whose samples must be generated. At this stage, it is



assumed that only the system of first-order marginal
probability density functions (m.p.d.f.) of this field is
given. Specifically, we assume that each probability
density function (p.d.f.) of the aforementionned fam-
ily reads
Va e R", pz(a)=cpexp(—Ps(a)) (1)
for all x in (2, with ¢, the normalization constant. In
Eq. (1), &, : R® — R is a continuous potential func-

tion that is assumed to satisfy the following hypothe-
ses:

H1 the function a — ||V,P.(a)|g- is a locally
bounded function on R" (|| - ||g» being the Eu-
clidean norm in R");

H2 lim inf ®,(a) = +o0;

R—+o00 |laljgn>R

H3 inf ®,(a) =d"" € R;

acR”
He | [|[Va®a(a)|zn pala) da < +oo.
Rn

Justifications of these assumptions can be found
in the next section, where we define random field
{A(x),x € Q} through a nonlinear transformation
(with memory) of the Gaussian germs.

3 RANDOM GENERATOR

3.1 Definition of a family of normalized Wiener
processes

In this section, we introduce a family of normalized
Wiener processes, indexed by 2, that allows for spa-
tial depencies to be introduced. Let W = {W,(r) =
W), ... W), © € Q, r € Rt} be a R™-
valued centered second-order Gaussian random field
such that

(i) forall  in Q, W,(0) =0 a.s.;

(i) the generalized time-derivative of W is the
cylindrical normalized Gaussian white noise /N
(see e.g. (Kree & Soize 1986)).

The covariance generalized function [Cg| of B is
then defined as

[CB(w,iB/,t—i—T,t)]U :50(T)5ijp§i($—$/), (2)

forall 1 <i,j <n, (x,2')in Q x Qand 7 € R, with
0o the Dirac generalized function at the origin of R
and ¢;; the Kronecker delta. It follows that for all x
fixed in Q, W, = {W,(r),r > 0} is a normalized
R"™-valued Wiener process.

3.2 ISDE-based generation algorithm

Throughout this section, x is fixed in (2. Let
{(Ug(r), Vi(r)),r € R*} be a Markov stochastic
process, defined on probability space (O,7,P), with
values in R™ x R™ and satisfying the following Itd
stochastic differential equation (ISDE):

dU,(r) = Vy(r)dr, (3)

dV,i(r) = (—qu)m(Um(r)) — %mem(r)> dr

-/ FdWo (1), (4)

for all r in R*, with f, a free parameter. In prac-
tice, the value of f, is selected in order to shorthen
the transient regime. The above ISDE is completed
with initial condition (U,(0),V,(0)) = (U2, V),
where the probability distribution of random variable
(U2, V) is assumed to be given.

When the potential function ®, satisfies the hy-
potheses H1-H4, it can be shown (Soize 1994) (Soize
2008) that Egs. (3—4) admit a unique stationary so-
lution, which is a diffusion process with drift vec-
tor b(u,v) € R?" and diffusion matrix [o] € MJ?(R)
(M %(R) being the set of all the 2n x 2n symmetric
positive real matrices) such that

b(u,v) = (-qu)w(z) B %fwv> (%)
and

NS
1= (o) i) ©

with [0,,] and [I,] the (n x n) null and identity matri-
ces, respectively. In addition, it can be shown that

ngrnoo U.(r) = A(x) 7
in probability distribution (recall that  is fixed). Con-
sequently, solving the ISDE allows sampling from the
target marginal p.d.f. p, defined by Eq. (1), whereas
the definition of the family of Wiener processes intro-
duced in section 3.1 yields the spatial dependencies
required for the random field modeling. It is worth
stressing that proceeding this way, the correlation
structure induced by the transformation (with mem-
ory) of the Gaussian germs cannot be constrained in
a forward manner (in other words, the nonlinear map-
ping acting of the Gaussian fields is not defined im-
posing a match between the obtained correlation func-
tion and a target one). However, it does depend on the
correlation functions retained for these germs, which
can then be selected through an inverse analysis in or-
der to impose a target correlation structure — see the
application below.



3.3 Discretization scheme

In this work, the ISDE is discretized using a Stormer-
Verlet (SV) algorithm (see (Hairer, Lubich, & Wan-
ner 2002) for a description of geometric integrators;
see (Burrage, Lenane, & Lythe 2007); see (Kloeden
& Platen 1992) for an extensive survey of discretiza-
tion schemes for SDE’s).

Fork=1,...,M — 1, welet UF = U,(r}), V) =
V. (rx) and r, = (k — 1)Ar, where Ar denotes the
sampling step. For £ = 1,..., M — 1, the scheme
writes

U7 = U+ % v, ®)
Vit =an Vit ag LE2 4+ R AW (9)
Ar

U£?+1 — U£+1/2 4 7 mG+17 (10)
Ul=ul, V] =12 (11)
where

e the constants a; and ay are respectively defined
as

1—a Ar
Ao =
1+a ° 1+a

with a = f,Ar/4.

; (12)

a)p =

o AWHI = W, (r11) — Wy(ry) denotes the in-
crement of the Wiener process between 7., and
%, that is, AW +1 is a second-order Gaussian
centered R”-valued random variable with covari-
ance matrix Ar[I,]. More specifically, and fol-
lowing section 3.1, we let

AW = VAr &(011), (13)

where & (0x,1) denotes the (k + 1)-th indepen-
dent realization of random variable &, := &(x).

e the R"-valued random variable L” is defined as

kY _ aq)(u; Aw)
(Lm)j - { auj }u:U£ (14)

forj=1,...,n.
e ul and v? are arbitrary deterministic vectors.

Note that in the present case, the SV scheme turns
out to be explicit and thus, conditionally stable. The
convergence property given by Eq. (7) then reads as
follows:

lim ( lim Uj;) = A(x). (15)

Ar{0 \ k—+oco

3.4 Qualitative comparison with other sampling
techniques

From section 3.3, it is clear that the mapping could
alternatively be defined using a Metropolis-like al-
gorithm depending on a Gaussian transition kernel.
However, the use of such an algorithm would rise
two important issues that are worth pointing out. First
of all, the definition of an optimal parametrization
for the kernel would not be an easy task, even for
moderate probabilistic dimensions. Note that the pro-
posed algorithm does not present such a drawback:
it is only parametrized by two quantities (regardless
of the probabilistic dimension n), namely the inte-
gration step Ar and the parameter f,, the values of
which can be selected in a quite straightforward man-
ner. In addition, the definition of the acceptance rates
at all points is strongly related to the spatial resolu-
tion of the grid over which the random field has to be
sampled. Clearly, the higher the number of points, the
higher the acceptance rates. Therefore, generating the
random field at many points would penalize the sam-
pling quality, so that pursuing such an approach does
not seem realistic for high probabilistic and spatial di-
mensions.

Similarly, and since the nonlinear transformation
only aims at prescribing the system of first-order
marginal p.d.f., a “pointwise” Gaussian chaos expan-
sion (Wiener 1938) could be used as well. From a nu-
merical standpoint, such a strategy would certainly be
the most efficient in terms of computation time — as
well as for subsequent analysis of uncertainty propa-
gation. Nevertheless, and focusing on modeling as-
pects, this efficiency would be strongly penalized by
the well-known curse of dimensionality. Moreover,
the identification procedures for the chaos coefficients
that have been proposed so far rely on imposing a
match for the first- or second-order marginal distribu-
tions, hence making the preservation of the statistical
dependences rather difficult as n increases. Finally,
one should note that numerical convergence problems
can be encountered in practice, depending on the tar-
get p.d.f. that one wants to sample from.

Taking this into account, it is believed that the pro-
posed algorithm does offer a good compromise, in
the sense that it allows for an exact sampling with
respect to the family of first-order marginal distribu-
tions — regardless of the probabilistic dimension —, at
the expense of sampling stationary real-valued Gaus-
sian random fields as many times as required to reach
the stationary regime at all sampling points. Although
this additional computational cost can appear as a li-
mitation of the algorithm when a large number of ite-
rations is necessary for reaching the invariant mea-
sures (especially when the Gaussian random fields are
sampled at many points), we note that:

(i) the number of iterations can be reduced by
choosing a larger integration step (which may
degrade the quality of the approximations for the



diffusions though);

(ii) this limitation is only related to computational
ressources and can thus be reduced by adopting
relevant numerical strategies (e.g. using parallel
computing).

4 APPLICATION

In this section, the above algorithm is illustrated
through the generation of a matrix-valued random
field {[S(x)],x € Q} which is first defined in sec-
tion 4.1. Numerical results are then presented in sec-
tion 4.2.

4.1 Prior algebraic stochastic model

4.1.1 Definition of the random field

Let {[S(x)], z € Q} be aM{ (R)-valued random field
defined as follows. For all x in 2, the random ma-
trix [S(«)] is assumed to be invariant under the ac-
tion of a subgroup O of the special orthogonal group
SO(3,R). From a mechanical point of view, the ran-
dom field {[S(x)],x € 2} can be seen as an elastic-
ity — or compliance — tensor random field exhibiting
some material symmetry properties. In addition, it is
assumed that the above random field satisfies the fol-
lowing properties:

E{[S(x)]} = [Ie]. (16)
E{log (det([S(x)]))} = vs(®), [vs(z)| < 400, (17)
for all « in 2. From now on and without loss of gen-
erality, we assume for simplicity that O = SO(3,R)

(that is, [S(x)] is “isotropic” a.s.) and that parameter
field & — vg(x) is constant over domain 2. We let

vg(x) := v for all x in 2, with v = —0.2. For any «
in 2, the random matrix [S(x)] is decomposed as
[S(x)] =3 S1(@)[J] + 2 Sa(x)[ K], (18)

where [J] and [K] constitute the classical matrix basis
of the set of isotropic elasticity matrices (expressed
using Voigt notation) (Walpole 1984). By construc-
tion, {Si(x),x € Q} and {Sy(x),x € Q} are RS-
valued random fields (since 3 S;(x) and 2 Sy () are
the stochastic eigenvalues, with algebraic multiplic-
ities 1 and 5 respectively, of M{ (R)-valued random
matrix [S(z)]), hence making the above procedure ir-
relevant — the associated potential function does not
satisfy the fundamental hypotheses H1-H4.

In order to circumvent this issue, we introduce an
auxiliary random field {[A(x)], x € Q} such that

[S(x)] =expm ([A(x)]), Ve, (19)

where expm denotes the matrix exponential. It can be
shown that [A(x)] admits a similar decomposition,
namely

[A(z)] = Ai(2)[J] + Az () [K], (20)

where {A;(x),x € Q} and {As(x),x € Q} are now
RR-valued random fields.

4.1.2 First-order marginal p.d.f.
Upon substituting Eq. (19) in Egs. (16-17), it can be
shown that the target MaxEnt marginal p.d.f. pg(a)
of random variable A(x) = (A;(x), As(x)) takes the
form (Guilleminot & Soize 2013)

PA@)(@) = Pa(2)(a1) X Pay(a)(a2) (21)

for all (a1, as) € R x R, where

Pa(@)(a1) = crexp (=Ayexp{ai } — Aay) (22)

and

Pay()(a2) = coexp (=5(Agexp{as} + Aag)), (23)

c1 and ¢, being the two normalization constants. The
parameters A\; > 0, Ay > 0 and A < 0 are such that
the random variable [S(x)] defined by Eq. (19) and
Egs. (20) to (23) satisfies the constraints given by
Eqgs. (16-17). Finally, it is seen that for the case under
consideration, the two-dimensional ISDE given by
Egs. (3—4) reduces to two uncoupled one-dimensional
ISDE’s, each of which involving a potential function
defined with respect to either Eq. (22) or Eq. (23).

Remark. In practice, the random field {[S(x)],z €
2} thus constructed can be used as a prior stochastic
model with almost sure symmetry properties for the
modeling of three-dimensional elasticity tensor ran-
dom fields — see (Guilleminot & Soize 2013) for de-
tails.

4.2  Numerical results

For illustration purposes, a one-dimensional applica-
tion is considered, with 2 =]0, 100[ (in mm). Further-
more, we set f, = 9.5 for all z € Q2 and Ar = 0.001.

4.2.1 Definition of the input correlation functions
Here, we consider Gaussian stochastic germs defined
either by a squared-sinc or by an exponential correla-
tion function, namely

sus 2L, 2 . T
pe (T) = <M> sin’ <2 Li) (24)

or
pe" (1) = exp (—|7|/Ls) 25)

forall 7in Rand i € {1,...,n}, with L, > 0 (here,
n = 2). In both cases, parameter L; corresponds to the
spatial correlation length of the random germ, that is:

+oo
/ |pe,(7)| dT = L. (26)
0

The plot of these correlation functions is shown in
Fig. 1, for L; = 20 mm. We now let L; = Ly = 20
mm.
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Figure 1: Plot of 7 +— Pei
(dashed line) for L; = 20 mm.
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4.2.2 Convergence results

Since the target p.d.f. defined by Eq. (21) does not
depend on z, the convergence towards the station-
ary measure can be investigated once at some arbi-
trary point in {2. Below, this convergence is character-
ized through the convergence of the ergodic estima-

tor for the second-order moment of random variable
||Um||R2:

1 N’ite'r

> 102
T 2 IOl

ConvMes(Nje,) := 27

The plot of ConvMes is shown in Fig. 2. It is seen that

10

1ter)

ConvMes(N,
=
L

10~
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iter x 10°

Figure 2: Convergence towards the stationary solution: plot of
Niter — ConvMes(Ny¢.,) in semilog scale.

a very good convergence to the stationary solution is
obtained for Ny, > 2 x 10°.

4.2.3 Statistical results

The plot of p4,(») and pyu,,) at some arbitrary
point is shown in Fig. 3, hence illustrating the non-
gaussianity of random variables A;(x) and As(z).
The plot of correlation functions for random fields
{Ai(z),z €]0,100[} and {As(x),z €]0,100[} are
shown in Figs. 4 and 5 for input correlation functions
of squared-sinc and exponential types respectively.

marginal p.d.f.

Figure 3: Plot of p.d.f. a — py4,(s)(a) (dashed line) and a —
P A, (x) (@) (solid line) in semilog scale.

1.2
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Figure 4: Plot of correlation function 7 — R(7) associated
with random fields {A4;(z),x €]0,100[} (dashed line) and
{Az(z),x €]0,100[} (solid line) for a squared-sinc input cor-
relation function.
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Figure 5: Plot of correlation function 7 — R(7) associated
with random fields {A4;(z),x €]0,100[} (dashed line) and
{A3(z),x €]0,100[} (solid line) for an exponential input cor-
relation function.

In both cases, it is seen that the output correlation
functions present a shape that is similar to that of the
input correlation functions. This fact is of particular
interest whenever one is interested in imposing a tar-
get shape for the output correlation functions. Finally,
it is observed that the spatial correlation lengths are
slightly modified (with a typical magnitude of about



10%).

5 CONCLUSIONS

We have presented the construction of a random
generator for a class of non-Gaussian tensor-valued
random fields, for which the family of first-order
marginal probability distributions is defined through
the MaxEnt principle. The strategy essentially relies
on the definition of a family of diffusion processes,
the invariant measures of which coincide with the tar-
get system of first-order marginal probability distribu-
tions. Those processes are specifically defined as the
unique stationary solutions of a family of It stochas-
tic differential equations. A particular definition of the
associated family of driving normalized Wiener pro-
cesses finally allows spatial dependencies to be ge-
nerated. The parametrization of the algorithm turns
out to be independent of both the probabilistic and
spatial dimensions and makes the numerical strategy
especially suitable for sampling in high probabilistic
dimensions. It should be noticed that the proposed al-
gorithm can readily be used for sampling any non-
Gaussian vector-valued random field, provided that
the associated family of first-order marginal p.d.f.
takes the form given by Eq. (1) and that the associated
family of potential functions satisfy the hypotheses
H1-H4. Finally, the algorithm is exemplified through
the generation of a matrix-valued non-Gaussian ran-
dom field.
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