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ABSTRACT: The construction of advanced numerical methodologies for the prediction of the dynamical
behavior of complex uncertain structures represents an important current challenge. In the present work, struc-
tures undergoing large displacements and high strains are investigated. Of particular interest is the analysis of
the post-buckling dynamics of a cylindrical shell submitted to an horizontal seismic excitation. The nominal (i.e.
without uncertainties) computational model of the cylindrical shell is large, i.e. comprising about4200000 de-
grees of freedom, obtained with the finite element method using three-dimensional solid elements. A nonlinear
reduced-order modeling is first carried out. Then, model uncertainties (on geometry, material properties, etc.) are
introduced using probabilistic methods and the corresponding stochastic reduced-order nonlinear computational
model is obtained. The identification of its parameters is next carried out using nonlinear static post-buckling
data. Finally, a numerical nonlinear dynamic analysis of the uncertain shell is performed in a seismic context, for
which the base of the cylindrical shell is submitted to a prescribed rigid shear displacement, modeled through
a centered non-stationary Gaussian second-order stochastic process. The stochastic displacement field is then
calculated and the effects of uncertainties and of nonlinearities are analyzed in details.

1 INTRODUCTION

The paper focuses on the modelling of the post-
buckling mechanical behavior of thin cylindrical
shells. A discrepancy between experimental measure-
ments and numerical predictions is commonly ob-
served, due to the particular sensitivity of thin cylin-
drical shells to the presence of initial imperfections
(heterogeneity of the materials, imperfect boundary
conditions, inhomogeneous thickness induced by the
manufacturing process and geometry, etc.). Note for
cylindrical shells of very small thickness that the ge-
ometrically nonlinear effects induced by large strains
and large displacements must be taken into account.
Numerous sensitivity analyses to standard geometric
imperfections can be found in the literature. How-
ever, a generic sensitivity analysis of such structures
with respect to a broad class of imperfections re-
quires the introduction of adapted probabilistic ap-
proaches to represent uncertainties. Problems involv-
ing large nonlinear computational models, taking into
account either or both the presence of random uncer-
tainties and the stochastic nature of the loading re-

quires appropriate strategies in dynamical analysis,
see for instance (Pradlwarter, Schueller, & Schenk
2003, Pradlwarter & Schueller 2011). More partic-
ularly, nonlinear stochastic buckling analyses have
recently been conducted in which geometrical im-
perfections (Broggi & Schuëller 2011) and random
boundary conditions (Schenk & Schuëller 2007) were
modeled as Gaussian random fields. Such probabilis-
tic models of uncertainties will be referred to as para-
metric here as they focus the uncertainty only on spe-
cific aspects/parameters of the computational models
selected by the analyst. An alternative approach, re-
ferred to as the nonparametric probabilistic approach,
has been developed for situations in which the un-
certainty cannot be singled out in one or a few pa-
rameters in the computational model. It allows the
consideration of both system-parameter uncertainties
and model uncertainties (Soize 2012) by proceeding
at the level of modal/reduced-order models devel-
oped on deterministic bases. Note that the nonpara-
metric approach has been extended to uncertain non-
linear reduced-order models of geometrically nonlin-
ear structures (Mignolet & Soize 2008). The devel-



opment of such nonlinear reduced-order models re-
quires first the selection of an appropriate determin-
istic basis for the representation of the response, see
(Mignolet, Przekop, Rizzi, & Spottswood 2012) for a
state-of-the-art on the subject. Having established the
reduced-order model of the mean structure, uncertain-
ties on the linear and nonlinear parts of the stiffness
operator are introduced in the nonparametric frame-
work. This is accomplished through the construction
of a dedicated random operator with values in the
set of all positive-definite symmetric real matrices
whose mean value involves all linear, quadratic and
cubic stiffness terms of the mean nonlinear reduced-
order model (Mignolet & Soize 2008). The resulting
stochastic nonlinear computational model is charac-
terized by a single scalar dispersion parameter, quan-
tifying the level of uncertainty in the stiffness proper-
ties which can easily be identified with experiments.
Experimental validations based on this theory can be
found in (Capiez-Lernout, Soize, & Mignolet 2012,
Murthy, Wang, Perez, Mignolet, & Richter 2012) for
slender elastic bodies, e.g. beams. The paper is or-
ganized as follows. Section2 summarizes the main
steps leading to the stochastic nonlinear computa-
tional model using the nonparametric probabilistic
approach for modeling the random uncertainties. A
Gaussian non-stationary second-order stochastic pro-
cess is also introduced to represent the prescribed,
earthquake-induced ground-based motions. An iden-
tification effort is then carried out to calibrate the stiff-
ness dispersion parameter of the stochastic nonlin-
ear computational model from experimental measure-
ments of the response of the cylindrical shell. Finally,
the nonlinear post-buckling dynamical analysis of the
uncertain cylindrical shell is carried out using the pre-
viously identified stochastic nonlinear computational
model subjected to the prescribed ground motions.

2 FORMULATION OF THE PROBLEM

2.1 Mean reduced-order nonlinear computational
model

The cylindrical shell is assumed to be composed of a
linear elastic material and to undergo large deforma-
tions inducing geometrical nonlinearities. A total La-
grangian formulation is chosen and a mean nonlinear
finite element computational model of the structure
(with n DOF) is formulated using three-dimensional
solid finite elements with 8 nodes. In this context, the
mean reduced-order nonlinear computational model
of the structure is constructed and yields the follow-
ing set of nonlinear coupled differential equations:

Mαβ q̈β + Dαβ q̇β + K
(1)
αβ qβ + K

(2)
αβγ qβ qγ + . . .

. . . K
(3)
αβγδ qβ qγ qδ = F stat

α +F dyn
α ,

(1)

with initial conditions

q(0) = 0 , q̇(0) = 0 . (2)

In Eq.(1),q = (q1, . . . , qN), N ≪ n is the vector of
the generalized coordinates related to theRn-vector of
the physical displacementsu by

u(t) =

N
∑

β=1

�β qβ(t) , (3)

and the reduced operatorsMαβ , Dαβ , K(1)
αβ andK(2)

αβγ ,

K
(3)
αβγδ are related to the mass, damping, linear stiff-

ness terms and to the quadratic, cubic nonlinear stiff-
ness terms whose explicit construction is detailed
in the context of solid finite elements in (Capiez-
Lernout, Soize, & Mignolet 2012). In Eq.(1), the re-
duced load is split into a static and a dynamic contri-
bution whose latter is issued from a prescribed rigid-
body displacement of the base of the cylindrical shell.
In Eq.(3), theRN vectors�α , α = {1, . . . ,N} of the
projection basis are assumed to be orthonormal such
that (�α)T �α = δαβ, in which δαβ is the Kronecker
symbol such thatδαβ = 1 if α = β andδαβ = 0 oth-
erwise.. The efficiency of the mean nonlinear com-
putational model strongly depends on the choice of
this projection basis as can be reviewed in (Mignolet,
Przekop, Rizzi, & Spottswood 2012). In the present
case, the choice of the projection basis is motivated
by available experimental data in the nonlinear static
post-buckling (Michel, Limam, & Jullien 2000). For
this reason, the projection basis is chosen to be com-
posed of (1) the static POD basis (Proper Orthogo-
nal Decomposition) obtained from the mean nonlin-
ear finite element model and (2) selected linear eigen-
modes of vibration issued from the mean linear fi-
nite element model. All the details can be found in
(Capiez-Lernout, Soize, & Mignolet 2013).

2.2 Stochastic reduced-order nonlinear
computational model

In this Section, the nonparametric probabilistic ap-
proach is used for modeling the uncertainties in the
nonlinear computational model and the dynamic load-
ing represents an earthquake excitation which is mod-
eled by a nonstationary stochastic process.

The main idea of the nonparametric probabilistic
approach is to replace each of the reduced-operators
of Eq.(1) by random operators defined on the prob-
ability space(Θ , T , P). The probability model of
these random operators is constructed from the max-
imum entropy principle using the available informa-
tion (Soize 2005, Soize 2012). More particularly, it
has been shown in (Mignolet & Soize 2008) that the
nonparametric probabilistic theory, initially introdu-
ced in the linear context for positive-definite symmet-
ric operators, can be extended to the geometrically



nonlinear context. In this case, it can be shown that
the level of uncertainty is quantified by three disper-
sion parametersδM , δD andδK each being defined on
a subset∆M ,∆D and∆K of R. Note that the stiffness
dispersion parameterδK is a single scalar parameter
which simultaneously controls the uncertainty level
of all the linear and nonlinear stiffness contributions.

The earthquake excitation is issued from a ground-
based motion along a given direction. The stochastic
dynamical loadF dyna(t) is modeled by the random
vector

F
dyna(t) = −[LM ]T [GM(δM)] [LT ]G(t) , (4)

with values inRN , in which [LM ] is the (N × N)
matrix issued from the Cholesky decomposition of
reduced mass operator[M], [GM(δM)] is the ran-
dom operator with values in the set of the positive-
definite symmetric(N ×N) matrices corresponding
to the random germ of the random mass operator, and
where theRN -vector [LT ] is related to the direction
of the excitation and to the mass data, see (Capiez-
Lernout, Soize, & Mignolet 2013). In Eq.(4), the ac-
celeration{G(t), t ≥ 0} is modeled here by a Gaus-
sian, non-stationary, centered, second-order stochas-
tic process defined on a probability space(Θ′,T ′,P ′)
which is different from probability space(Θ,T,P).
Consequently, the stochastic processG is completely
defined by its autocorrelation functionRG(t, t′) =
E{G(t)G(t′)}. The following usual representation
(Kree & Soize 1986) ofG for earthquake accelero-
gramms is adoptedG(t) = g(t)b(t) , (5)

in which the functiong(t) is the envelope function
whose representation can be found in (Saragoni &
Hart 1974, Boore 2003). Further,{b(t), t ∈ R} is
a real-valued Gaussian, stationary, centered, second-
order stochastic process for which the power spectral
density functionSb(ω) can be written as a rational
function (Kanai 1957). We then have

RG(t, t′) = g(t) g(t′)Rb(t− t′) , (6)

whereRb(t− t′) is the autocorrelation function of the
stochastic processb(t), i.e.

Rb(t− t′) =

∫R Sb(ω) eiω(t−t′) dω . (7)

Let � be the (nt × 1) vector defined by� =
(

Γ(t1), . . .Γ(tnt
)
)

. We introduce the time sampling
ti = (i− 1)∆t , i = {1, . . . , nt}, of [0, T ] with T =
nt∆t. Then denote by[R�] = E{��T} the correla-
tion matrix of�, which can be evaluated fromRb(t)
of Eq.(7), by Fast Fourier Transform (FFT). The ran-
dom vector� can accordingly be written as� =

[L]Z, in which [L] is such that[R�] = [L]T [L]. Fur-
ther, Z = (Z1, . . .Znt

) is a Gaussian random vector
such thatE{Zj} = 0, E{Z2

j} = 1, Z1, . . . ,Znt
being

statistically independent.
The stochastic response is represented by theRn-

valued, non-stationary in time, second-order stochas-
tic processU(t), defined on the product of probability
spaces(Θ,T,P) and(Θ′,T ′,P ′), which is written as

U(t) =

N
∑

β=1

�β Qβ(t) , (8)

in whichQ = (Q1, . . . ,QN), N ≪ n is solution of
the stochastic set of nonlinear differential equations

Mαβ Q̈β +Dαβ Q̇β +K
(1)
αβ Qβ + K

(2)
αβγ Qβ Qγ + . . .

K
(3)
αβγδ Qβ Qγ Qδ = F stat

α +F
dyn
α ,

(9)

with initial conditions

Q(0) = 0 , Q̇(0) = 0 . (10)

With regard to the numerical solver used, for each
Monte Carlo realization, a Newmark method is used
(Bathe 1982), which employs the averaging accelera-
tion scheme known to be unconditionally stable. With
this solver, a set of nonlinear algebraic equations must
be solved at each sampling time. This computation
is addressed by the fixed-point method or by the Cr-
isfield arc-length method (Crisfield 1997) (the fixed-
point is favored but if not convergent, it is replaced by
the Crisfield algorithm).

3 EXPERIMENTAL IDENTIFICATION IN THE
CONTEXT OF STATIC POST-BUCKLING

This Section is devoted to the experimental valida-
tion of the methodology on a thin cylindrical shell
for which experimental data is available. Experi-
mental nonlinear static responses are available as a
function of the static shear load magnitude (Michel,
Combescure, & Jullien 2000, Michel, Limam, & Jul-
lien 2000). For comparison with this data, the stochas-
tic computational model is constructed without the
mass and the dissipation contributions. Furthermore,
the external loading is deterministic.

3.1 Description of the experiments

The experimental data used in this paper is briefly
summarized below, see (Michel 1997) for complete
details. The geometry of the cylindrical shell is char-
acterized by the mean radiusR = 0.125m, thickness



e = 27010−6m and height of0.125m. It is composed
of nickel, which is assumed to be a linear elastic ma-
terial in the range of stresses considered. The bottom
of the cylindrical shell is clamped to a base plate, as-
sumed to be rigid. The top of the cylindrical shell is
connected to a rigid plate, of thickness0.019m, yield-
ing a total height of the structureh = 0.144m. The
loading is transmitted from servo-cylinders through
this rigid plate. A constant traction loadF t = 8500N
is applied to delay the onset of the post-buckling. A
controlled static shear point loadF sh with maximum
magnitude of9750N , is then applied at the top of the
shell. Let(s1, · · · , s53) be the sampling of the increas-
ing static shear load, in whichs1 corresponds to0N
ands53 to 9750N . The displacement corresponding
to a given static shear load incrementsj is measured
at the observation point, which is the point at which
the external load is applied. This measured displace-
ment is denoted byuexp(sj). Two different mechan-
ical behaviors can be observed on the experimental
load-displacement curve : (1) an elastic domain until
the critical shear loadF sh

crit = 7450N (scrit = 0.745)
at which the displacement isuexp

crit = 1.53× 10−4m;
(2) an approximately linear elastic behaviour in the
postbuckling domain investigated.
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Figure 1: Experimental non-linear responses 7→ uexp(s)

.

3.2 Description of the mean finite element model

The three-dimensional structure is modeled by a cir-
cular cylindrical shell of heighth = 0.144m, mean
radius0.125m and thickness2.7 × 10−4m. Its bot-
tom is clamped and the upper ring is rigid with three
DOFs in translation. The structure is subjected to the
external shear point loadF sh atx3 = h, and constant
traction point loadF t atx3 = h . The isotropic linear
elastic material properties have been experimentally
measured to beE = 1.8× 1011N.m−2 andν = 0.3.
The mass density is taken asρ = 8200Kg ×m−3.
It should be noted that a concentrated massM ′ =
80Kg is added at the free node located at the top
of the rigid plate along directione2 the direction of

the shear point load) . However, replacing the exter-
nal traction loadF t by F

′t = F t + 800N does not
change notably the experimental conditions described
in the subsection above. The finite element model is a
regular mesh composed of(nr−1)×nθ × (n3−1) =
1 × 7500× 9599 = 712500 8-nodes solid finite el-
ements with8 Gauss integration points. The mean
computational model thus has4230003 degrees of
freedom. The observation is the displacement of the
node obs, which coincide with the location of the
experimental observation, and is denoted byuobs(s).
The first linear elastic buckling mode was computed
to occur for a critical shear loadFcrit = 9400N . Al-
though the experimental critical shear load is found to
be7450N , the computed buckling mode is in agree-
ment with its experimental counterpart (Michel, Li-
mam, & Jullien 2000). A sensitivity analysis, con-
ducted with respect to the thicknesse, the choice of
boundary conditions, the parametersnθ andn3 con-
trolling the size of the mesh with the current 8-node
finite elements, has shown these computational results
to be the closest to the experimental ones. Knowing
that the buckling load decreases with respect to initial
imperfections, a geometrical perturbation taken as the
first linear elastic buckling mode shape is added to the
structure with a maximum amplitude of2.7× 10−4m
(Michel, Limam, & Jullien 2000). It thus allows the
buckling to be numerically induced.

3.3 Construction of the mean nonlinear reduced
static computational model

The nonlinear static response of the finite element
model will be referred to the reference solution. Fig-
ure 2 shows the graphs 7→ uobs(s) for s belonging to
[0,1.5] (thick dashed line) which is to be compared
with Fig.1. A quasi-linear elastic response can be ob-
served fors < 0.45 and then, a smooth transition cor-
responding to the buckling(0.45 < s < 0.85). Seen
next is a post-buckling with a quasi-linear elastic be-
havior (0.85 < s < 0.975) (similarly to Fig.1) until
a linear elastic stiffening takes place(0.975 < s <
1.5) , s = 1.5 corresponds to a shear point load of
15000N). It should be noted that the smooth transi-
tion is directly related to the geometrical perturbation
discussed above (Michel, Limam, & Jullien 2000).
The above nonlinear reference solution is then used
for determining a projection basis with the Proper
Orthogonal Decomposition method (POD-method),
which is known to be particularly relevant for nonlin-
ear problems (Sirovich 1987, Sampaio & Soize 2007).
A convergence analysis, carried out in order to select
the numberN of POD modes which have to be kept
in the numerical simulation, yieldsN = 27.
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Figure 2: Experimental identification : graph of experimental
datas 7→ uexp(s) (o markers), graph of the reference response
s 7→ uobs(s) (thick dashed line), graph of the confidence region
of the random responses 7→ Uobs(s, δ = 0.45) (grey region).

3.4 Identification of the stochastic nonlinear static
computational model

Since the thin cylindrical shell is very sensitive to
small perturbations, a compromise was necessary in
the sensitivity analysis mentioned above, between im-
proving the fit of the response in the quasi-linear elas-
tic domain or in the post-buckling domain. A compar-
ison of Figs. 1 and 2 confirms that the nonlinear com-
putational model has the capability to reasonably rep-
resent the experimental response. Nevertheless, it re-
mains sufficiently distant from the experiments to jus-
tify the implementation of uncertainties leading to a
stochastic nonlinear computational model which will
be identified using the experimental data. The quasi-
linear part of the elastic response constructed with the
computational model yields acceptable results. The
largest discrepancies between computational model
and experimental predictions occur in the buckling
and post-buckling regimes, it is in these loading con-
ditions that the identification will be performed. This
focus is consistent with the physical expectations that
the response is most sensitive to uncertainties in these
regimes. Based on the above discussion, these obser-
vations will be the experimented responses in the in-
tervals ∈ [0.75,0.975] which is sampled in34 points
denoted bysi , i = 20 . . . ,53.

The construction of the stochastic nonlinear
reduced-order computational model using the non-
parametric probabilistic approach is performed as ex-
plained previously. LetUobs(s, δ) be the random ob-
servations with which the parameterδK will be iden-
tified. In the present research, the identification pro-
cedure is achieved using the maximum likelihood
method associated with a statistical reduction of the
information (Soize, Capiez-Lernout, Durand, Fernan-
dez, & Gagliardini 2008). Note that it is particularly
adapted to the present case for which the random
variablesUobs(si, δ) are not only dependent but also
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Figure 3: Graph of maximum likelihood functionδ 7→ Lred
(δ).

strongly correlated. This approach proceeds with a
principal component analysis of the random observa-
tions which leads to a reduced set of uncorrelated ran-
dom variables. The likelihood function,δ 7→ Lred(δ),
is evaluated in the space of these uncorrelated random
variables representing the data. It is then obtained
with a reduction to5 uncorrelated random variables
and for δ ∈ ∆ = [0.2 , 0.65]. It was found that the
use of5 uncorrelated variables yields a relative error
of 5.41% on the trace of the covariance matrix, which
was deemed to be sufficiently small. Figure 3 display-
ing the graph of the likelihood functionδ 7→ Lred(δ),
was obtained using the Monte Carlo numerical sim-
ulation with ns = 10000 independent realizations.
Note that the likelihood function is replaced by an
approximation which is constructed as the product
of marginal probability density functions of each un-
correlated random variable. Although this assumption
modifies the Likelihood function, it has been shown
that its combination with the statistical reduction yield
accurate estimations (Soize, Capiez-Lernout, Durand,
Fernandez, & Gagliardini 2008). Seeking the max-
imum of Lred(δ) for the experimental identification
yields the optimal valueδopt = 0.45.

3.5 Confidence region analysis

The confidence region of the static nonlinear response
predicted with the stochastic nonlinear reduced-order
model is then computed with a probability levelPc =
0.95; see Figure 2. Also shown on this figure is the ex-
perimental nonlinear response. Despite the slight un-
derestimation provided by the optimal stochastic non-
linear computational model in the linear range (in-
duced by the choice of the mean nonlinear compu-
tational model as explained above), the results are
broadly consistent with the experimental nonlinear re-
sponse, validating the stochastic nonlinear reduced-
order model and its identification. Analyzing the fea-
tures of the confidence region shown in Fig. 2, it is
first observed that the effects of uncertainties increase
with the nonlinearity as may be expected. In the buck-



ling and post-buckling range, for which the static load
increments belongs to[0.45 ,0.975], the confidence
region quickly broadens, allowing some realizations
of the random displacement to be almost doubled of
others. Consider next the elastic stiffening range, cor-
responding to a static load increments > 0.975, for
which no experimental result is available but which
can be predicted by the stochastic nonlinear compu-
tational model. First, it is seen that the mechanical
behavior tends to be a linear one. Moreover, the con-
fidence region is more narrow in this range than in
the previous one, which demonstrates a robustness of
the random response with respect to both model and
system-parameter uncertainties.

4 DYNAMIC POST-BUCKLING ANALYSIS OF
THE CYLINDRICAL SHELL UNDER A
SEISMIC GROUND-BASED MOTION

This section concerns the dynamical analysis of the
cylindrical shell subjected to an earthquake based-
ground motion. The stochastic nonlinear computa-
tional model of the shell constructed and identified in
the previous Section is reconvened withδK = δoptK =
0.45. Its random operators are defined on the proba-
bility space(Θ , T , P). Uncertainties on the mass and
damping are neglected here but could easily be in-
troduced. The dynamic loading conditions consist in
a seismic horizontal motion, applied to the base of
the cylindrical shell. The mass being deterministic,
the corresponding shear load is a stochastic process
indexed byR+ and defined on the probability space
(Θ′,T ′,P ′). Consequently, the stochastic physical re-
sponse is modeled byRn-random nonlinear stochas-
tic process{U(t), t ∈ R+} defined on the product of
probability spaces(Θ , T , P) and(Θ′,T ′,P ′).

4.1 Definition of the stochastic excitation and of the
frequency band of analysis

The stochastic excitation is simulated as explained in
Section 2. For the present application, the power spec-
tral densitySβ(ω) of the stochastic processb(t) is
chosen as

Sβ(ω) = s
ω4 + 4 ξ

2
ω2ω2

(ω2 − ω2)2 + 4 ξ
2
ω2ω2

, (11)

in whichs = 1.15×10−4m2.s−3,ω = 785.4 rad.s−1

andξ = 0.02. The frequency band of analysis isBν =
[0 , 160]Hz. The time sampling isδ t = 5 × 10−4 s,
the total time durationT = 1.27 s and therefore, the
number of time steps isnt = 2546. The frequency
resolution isδ ν = 0.78Hz corresponding to a fre-
quency band[0 , 1000]Hz (the sampling frequency
is νe = 2000Hz). The envelope function is a piece-
wise continuous function defined byg(t) = 25 t2/4
if t < 0.4 s, g(t) = 1 if t ∈ [0.4 , 0.7] s andg(t) =

e−10(t−0.7) if t > 0.7 s. The stochastic excitation is
then obtained using Eq.(4).

4.2 Construction of the mean nonlinear
reduced-order computational model

The static POD projection basis obtained in Section
3 is reused for the present nonlinear dynamic case.
Since the convergence rate of the solution constructed
with such a projection basis strongly depends on the
external applied loads, it is appropriate only if a sim-
ilar loading class is used. With the presence of the
concentrated massM ′ at the top of the structure, the
shear load induced by the ground-based motion is
largest at the top of the structure. This excitation,
in addition to the external constant traction load, is
thus compatible with the loading used for the nonlin-
ear static case. Note that the above statically derived
basis is not expected to be sufficient to describe the
nonlinear dynamical response of the shell; it needs
to be completed by additional basis vectors that we
select as linear elastic modes. A usual modal analy-
sis of the linearized dynamical computational model
with the predeformation discussed in Section 3 is
then performed. An analysis of the first40 eigenfre-
quencies and mode reveals that the first two eigen-
modes describe global bending modes of the struc-
ture. Further, a high modal density is observed, start-
ing with eigenfrequencyν3 = 897.01Hz. There are
38 local elastic modes belonging to frequency band
[897 , 1123]Hz. The ground motions characterized by
the power spectral density of Eq.(11) would strongly
excite the first two elastic modes but only weakly the
ensuing ones. Thus the projection basis of the stochas-
tic nonlinear reduced-order model must closely rep-
resent the first two elastic modes but not necessarily
the ensuing ones. As a consequence, these two elas-
tic modes are selected in order to enrich the static
POD basis (using a partial Gram-Schmidt orthonor-
malization procedure). The mean reduced-order com-
putational model is then obtained using the enriched
projection basis. The reduced dissipation matrix is
constructed according to[D] = ζ [K] by choosing
ζ = 4.44× 10−5. This leads to a critical dissipation
rateξ ≃ 0.017 for the two first elastic modes.

4.3 Results

The response of the shell is monitored as the same po-
sition and in the same direction than above, see Sec-
tion 4.2. This random observation, denoted byUobs(t),
is a stochastic process indexed by[0, T ] and defined
on the product of probability spaces(Θ , T , P) and
(Θ′,T ′,P ′). It can then be written as

Uobs(t) = uobs(t) + U c
obs(t) , (12)

in which uobs(t) is the deterministic function charac-
terizing the mean of the stochastic nonlinear dynami-



cal response i.e.

uobs(t) =

∫

Θ

∫

Θ′

Uobs(t, θ, θ
′)dP(θ)dP ′(θ′) , (13)

and where U c
obs(t) is a centered non-stationary

stochastic process. In the sequel,Uobs(t, θ, θ
′) is de-

noted byUobs(t;�), where� = (θ, θ′).
Four analysis cases (see Table 1) are investigated,

analyzed and compared.

Table 1: Description of the analysis cases
Stiffness Stiffness External load

Case1 linear deterministic stochastic
Case2 linear stochastic stochastic
Case3 nonlinear deterministic stochastic
Case4 nonlinear stochastic stochastic

Figure 4 displays the graphs oft 7→ U c
obs(t,�) (red

line) andt 7→ uobs(t) (blue line) for the four analy-
sis cases and for a specific realization of the ground
motions. It is seen thatuobs(t) is a centered oscillat-
ing function for the linear cases as expected given
the zero mean character of the excitation. However,
a small negative mean is observed for the nonlinear
cases. Superimposing all cases, it is seen, for this
present realization, that the geometric nonlinear ef-
fects occur first attnonlin = 0.16 s for a displace-
ment level greater than1.8× 10−4m, or 2

3
of the shell

thickness. Note that these observations are coherent
with the results obtained in the static case and shown
in Figure 2. Comparing cases1 and 2 with cases3
and4 respectively, it is seen that the effect of the ge-
ometrical nonlinearities is to decrease the intensity
of the response. Moreover, this effect increases with
the presence of model and system-parameter uncer-
tainties in the stochastic computational model. Com-
paring case1 with case2, it is seen that the pres-
ence of random uncertainties significantly spreads the
stochastic linear response allowing displacements of
1.7375× 10−3m, or6 thicknesses, to occur. A similar
conclusion does not seem to hold in the nonlinear case
: when comparing case3 with case4, the presence of
random uncertainties only seems to slightly modify
the nonlinear dynamical response. Lett0 = 0.6695 s,
the time for which the response magnitudeU c

obs(t,�)
is maximum. For all cases, Table2 summarizes the
response magnitude corresponding to the closest lo-
cal maximum ofU c

obs(t,�) occurring neart0. Figure 5
displays the 3D representation of the response of real-
ization� corresponding to the local maxima described
in Table2. It is seen that all cases yield different me-
chanical behaviour. In particular, for case3, the in-
vestigated local maxima occurs in a local region for
which the local maxima are inhibited, due to the non-
linear restoring forces induced by the nonlinearity.
Moreover, it is seen that the nonlinear cases (case3
and4) yield responses which are less spatially smooth
compared to the linear cases1 and2. It can also be ob-

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

Figure 4: Graphs of functionst 7→ U c
obs(t,�) (red line) andt 7→

uobs(t) (blue line) for cases1 and2 (upper graphs) and for cases
3 and4 (lower graphs)

served that for the linear cases, only one global bend-
ing elastic mode is excited, whereas the nonlinearities
couple the two global bending elastic modes.

Table 2: Description of the local maximum investigated
Local maximum(m) time (s)

Case1 0.8224 10−3 0.6685
Case2 1.7375 10−3 0.6695
Case3 0.3744 10−3 0.6705
Case4 0.8948 10−3 0.6695

Figure 5: 3D Representation of the response of realization� for
the cases1 and2 (upper graphs) and for cases3 and4 (lower
graphs)

CONCLUSION

The paper has presented an experimental validation
of an advanced computational method for analyzing
the nonlinear post-buckling behavior of a geomet-
rically nonlinear thin shell structure in presence of
uncertainties. The experimental static nonlinear re-
sponse of a very thin cylindrical shell with respect



to the intensity of a static shear load constitute the
experimental data. First, the mean nonlinear compu-
tational model has been used for generating the non-
linear static reference response from which the POD
basis has been constructed. The nonlinear stochastic
computational model has then been constructed and
experimentally identified to capture the reference re-
sponse at best. For this type of very thin structures in-
vestigated, the sensitivity of the mechanical behavior
is very high. The stochastic modeling is considered
appropriate when the experimental response belongs
to the confidence region. It was observed that the ex-
perimentally identified computational model yields a
slight overestimation of the static nonlinear response
in the linear range, while the buckling and the post-
buckling ranges, which are particularly sensitive to
uncertainties, are accurately predicted by the identi-
fied stochastic computational model. By increasing
the shear load, it has been shown that the computa-
tional model predicts a range for which a linear elas-
tic stiffening is observed, for which the robustness
to uncertainties lightly increases. Finally, the iden-
tified stochastic computational model has been used
for predicting the nonlinear dynamical post-buckling
response, under a stochastic excitation induced by a
ground-based motion of the structure.
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