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Abstract. This paper treats the problem of pipes conveying fluid, which has several engineering
applications, such as micro-systems and drill-string dynamics. The aim of this work is twofold:
(1) propose a stochastic model for the fluid-structure interaction considering modeling errors
and (2) analyze the stability of the stochastic system. The Euler-Bernoulli model is used to
model the pipe and the plug flow model is used to take into account the presence of the internal
flow. The resulting differential equation is discretized by means of the finite element method and
a reduced-order model is constructed with the normal modes of the beam model. A variation of
the nonparametric probabilistic approach is used to model uncertainties in the fluid-structure
interaction, since this approach is able to take into account modeling errors. The numerical
results show how the random response of the system changes for different levels of uncertainties.
The probability of instability is also computed for different levels of uncertainties.
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1 INTRODUCTION

Slender flexible tubes with internal flow or pipes conveying fluids are present in a number of
applications ranging from micro-systems to biological devices, drill-strings or heat exchangers
[1, 2, 3]. Typically, the standard configuration is a straight tube mounted over supports carrying
a steady flow of constant velocity U [4]. Ambient perturbations might entail low amplitude
vibrations of the structure around the standard configuration if the velocity is kept below a
certain threshold. Above the critical speed, the coupled system formed by the structure and the
flow might undergo large vibrations and complex nonlinear dynamical response. To understand
this unstable behavior [5] becomes instrumental for improving the design of the systems and
mitigate damage effects. Besides, this large diversity in the vibrations response renders this
problem quite attractive for theoretical and numerical studies.

Computer models are nowadays widespreadly used in the design and analysis of standard en-
gineering systems. Many noncritical decisions are taken based on computational simulations.
Despite the consolidation of powerful and reliable methods leading to small numerical errors,
the extension of this common practice to more critical systems is hindered by the presence of
inevitable uncertainties associated to the modeling. Fluctuations around nominal values of pa-
rameters, initial and boundary conditions, or production tolerances might entail, after a number
of nonlinear calculations, a large variation on the output of the simulations. So, in order to im-
prove the reliability of predictions, those uncertainties must be taken into account. Here, this is
carried out within a probabilistic framework in which physical quantities involved in the mod-
eling are represented by random variables or fields. Design criteria are then based on failure
probabilities and reliability analysis [6].

On the initial stages of the analysis, low order models considering simplified physics are
employed. The use of simple models makes feasible to analyze a significant number of scenar-
ios. Complying with that, the flexible tubes are modeled here as Euler-Bernoulli beams and the
internal fluid motion is described through a one-space dimension plug flow model, such that
the resulting coupled model consists on a one-dimensional linear partial differential equation
parametrized by the flow speed U . The deterministic analysis of the stability of this system has
been studied [7], thus we propose an analysis of the stability of the stochastic system. In [8]
the stochastic stability analysis is done considering stochastic time varying loads, which differs
from the present analysis, in which the system is uncertain.

The coupling is responsible for the existence of unstable modes of the system and, therefore,
plays a central role in the present analysis. In order to endow the model with an improved
capacity of describing the fluid-structure coupling, a probabilistic model relying upon the non-
parametric approach for uncertainties introduced in [9] is proposed. That approach has been
applied in many different areas [1, 10, 11] to cope with uncertainties arising from different
sources along the modeling process.

This nonparametric probabilistic approach, to be described in more details later, consists in
deriving for the reduced-order model of the original problem, random matrices corresponding
to a probabilistic density function obtained with the available information through the principle
of maximum entropy [12]. Here, two matrices are obtained associated to damping and stiffness
engendered by the flow. They replace the ones derived based on simplifications of the coupled
system kinematics. Thus, the stability analysis considering randomness relies on solving a
stochastic eingenvalue problem. The eingenvalues are now random variables and the stability
is dictated by the probability of their sign to be positive. A number of results is presented with
emphasis on the statistics characterization of the eingenvalues.
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This paper is organized as follows: the deterministic system is depicted in Sections 2, 3, 4
and 5, where the equations, the dimensionless quantities and the stability analysis are presented.
The probabilistic model is developed in Section 6. Finally, the numerical results are shown in
Section 7 and the concluding remarks are made in Section 8.

2 DETERMINISTIC MODEL

Figure 1 sketches the system considered in the analysis.

Figure 1: Sketch of the system considered in the analysis (the arrow represents the internal fluid flow).

Using the Euler-Bernoulli beam theory, the partial differential equation governing the dy-
namics of the structure is written as [13]:

m
∂2v(x, t)

∂t2
+ EI

∂4v(x, t)

∂x4
= f(x, t) x ∈ [0, L] , t ∈ [0, T ] , (1)

with appropriate boundary and initial conditions, where v is the transversal displacement, L is
the length of the beam, m is the mass per unit length, E is the elasticity modulus, I is the area
moment of inertia and f is the external force.

To model the inside flow, the plug flow model [14] is used. Let r = xi + yj be a point
measured from the origin, where (i, j) is fixed in a inertial reference, with j in the transverse
direction and i perpendicular to it, in the axial direction. The velocity of the fluid is given by

vf ' U i + U
∂v

∂x
j +

∂v

∂t
j , (2)

where U is the speed of the fluid, and it is assumed that ∂v/∂x is the (small) rotation of the
beam cross sectional area. Hence, the fluid acceleration, which is the material derivative of vf ,
is given by

af =
Dvf

Dt
=
∂vf

∂t
+ (vf · ∇)vf (3)

If U is constant dU/dt=0, then we arrive to

af =

(
∂2v

∂t2
+ 2U

∂2v

∂x∂t
+ U2 ∂

2v

∂x2

)
j . (4)

The force per unit length is obtained multiplying the acceleration by the fluid mass per unit
length Mf

ff =

(
Mf

∂2v

∂t2
+ 2MfU

∂2v

∂x∂t
+MfU

2 ∂
2v

∂x2

)
j . (5)
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Including this force in Eq. (1), we arrive in:

(m+Mf )
∂2v

∂t2
+ 2MfU

∂2v

∂x∂t
+MfU

2 ∂
2v

∂x2
+ EI

∂4v

∂x4
= f . (6)

The above equation shows that the fluid contributes linearly to the mass, damping and stiffness
of the system. Equation (6) is discretized by means of the finite element method: v(e)(ξ, t) =
N(ξ)u(e)(t), where the shape functions, N, are Hermitian functions and the element displace-
ment vector u(e) = [v1 ∂v1/∂ζ v2 ∂v2/∂ζ], in which ξ = x/le is the local coordinate and
le is the element length. The element matrices (mass, fluid damping, fluid stiffness, bending
stiffness) are the following: [M ](e) = (m + Mf )

∫ 1

0
NTNledξ, [Cf ](e) = 2MfU

∫ 1

0
NTN′dξ,

[Kf ](e) = −MfU
2
∫ 1

0
N′TN′ 1

le
dξ, [Kb]

(e) = EI
∫ 1

0
N′′Tv N′′v 1

l3e
dξ. The resulting global discretized

system is given by:

[M ]ü(t) + [Cf ]u̇(t) + ([Kb] + [Kf ])u(t) = f(t) , (7)

where [M ] ∈ Rmxm is the positive–definite mass matrix, [Kb] ∈ Rmxm is the positive–definite
bending matrix and [Kf ] ∈ Rmxm is the negative–definite fluid stiffness matrix. u(t) ∈ Rm is
the response vector and f(t) ∈ Rm is the force vector. Matrix [Cf ] ∈ Rmxm in general is not
symmetric and can be separated in a symmetric positive-definite part and a skew-symmetric
part. Due to the boundary conditions of our application, [Cf ] is skew-symmetric, however, we
still call it damping matrix, even though it not responsible to dissipate energy. In the frequency
domain, Eq. (7) can be written as

−ω2[M ]û(ω) + iω[Cf ]û(ω) + ([Kb] + [Kf ])û(ω) = f̂(ω) , (8)

where û(ω) ∈ Cm is the response vector and f̂(ω) ∈ Cm is the force vector.

3 DIMENSIONLESS QUANTITIES

To be able to do a more general analysis, some dimensionless quantities are introduced:

ζ =
x

L
, η =

v

L
, τ = t

(
EI

(m+Mf )L4

)1/2

,

β =
Mf

m+Mf

, u = U

(
Mf

EI

)
, f = F

L3

EI
,

$ =
1

τ
.

(9)

where ζ is the dimensionless length, η is the dimensionless transverse displacement, τ is the
dimensionless time, β is the ratio of fluid mass, u is the dimensionless speed, f is the dimen-
sionless force, and $ is the dimensionless frequency.
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4 REDUCED-ORDER MODEL

A reduced–order model [15, 16] is going to be construct for the system given by Eq.(8). Lets
first write the homogeneous equation associated to Eq.(8):

(−ω2[M ] + iω[Cf (U)] + [Kf (U)] + [Kb])û(ω) = 0 , (10)

The following generalized eigenvalue problem is solved to compute the reduction basis that
will be used:

(−ω2[M ] + [Kb])φ = 0 , (11)

corresponding to U equals to zero. With this choice, (1) we guarantee a good basis ([M ] and
[Kb] are positive–definite) and (2) it is not necessary to compute a different basis for each value
of U . The displacement is written as û(ω) = [Φ]q̂(ω) and the response in the frequency domain
is computed using the reduced-order model:

(−ω2[Mr] + iω[Cr(U)] + [Kr(U)])q̂(ω) = f̂(ω) . (12)

The reduced matrices are given by

[Mr] = [Φ]T [M ][Φ] , [Cr(U)] = [Φ]T [Cf (U)][Φ] ,

[Kfr(U)] = [Φ]T [Kf (U)][Φ] , [Kbr] = [Φ]T [Kb][Φ] ,

[Kr(U)] = [Kfr(U)] + [Kbr] ,

(13)

where [Φ] = [φ1 φ2 ...φn], with (n < m). It should be noted that [Mr] = δij and [Φ]T [Kb][Φ] =
δijω

2
i , in which δ is the Dirac delta.

5 STABILITY ANALYSIS

To perform the stability analysis we will double the size of the system in the following way:

[
[0] [I]

−[Kr(U)] −[Cr(U)]

]
︸ ︷︷ ︸

Br(U)

(
q̂
iωq̂

)
︸ ︷︷ ︸

y

= iω

[
[I] [0]
[0] [Mr]

]
︸ ︷︷ ︸

Dr

(
q̂
iωq̂

)
(14)

Therefore, a generalized eigenvalue problem associated with Eq.(14) is written as:

Br(U)y = λDry . (15)

where the eigenvalues λ = Re(λ) + iIm(λ), in which Re(·) and Im(·) refer to real and imag-
inary parts. If Re(λ) > 0 the system is unstable. If Re(λ) = 0 the system is unstable is the
corresponding eigenvalues are not simple.
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6 PROBABILISTIC MODEL

To model the uncertainty in the fluid-structure interaction we will make an adaptation of the
nonparametric probabilistic approach [9, 17] because it is able to cope with model uncertainties.
The adaptation consists in using the reduced-order model and the random matrix theory. Since
the damping and stiffness matrices come from the same model, they may be statistically corre-
lated and one must find a way to find their joint distribution. In order to achieve this goal, we
propose to gather the information of both damping and stiffness of the fluid in a single operator,
in the following way:

[A(U)] = i[Cr(U)] + [Kfr(U)] , (16)

such that they will be generated randomly together (explained in the sequence) and later we can
extract individually the random matrices [Cr(U)] and [Kfr(U)] as it will be explained further in
this section. The operator needs to pass through some transformations before we can apply the
nonparametric probabilistic approach, similar to what was done in [18]. Lets first do the polar
decomposition (omitting the dependence on U to simplify the notation):

[A] = [Q][P ] , (17)

where [Q] is a unitary matrix ([Q]∗[Q] = [Q][Q]∗ = [I]), in which ∗ is the conjugate transpose,
and [P ] is a Hermitian positive-definite matrix. Note that [A] is invertible for all U > 0, since
[Kfr(U)] is symmetric negative-definite and thus invertible for U > 0. This decomposition
will be computed using the singular value decomposition [19]: [A] = [U ][S][V ]∗, with [P ] =
[V ][S][V ]∗ and [Q] = [U ][V ]∗. The Cholesky decomposition can be applied to matrix [P ]:

[P ] = [L]∗[L] . (18)

The uncertainty in the fluid-structure interaction model is assumed to be mainly due to the
uncertainty on the operator [P ], obtained through the polar decomposition. Finally, introducing
the random germ [G]:

[P] = [L]∗[G][L] , (19)

where [P] and [G] are random matrices (note that the boldface is used for a random matrix).
Thus, we have the random operator

[A] = [Q][P] = [Q][L]∗[G][L] . (20)

And the random damping and stiffness matrices happen to be:

[Cr] = Im([A]) and [Kfr] = Re([A]) . (21)

Without going into further details, the probability density function of the random matrix [G]
and its random generator can be found in [9].
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The level of uncertainty related to the fluid-structure interaction model is controlled by the
dispersion parameter δ of matrix [G] defined as:

δ =

{
1

n
E{||[G]− [I]||2F}

} 1
2

, (22)

where n is the dimension of [G], [ I ] is the identity matrix, E{·} denotes the mathematical ex-
pectation and ||[A]||F = (trace{[A][A]T})1/2 denotes the Frobenius norm. The random eigen-
value problem related to Eq.(14) is given by:

[
[0] [I]

−[Kr(U)] −[Cr(U)]

]
︸ ︷︷ ︸

Br(U)

Y = iΩ

[
[I] [0]
[0] [Mr]

]
︸ ︷︷ ︸

Dr

Y (23)

where [Kr(U)] = [Kfr(U)] + [Kbr] , and the random generalized eigenvalue problem that has
to be solved is the following:

Br(U)Y = ΛDrY . (24)

where the eigenvalues are random variables Λ = Re(Λ) + iIm(Λ). Writing Û(ω) = [Φ]Q̂(ω),
the stochastic system related to Eq. (12) is given by:

(−ω2[Mr] + iω[Cr(U)] + [Kr(U)])Q̂(ω) = f̂(ω) , (25)

where Û(ω) is the random response.

7 NUMERICAL RESULTS

The beam is divided in 40 finite elements (after convergence check) and the first four normal
modes are considered in the analysis. There are two important dimensionless parameters: β
(mass relation) and u (dimensionless flow speed). In this analysis we fix β = 0.24 and vary the
dimensionless speed u.

7.1 Deterministic analysis

Figure 2 shows the stability charts using the real (Fig. 2(a)) and imaginary parts (Fig. 2(b))
of half of the eigenvalues. As u increases, the system gets more unstable. When u = 3.15
there is the first divergence mode, when u = 6.26 there is the second divergence mode and the
coupled-mode flutter, and when u = 9.43 there is the second divergence mode, as indicated
in the figure. Figure 2(b) shows that as u increases, the system gets less stiff, that is the four
natural frequencies decrease. These results are in accordance with the ones found in [14].

Figure 3 shows the amplitude of the displacement in the frequency domain for u = {1.0, 2.5}.
The curve related to the higher u is moved to the left (system less stiff). The force applied was
f = 1 × 10−4 at each degree of freedom of the beam and the response shown is the absolute
value of the dimensionless displacement in the middle of the beam.

The next section analyzes how these results change when the stochastic model is taken into
account.
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Figure 2: Stability charts. Real (a) and imaginary part (b) of λ.

7.2 Stochastic analysis

Now we analyze the stochastic response of the system. We have used 1000 Monte Carlo
samples in the analysis, since it is sufficient for a reasonable mean square convergence of the
random eigenvalues. Figures 4 and 5 show the 95% confidence region for δ = {0.05; 0.1}.
When δ increases the confidence region also increases, as expected. It can be seen that when
u = 0 there is no uncertainty in λ, but the uncertainty then increases. However the robustness
of the system varies depending on the speed u, as it is observed for Re(λ); between u = 7 and
8 the confidence region is thinner and close to u = 12 it is wider.

When the lines of the graphics cross each other, it is hard to follow the modes. Instead of
analyzing these crossings, lets evaluate the probability of being in a instability region. We define
two failure probabilities: (1) one related to the divergence instability and (2) other related to the
coupled-mode flutter instability. Figure 6(a) shows that until about u = 3 the probability of
divergence is close to zero, but for u > 3.5 it becomes 100%. The same way, Figure 6(b) shows
that until about u = 5 the probability of coupled-mode flutter is close to zero, but for u > 6.5 it
becomes 100%. To get a better feeling of this probability of failure, take a look at Figure 7. It
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Figure 3: Frequency response amplitude at ζ = 0.5.

shows the histogram of max(Re(Λ)) related to the coupled-mode flutter for two different u’s.
In both cases there is a big probability that max(Re(Λ))= 0. However, for higher flow speeds,
the probability that this random variable is greater than zero increases. An interesting fact to
note is that the random variable max(Re(Λ)) follows a mixed distribution, with a concentrated
probability at point zero (stable condition, if only coupled-mode flutter instability is considered)
and a continuous distribution above zero (unstable condition relate to flutter).

Now we will detail the analysis of the probability of being in a coupled-mode flutter condi-
tion for different levels of uncertainties. Figure 8 shows the probability of coupled-mode flutter
as a function of the flow speed u for different levels of uncertainty (delta values). The dash-
doted arrows show that if the deterministic (δ = 0) limit speed is considered, the probability of
failure would be about 50%; which is a bad scenario. This is an important result, and it shows
that an uncertainty model should be taken into account.

On the other hand, the solid arrows show that if we define a failure probability, say 20%,
depending on the level of uncertainty there will be a limit flow speed for each value of delta:
u = 6.12 for δ = 0.1, u = 6.20 for δ = 0.05, u = 6.20 for δ = 0.05 and u = 6.26 for
δ = 0.01. As expected, if delta increases, the limit u should decrease because the scenario is
getting worse. Finally, Figure 9 shows the response in the frequency domain for u = 3.1 and
δ = 0.1. It is noted that the uncertain region is bigger when the frequency is close to zero,
where the stabilities are put in check.

8 CONCLUDING REMARKS

The problem of a tube with internal flow is analyzed in this paper. A probabilistic model
based on the nonparametric probabilistic approach was proposed to model uncertainties in the
fluid-structure interaction. This probabilistic model is able to take into account modeling errors
related to the fluid-structure interaction.

A simple Euler-Bernoulli beam and a plug flow model are considered to model the system,
which is discretized by means of the finite element methods and reduced using the normal
modes of the beam. The stability analysis is done for different levels of uncertainties show-
ing how confidence limits change for different values of dimensionless flow speed. Also, the
probability of instability is computed for different levels of uncertainty of the fluid-structure
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Figure 4: 95% confidence interval for δ = 0.05.

interaction. An interesting fact is that the random variable related to the max of the real part
of the random eigenvalues has a mixed distribution (discrete and continuous). It seems that the
proposed probabilistic model is well suited for the problem analyzed, although other analysis
should be performed and the previsions compared with experimental data.
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