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ABSTRACT: The construction of advanced numerical methogdigs for the prediction of the dynamical
behavior of complex uncertain structures represents aoritapt current challenge. In the present work, struc-
tures undergoing large displacements and high strainwaestigated. Of particular interest is the analysis of
the post-buckling dynamics of a cylindrical shell subndtte an horizontal seismic excitation. The nominal (i.e.
without uncertainties) computational model of the cylindfshell is large, i.e. comprising abot200 000 de-
grees of freedom, obtained with the finite element methoagugiree-dimensional solid elements. A nonlinear
reduced-order modeling is first carried out. Then, modeéuaimties (on geometry, material properties, etc.) are
introduced using probabilistic methods and the corresimgrgtochastic reduced-order nonlinear computational
model is obtained. The identification of its parameters g Barried out using nonlinear static post-buckling
data. Finally, a numerical nonlinear dynamic analysis efithcertain shell is performed in a seismic context, for
which the base of the cylindrical shell is submitted to a prieégd rigid shear displacement, modeled through
a centered non-stationary Gaussian second-order stachestess. The stochastic displacement field is then
calculated and the effects of uncertainties and of nontities.are analyzed in details.

1 INTRODUCTION quires appropriate strategies in dynamical analysis,
see for instance (Pradlwarter, Schueller, & Schenk
The paper focuses on the modelling of the post2003, Pradlwarter & Schueller 2011). More partic-
buckling mechanical behavior of thin cylindrical ularly, nonlinear stochastic buckling analyses have
shells. A discrepancy between experimental measureecently been conducted in which geometrical im-
ments and numerical predictions is commonly ob-perfections (Broggi & Schuéller 2011) and random
served, due to the particular sensitivity of thin cylin- boundary conditions (Schenk & Schuéller 2007) were
drical shells to the presence of initial imperfectionsmodeled as Gaussian random fields. Such probabilis-
(heterogeneity of the materials, imperfect boundarytic models of uncertainties will be referred to as para-
conditions, inhomogeneous thickness induced by thenetric here as they focus the uncertainty only on spe-
manufacturing process and geometry, etc.). Note focific aspects/parameters of the computational models
cylindrical shells of very small thickness that the ge-selected by the analyst. An alternative approach, re-
ometrically nonlinear effects induced by large strainsferred to as the nonparametric probabilistic approach,
and large displacements must be taken into accounihas been developed for situations in which the un-
Numerous sensitivity analyses to standard geometricertainty cannot be singled out in one or a few pa-
imperfections can be found in the literature. How-rameters in the computational model. It allows the
ever, a generic sensitivity analysis of such structuresonsideration of both system-parameter uncertainties
with respect to a broad class of imperfections re-and model uncertainties (Soize 2012) by proceeding
quires the introduction of adapted probabilistic ap-at the level of modal/reduced-order models devel-
proaches to represent uncertainties. Problems involeped on deterministic bases. Note that the nonpara-
ing large nonlinear computational models, taking intometric approach has been extended to uncertain non-
account either or both the presence of random uncetinear reduced-order models of geometrically nonlin-
tainties and the stochastic nature of the loading reear structures (Mignolet & Soize 2008). The devel-



opment of such nonlinear reduced-order models rewith initial conditions

quires first the selection of an appropriate determin-

istic basis for the representation of the response, se0) =0 , q(0) =0 . (2)
(Mignolet, Przekop, Rizzi, & Spottswood 2012) for a _
state-of-the-art on the subject. Having established th# EQ.(1),9 = (¢, - ..,qn), N << n is the vector of
reduced-order model of the mean structure, uncertairthe generalized coordinates related tolthevector of
ties on the linear and nonlinear parts of the stiffnesghe physical displacementisby

operator are introduced in the nonparametric frame-

work. This is accomplished through the construction N 8

of a dedicated random operator with values in the! () = Z ¢ qs(t) (3)
set of all positive-definite symmetric real matrices p=1

whose mean value involves all linear, quadratic and

cubic stiffness terms of the mean nonlinear reducedand the reduced operatokd,.5, Dz, /ng andlcfg,y,

order model (Mignolet & Soize 2008). The resulting ’CS}; , are related to the mass, damping, linear stiff-
stochastic nonlinear computational model is characygess terms and to the quadratic, cubic nonlinear stiff-
terized by a single scalar dispersion parameter, qUaniess terms whose explicit construction is detailed
tifying the level of uncertainty in the stiffness proper- i, the context of solid finite elements in (Capiez-
ties which can easily be identified with experiments.l_emout, Soize, & Mignolet 2012). In Eq.(1), the re-
Experimental validations based on this theory can by ceq |oad is split into a static and a dynamic contri-
found in (Capiez-Lernout, Soize, & Mignolet 2012, v, ;o whose latter is issued from a prescribed rigid-
Murthy, Wang, Perez, Mignolet, & Richter 2012) for body displacement of the base of the cylindrical shell.
slender elastic bodies, e.g. beams. The paper is o[ Eq.(3), theR" vectorse®, a = {1,..., N} of the

gfmlzeld a; foIItow;.l Seft'oﬁ' SIiJ_mmarllz_es the malnt rojection basis are assumed to be orthonormal such
steps leading to the stochastic nonlinear compu at(¢*)T ¢ = 8,5, in whichd,s is the Kronecker

tional model using the nonparametric probabilisticsymbo| such thad,s = 1if & = 3 andé,s = 0 oth-

approach for modeling the random uncertainties. rwise.. The efficiency of the mean nonlinear com-

Gaussian non-stationary second-order stochastic proy,arional model strongly depends on the choice of
cess is also introduced to represent the prescribe

earthquake-induced ground-based motions. An idenp is projection basis as can be reviewed in (Mignolet,
tification effort is then carried out to calibrate the stiff- rzekop, Rizzl, & Spottswood 2012). In the present

i . ¢ f the stochasti ircase, the choice of the projection basis is motivated
NEss dispersion parameter of the stochaslic NONNNgy, o, /4j1aple experimental data in the nonlinear static
ear computational model from experimental measuref)ost-buckling (Michel, Limam, & Jullien 2000). For

ments Of the response OT the cylinqrical She”'.Fina”y’this reason, the projection basis is chosen to be com-
the nonlinear post-buckling dynamical analysis of theposed of (1’) the static POD basis (Proper Orthogo-
uncertain cylindrical shell is carried out using the pre- Decomposition) obtained from the mean nonlin-
viously identified stochastic nonlinear computationaly 5. inite element model and (2) selected linear eigen-
model subjected to the prescribed ground motions. modes of vibration issued from the mean linear fi-

nite element model. All the details can be found in

(Capiez-Lernout, Soize, & Mignolet 2013).
2 FORMULATION OF THE PROBLEM

) ) 2.2 Stochastic reduced-order nonlinear
2.1 Mean reduced-order nonlinear computational computational model

mOdel - - . g .
In this Section, the nonparametric probabilistic ap-

The cylindrical shell is assumed to be composed of @roach is used for modeling the uncertainties in the
linear elastic material and to undergo large deformanonlinear computational model and the dynamic load-
tions inducing geometrical nonlinearities. A total La- ing represents an earthquake excitation which is mod-
grangian formulation is chosen and a mean nonlineagled by a nonstationary stochastic process.
finite element computational model of the structure The main idea of the nonparametric probabilistic
(with n DOF) is formulated using three-dimensional approach is to replace each of the reduced-operators
solid finite elements with 8 nodes. In this context, theof Eq.(1) by random operators defined on the prob-
mean reduced-order nonlinear computational modeibility space(©, 7, P). The probability model of
of the structure is constructed and yields the follow-these random operators is constructed from the max-
ing set of nonlinear coupled differential equations: imum entropy principle using the available informa-
tion (Soize 2005, Soize 2012). More particularly, it
. . 1 2 has been shown in (Mignolet & Soize 2008) that the
Mg Gs + Dapdp + ’CQE s + ]Cizﬁ)“f Uy + - nonparametric probabilistic theory, initially introdu-
(1) cedinthe linear context for positive-definite symmet-
IC(?’[;M; Gy qs = FB 4 FO ric operators, can be extended to the geometrically
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nonlinear context. In this case, it can be shown tha{Z] Z, in which [L] is such thafRr] = [L]" [L]. Fur-

the level of uncertainty is quantified by three disper-ther,Z = (Z4,...Z,,) is a Gaussian random vector

sion parameters,,,5p anddx each being defined on such thatt{z;} = 0, &{Z7} = 1,Z,,...,Z,, being

asubse\,;, Ap andAg of R. Note that the stiffness  statistically mdependent

dispersion parametéiy is a single scalar parameter  The stochastic response is represented byRthe

which simultaneously controls the uncertainty levelvalued, non-stationary in time, second-order stochas-

of all the linear and nonlinear stiffness contributions. tic procesdJ(¢), defined on the product of probability
The earthquake excitation is issued from a groundspaceg©, 7, P) and(©’, 7', P '), which is written as

based motion along a given direction. The stochastic

dynamical loadF®"(t) is modeled by the random

N
vector Uit) = > ¢’ Qult) (8)
B=1

Tdyna@) _ —[LM]T [GM(5M>] [LT] I‘(t) , (4)

with values inR”, in which [L,,] is the (N x N)
matrix issued from the Cholesky decomposition of
reduced mass operat@M], [G/(dy)] is the ran- ) @)
dom operator with values in the set of the positive-Mas Qs+ Dap Qs+ Ky) Qs + Kam QpQy +
definite symmetrig¢ N x N) matrices corresponding

inwhichQ = (Q4,...,Qx), N <« nis solution of
the stochastic set of nonlinear differential equations

to the randojsn germ of thg random mass operatqr, and ama Q5 Q, Qs = FSay J:'C?Yn’
where theR" -vector [Lr] is related to the direction
of the excitation and to the mass data, see (Capiez- (9)

Lernout, Soize, & Mignolet 2013). In Eq.(4), the ac-

celeration{I'(¢),t > 0} is modeled here by a Gaus- with initial conditions

sian, non-stationary, centered, second-order stochas- .

tic process defined on a probability spaég, 7', P’)  Q(0) =0 , Q(0) =0 . (10)
which is different from probability space, 7, P).

Consequently, the stochastic proc&ss completely With regard to the numerical solver used, for each
defined by its autocorrelation functioRp(¢,#) =  Monte Carlo realization, a Newmark method is used
E{T(t)T(¢)}. The following usual representation (Bathe 1982), which employs the averaging accelera-
(Kree & Soize 1986) ofl" for earthquake accelero- tion scheme known to be unconditionally stable. With

gramms is adopted this solver, a set of nonlinear algebraic equations must
be solved at each sampling time. This computation
I'(t) = g(t)B(t) |, (5) is addressed by the fixed-point method or by the Cr-

isfield arc-length method (Crisfield 1997) (the fixed-
in which the functiong(¢) is the envelope function pointis favored but if not convergent, it is replaced by
whose representation can be found in (Saragoni &he Crisfield algorithm).
Hart 1974, Boore 2003). FurthefB(¢),t € R} is
a real-valued Gaussian, stationary, centered, second-
order stochastic process for which the power spectra
density functionSg(w) can be written as a rational

function (Kanal 1857) We then have This Section is devoted to the experimental valida-
no_ / o tion of the methodology on a thin cylindrical shell
Rp(t.t) = g(t)g(t) Ra(t =) ©) " for which experimental data is available. Experi-
mental nonlinear static responses are available as a
function of the static shear load magnitude (Michel,

EXPERIMENTAL IDENTIFICATION IN THE
CONTEXT OF STATIC POST-BUCKLING

whereRg(t —t') is the autocorrelation function of the

stochastic proces¥(?), i.e. Combescure, & Jullien 2000, Michel, Limam, & Jul-
lien 2000). For comparison with this data, the stochas-

Ra(t — t') = / Sp(w) et g (7) tic computational model is constructed without the
mass and the dissipation contributions. Furthermore,

the external loading is deterministic.
Let ' be the (n; x 1) vector defined byl = g

(T(t1),...T(ty,)). We introduce the time sampling
t; = (i— DAt i = {1,...,n,}, of [0,T] with T =
ny At. Then denote byRr] = E{I' T} the correla- The experimental data used in this paper is briefly
tion matrix of I, which can be evaluated frofig(t) = summarized below, see (Michel 1997) for complete
of Eq.(7), by Fast Fourier Transform (FFT). The ran-details. The geometry of the cylindrical shell is char-
dom vectorl" can accordingly be written a6 =  acterized by the mean radids= 0.125m, thickness

3.1 Description of the experiments



e = 270107%m and height 0f).125 m. Itis composed the shear point load) . However, replacing the exter-
of nickel, which is assumed to be a linear elastic manal traction loadF™ by F'* = F* + 800 N does not
terial in the range of stresses considered. The bottorshange notably the experimental conditions described
of the cylindrical shell is clamped to a base plate, asin the subsection above. The finite element model is a
sumed to be rigid. The top of the cylindrical shell is regular mesh composed@f, — 1) x ng x (n3—1) =
connected to arigid plate, of thickngs819m, yield- 1 x 7500 x 9599 = 712500 8-nodes solid finite el-
ing a total height of the structure = 0.144m. The  ements with8 Gauss integration points. The mean
loading is transmitted from servo-cylinders throughcomputational model thus has230003 degrees of
this rigid plate. A constant traction lodd = 8500 N freedom. The observation is the displacement of the
is applied to delay the onset of the post-buckling. Anode obs, which coincide with the location of the
controlled static shear point lodd™ with maximum  experimental observation, and is denoteduby(s).
magnitude ob 750 V, is then applied at the top of the The first linear elastic buckling mode was computed
shell. Let(sq, - -, s53) be the sampling of the increas- to occur for a critical shear loaHl.,;; = 9400 N. Al-

ing static shear load, in which corresponds tO N though the experimental critical shear load is found to
andss; to 9750 N. The displacement corresponding be 7450 N, the computed buckling mode is in agree-
to a given static shear load increments measured ment with its experimental counterpart (Michel, Li-
at the observation point, which is the point at whichmam, & Jullien 2000). A sensitivity analysis, con-
the external load is applied. This measured displaceducted with respect to the thicknessthe choice of
ment is denoted by, (s;). Two different mechan- boundary conditions, the parametersandn; con-

ical behaviors can be observed on the experimentatolling the size of the mesh with the current 8-node
load-displacement curve : (1) an elastic domain untifinite elements, has shown these computational results
the critical shear load’", = 7450 N (s = 0.745)  to be the closest to the experimental ones. Knowing
at which the displacement ig;, = 1.53 x 107*m;  that the buckling load decreases with respect to initial
(2) an approximately linear elastic behaviour in theimperfections, a geometrical perturbation taken as the

postbuckling domain investigated. first linear elastic buckling mode shape is added to the
structure with a maximum amplitude 27 x 10~*m
x10* (Michel, Limam, & Jullien 2000). It thus allows the

buckling to be numerically induced.
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sl ] 3.3 Construction of the mean nonlinear reduced
static computational model

The nonlinear static response of the finite element

0 05 - Force/lOOOONi 15 model will be referred to the reference solution. Fig-
. _ . . con ure 2 shows the graph— u.s(s) for s belonging to
Figure 1: Experimental non-linear response: u**"(s) 0,1.5] (thick dashed line) which is to be compared

with Fig.1. A quasi-linear elastic response can be ob-

served fors < 0.45 and then, a smooth transition cor-

responding to the bucklin@.45 < s < 0.85). Seen
3.2 Description of the mean finite element model NeXtis a post-buckling with a quasi-linear elastic be-

havior (0.85 < s < 0.975) (similarly to Fig.1) until
The three-dimensional structure is modeled by a cira linear elastic stiffening takes pla¢e.975 < s <
cular cylindrical shell of height. = 0.144m, mean 1.5) ,s = 1.5 corresponds to a shear point load of
radius0.125m and thicknes®.7 x 10~*m. Its bot- 15000 V). It should be noted that the smooth transi-
tom is clamped and the upper ring is rigid with threetion is directly related to the geometrical perturbation
DOFs in translation. The structure is subjected to thaliscussed above (Michel, Limam, & Jullien 2000).
external shear point loaB*" atx; = h, and constant The above nonlinear reference solution is then used
traction point loadt™ atzs = h . The isotropic linear for determining a projection basis with the Proper
elastic material properties have been experimentall{prthogonal Decomposition method (POD-method),
measured to b& = 1.8 x 101' N.-m~2 andv = 0.3.  which is known to be particularly relevant for nonlin-
The mass density is taken as= 8200 Kg x m™3.  ear problems (Sirovich 1987, Sampaio & Soize 2007).
It should be noted that a concentrated mass= A convergence analysis, carried out in order to select
80 K¢ is added at the free node located at the toghe numberN of POD modes which have to be kept
of the rigid plate along directios, the direction of in the numerical simulation, yield§ = 27.
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Figure 2: Experimental identification : graph of experinant Figure 3: Graph of maximum likefihood functidh-» £™(3).

datas — u®*?(s) (o markers), graph of the reference response

s — u°*(s) (thick dashed line), graph of the confidence region Strongly correlated. This approach proceeds with a

of the random response— Ugs(s,d = 0.45) (grey region). principal component analysis of the random observa-
tions which leads to a reduced set of uncorrelated ran-

3.4 Identification of the stochastic nonlinear static dom variables. The likelihood functiofi,— £7(6),

computational model is evaluated in the space of these uncorrelated random

variables representing the data. It is then obtained

Since the thin cylindrical shell is very sensitive to With & reduction td uncorrelated random variables

small perturbations, a compromise was necessary iand foré € A = [0.2, 0.65]. It was found that the
the sensitivity analysis mentioned above, between imuse of5 uncorrelated variables yields a relative error
proving the fit of the response in the quasi-linear elas®f 5-41% on the trace of the covariance matrix, which
tic domain or in the post-buckling domain. A compar- Was deemed to be sufficiently small. Figure 3 display-
ison of Figs. 1 and 2 confirms that the nonlinear com4ng the graph of the likelihood functiohi— £(4),
putational model has the capability to reasonably repwas obtained using the Monte Carlo numerical sim-
resent the experimental response. Nevertheless, it rélation with n, = 10000 independent realizations.
mains sufficiently distant from the experiments to jus-Note that the likelihood function is replaced by an
tify the implementation of uncertainties leading to aapproximation which is constructed as the product
stochastic nonlinear computational model which willof marginal probability density functions of each un-
be identified using the experimental data. The quasicorrelated random variable. Although this assumption
linear part of the elastic response constructed with théodifies the Likelihood function, it has been shown
computational model yields acceptable results. Théhatits combination with the statistical reduction yield
largest discrepancies between computational modélccurate estimations (Soize, Capiez-Lernout, Durand,
and experimental predictions occur in the bucklingFernandez, & Gagliardini 2008). Seeking the max-
and post-buckling regimes, it is in these loading conimum of £(§) for the experimental identification
ditions that the identification will be performed. This yields the optimal valué®”* = 0.45.

focus is consistent with the physical expectations that
the response is most sensitive to uncertainties in the
regimes. Based on the above discussion, these obs

vations will be the experimented responses in the inThe confidence region of the static nonlinear response
tervals € [0.75,0.975] which is sampled i34 points  predicted with the stochastic nonlinear reduced-order
denoted bys; , i = 20 ...,53. model is then computed with a probability level =

The construction of the stochastic nonlinear(.95; see Figure 2. Also shown on this figure is the ex-
reduced-order computational model using the nonperimental nonlinear response. Despite the slight un-
parametric probabilistic approach is performed as exederestimation provided by the optimal stochastic non-
plained previously. Let/,,(s,d) be the random ob- linear computational model in the linear range (in-
servations with which the parametg¢ will be iden-  duced by the choice of the mean nonlinear compu-
tified. In the present research, the identification protational model as explained above), the results are
cedure is achieved using the maximum likelihoodbroadly consistent with the experimental nonlinear re-
method associated with a statistical reduction of thesponse, validating the stochastic nonlinear reduced-
information (Soize, Capiez-Lernout, Durand, Fernan-order model and its identification. Analyzing the fea-
dez, & Gagliardini 2008). Note that it is particularly tures of the confidence region shown in Fig. 2, it is
adapted to the present case for which the randorfirst observed that the effects of uncertainties increase
variablesU,s(s;,d) are not only dependent but also with the nonlinearity as may be expected. In the buck-

5 Confidence region analysis



ling and post-buckling range, for which the static loade *°“=%7 if ¢ > 0.7s. The stochastic excitation is
increments belongs t0[0.45,0.975], the confidence then obtained using Eq.(4).
region quickly broadens, allowing some realizations
of the random displacement to be_almpst doubled of; o construction of the mean nonlinear
others. Consider next the elastic stiffening range, cor- reduced-order computational model
responding to a static load increment- 0.975, for
which no experimental result is available but whichThe static POD projection basis obtained in Section
can be predicted by the stochastic nonlinear compu3 is reused for the present nonlinear dynamic case.
tational model. First, it is seen that the mechanicalSince the convergence rate of the solution constructed
behavior tends to be a linear one. Moreover, the conwith such a projection basis strongly depends on the
fidence region is more narrow in this range than inexternal applied loads, it is appropriate only if a sim-
the previous one, which demonstrates a robustness dér loading class is used. With the presence of the
the random response with respect to both model andoncentrated mask/’ at the top of the structure, the
system-parameter uncertainties. shear load induced by the ground-based motion is
largest at the top of the structure. This excitation,
in addition to the external constant traction load, is
4 DYNAMIC POST-BUCKLING ANALYSIS OF thus compatible with the loading used for the nonlin-
THE CYLINDRICAL SHELL UNDER A ear static case. Note that the above statically derived
SEISMIC GROUND-BASED MOTION basis is not expected to be sufficient to describe the

nonlinear dynamical response of the shell; it needs

This section concerns the dynamical analysis of thg, he completed by additional basis vectors that we
cylindrical shell subjected to an earthquake basedsg|ect as linear elastic modes. A usual modal analy-
ground motion. The stochastic nonlinear computass of the linearized dynamical computational model
tional model of the shell constructed and |denE|f|ed iNyith the predeformation discussed in Section 3 is
the previous Section is reconvened with = 05" = then performed. An analysis of the firdl eigenfre-
0.45. Its random operators are defined on the probagencies and mode reveals that the first two eigen-
bility space(©, 7, P). Uncertainties on the mass and o ges describe global bending modes of the struc-
damping are neglected here but could easily be ing,re Further, a high modal density is observed, start-
trodu_ceo_l. The_ dynamic Io_adlng co_ndltlons consist iNng with eigenfrequency; = 897.01 H~. There are
a seismic horizontal motion, applied to the base 0g"|5ca) elastic modes belonging to frequency band
the cylindrical shell. The mass being deterministic, 807, 1123] Hz. The ground motions characterized by
the correspordlng shear load is a stochastic proceéﬁe power spectral density of Eq.(11) would strongly
indexed byR™ and defined on the probability space gygite the first two elastic modes but only weakly the
(O, 7", P7). Consequerr)tly, the stochastic physical re-gngying ones. Thus the projection basis of the stochas-
sponse is modeled U&-fand_om nonlinear stochas- ¢ nonlinear reduced-order model must closely rep-
tic process{U(t),t € R”} defined on the product of resent the first two elastic modes but not necessarily
probability spacesO , T, P) and(6', 7", P’). the ensuing ones. As a consequence, these two elas-
tic modes are selected in order to enrich the static
4.1 Definition of the stochastic excitation and of the POD basis (using a partial Gram-Schmidt orthonor-
frequency band of analysis malization procedure). The mean reduced-order com-
putational model is then obtained using the enriched
The stochastic excitation is simulated as explained iprojection basis. The reduced dissipation matrix is
Section 2. For the present application, the power speconstructed according tfD] = ¢ [K] by choosing
tral density Ss(w) of the stochastic proceg(t) is ¢ = 4.44 x 107°. This leads to a critical dissipation
chosen as rate¢ ~ 0.017 for the two first elastic modes.

Tt AT

R 4525%2 (11) 4.3 Results

Sﬁ(w) =3

The response of the shell is monitored as the same po-
sition and in the same direction than above, see Sec-
tion 4.2. This random observation, denotedly; (¢),

is a stochastic process indexed [By7’] and defined

on the product of probability spacé®, 7, P) and
(©',T',P’). It can then be written as

inwhichs = 1.15 x 1074m2.s73,w0 = 785.4rad.s*
and¢ = 0.02. The frequency band of analysidis =
[0, 160] Hz. The time sampling igt = 5 x 107%s,
the total time duratiol” = 1.27 s and therefore, the
number of time steps is; = 2546. The frequency
resolution isé v = 0.78 Hz corresponding to a fre-
quency band0, 1000] Hz (the sampling frequency Unps(£) = 1, () + US, (1) (12)

is v, = 2000 H z). The envelope function is a piece- - o ’

wise continuous function defined kyt) = 25¢*/4  in which u,,,(t) is the deterministic function charac-
if t <0.4s,9(t) =1ift€[04,0.7sandg(t) = terizing the mean of the stochastic nonlinear dynami-



cal response i.e.

wn®) = [ [ Vanlt0.0)aP@)aP @) . 03

and where U5 (t) is a centered non-stationary - T N T 5
stochastic process. In the sequél,,(t,0,0') is de- . ! 3 :
noted byU,,(t; 0), whereb = (6,6").
Four analysis cases (see Table 1) are investigated !
analyzed and compared.

displacement (m)
& o
& o &
displacement (m)
& o
L& o &

Table 1: Description of the analysis cases -
Stiffness Stiffness External load
Casel linear | deterministic| stochastic K os i is % o5 i is

time (s) time ()
Case2 | linear stochastic stochastic _ _ _ . .
Cases | nonlinear| deterministic| stochastic Figure 4: Graphs of functions— U, (t,(B) (red line) and: —

Casel | nonlinear| stochastic stochastic u,,s(t) (blue line) for case$ and2 (upper graphs) and for cases
3 and4 (lower graphs)

Figure 4 displays the graphs of— U (¢,0) (red
line) andt — w,,,(t) (blue line) for the four analy-
sis cases and for a specific realization of the groun

motions. It is seen that,, (¢) is a centered oscillat-
ing function for the linear cases as expected giverrable 2: Description of the local maximum investigated

served that for the linear cases, only one global bend-
ing elastic mode is excited, whereas the nonlinearities
ouple the two global bending elastic modes.

the zero mean character of the excitation. However, Local maximum(m) | time (s)
a small negative mean is observed for the nonlinegrCasel 0.822410~° 0.6685
cases. Superimposing all cases, it is seen, for thisCase2 1.7375107° 0.6695
i7ati i i Case3 0.3744107° 0.6705
present realization, that the geometric nonlinear ef-
: : Caset 0.894810~° 0.6695
fects occur first at,,..;, = 0.16s for a displace-

ment level greater than8 x 10~*m, or 2 of the shell
thickness. Note that these observations are coherent
with the results obtained in the static case and shown
in Figure 2. Comparing casdsand 2 with cases3
and4 respectively, it is seen that the effect of the ge-
ometrical nonlinearities is to decrease the intensity
of the response. Moreover, this effect increases with
the presence of model and system-parameter uncer
tainties in the stochastic computational model. Com-
paring casel with case2, it is seen that the pres-
ence of random uncertainties significantly spreads the
stochastic linear response allowing displacements of
1.7375 x 10~3m, or6 thicknesses, to occur. A similar
conclusion does not seem to hold in the nonlinear case
: when comparing casewith cases, the presence of
random uncertainties only seems to slightly modify
the nonlinear dynamical response. kgt 0.6695 s,

the time for which the response magnitudg, (¢, 0)

is maximum. For all cases, Tabfesummarizes the Figure 5: 3D Representation of the response of realizatitor
response magnitude corresponding to the closest loke cased and2 (upper graphs) and for casgsand4 (lower
cal maximum ofU¢, (¢,0) occurring neat,. Figure 5  9raphs)

displays the 3D representation of the response of real-

ization® corresponding to the local maxima described

in Table2. It is seen that all cases yield different me- CONCLUSION

chanical behaviour. In particular, for ca8ethe in-

vestigated local maxima occurs in a local region forThe paper has presented an experimental validation
which the local maxima are inhibited, due to the non-of an advanced computational method for analyzing
linear restoring forces induced by the nonlinearity.the nonlinear post-buckling behavior of a geomet-
Moreover, it is seen that the nonlinear cases (Gase rically nonlinear thin shell structure in presence of
and4) yield responses which are less spatially smoothuncertainties. The experimental static nonlinear re-
compared to the linear caseand2. It can also be ob- sponse of a very thin cylindrical shell with respect

Z
=
:




to the intensity of a static shear load constitute the (2012). A review of indirect/non-intrusive reduced or-
experimental data. First, the mean nonlinear compu- der modeling of nonlinear geometric structureiur-

; ; _ nal of Sound and Vibration, accepted for publication,
lt_auonal t”;f)del fhas been used fo; generﬁ_tur;]gﬂt]hepné)n http://dx.doi.org/10.1016/j.jsv.2012.10.017
Inear static reterence response irom whic € I:R_/Iignolet, M.-P. & C. Soize (2008). Stochastic reduced order

basis haS{ been constructed. The nonlinear stochastic' models for uncertain geometrically nonlinear dynamicatsy
computational model has then been constructed and tems.Computer Methods in Applied Mechanics and Engi-

experimentally identified to capture the reference re- f}ﬁefigg 1)?7\?\/951—3;?62- VLB, Mianolet. & L. Richt
H H iaMurtny, K., A. ang, R. rerez, P Ignolet, . Ricnter
sponse at best. For this type of very thin structures in (2012). Uncertainty-based experimental validation of-non

YeStigate,d’ the sensitivity O,f the mephanical be_haVior linear reduced order modeldournal of Sound and Vibra-
is very high. The stochastic modeling is considered tjon 331

appropriate when the experimental response belongzadiwarter, H., G. Schueller, & C. Schenk (2003). A computa
to the confidence region. It was observed that the ex- tional procedure to estimate the stochastic dynamic respon

: ; i ; ; of large non-linear FE-model€omputer Methods in Ap-
perimentally identified computational model yields a plied Mechanics and Engineering 1G28), 777—801.

slight overestimation of the static nonlinear responseagiwarter, H. J. & G. I. Schueller (2011). Reliability after-

in the linear range, while the buckling and the post-  ministic non-linear systems subjected to stochastic dymam
buckling ranges, which are particularly sensitive to exci;ation.lnternational Journal for Numerical Methods in
uncertainties, are accurately predicted by the identi- arﬁggilges”2908?3)iz{al(g%_o%?F?émarks onthe efficiency of pod
fied stochastic c_:omputatlonal model. By increasin for médel reduction in non-linear dynamics of continuous
the shear load, it has been shown that the computa- ejastic systemsinternational Journal for Numerical Meth-
tional model predicts a range for which a linear elas-  ods in Engineering 7@), 22-45. _ o

tic stiffening is observed, for which the robustnessSaragoni, G. & G. Hart (1974). Simulation of artificial earth
to uncertainties lightly increases. Finally, the iden- duakes.Earthquake Engineering and Structural Dynam-

e g ; ics 23), 249-267.
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