
HAL Id: hal-00806402
https://hal.science/hal-00806402

Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical behavior of trains excited by a non-Gaussian
vector-valued random field

G. Perrin, Christian Soize, Denis Duhamel, C. Fünfschilling

To cite this version:
G. Perrin, Christian Soize, Denis Duhamel, C. Fünfschilling. Dynamical behavior of trains excited by a
non-Gaussian vector-valued random field. COMPDYN 2013, 4th ECCOMAS Thematic Conference on
Computational Methods in Structural Dynamics and Earthquake Engineering, Jun 2013, Kos Island,
Greece. pp.1-14. �hal-00806402�

https://hal.science/hal-00806402
https://hal.archives-ouvertes.fr


COMPDYN 2013
4th ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, V. Papadopoulos, V. Plevris (eds.)

Kos Island, Greece, 12–14 June 2013

DYNAMICAL BEHAVIOR OF TRAINS EXCITED BY A
NON-GAUSSIAN VECTOR VALUED RANDOM FIELD.

G. Perrin1,2,3, C. Soize1, D. Duhamel2, and C. Funfschilling3

1Université Paris-Est, Modélisation et Simulation Multi-Échelle (MSME UMR 8208 CNRS).
5 Bd. Descartes, 77454 Marne-la-Vallée, France.

e-mail: guillaume.perrin@enpc.fr, christian.soize@univ-paris-est.fr

2 Université Paris-Est, Navier (UMR 8205 ENPC-IFSTTAR-CNRS).
Ecole Nationale des Ponts et Chaussées, 6 et 8 Avenue Blaise Pascal, Cité Descartes, Champs sur

Marne, 77455 Marne-la-Vallée, Cedex 2, France.
e-mail: denis.duhamel@enpc.fr

3SNCF, Innovation and Research Department.
Immeuble Lumière, 40 avenue des Terroirs de France, 75611, Paris, Cedex 12, France.

e-mail: christine.funfschilling@sncf.fr

Keywords: Karhunen-Loève Reduction, Polynomial Chaos Expansion, Random fields, Rail-
way Track Geometry.

Abstract. Since 2012, European high speed railway networks are meant to have gone to mar-
ket. Hence, several high speed trains, such as ICE, TGV, ETR 500, Sapsan..., are likely to run
on the same tracks, whereas they have been originally designed for specific and different rail-
way networks. Due to different mechanical properties and structures, the dynamic behaviors,
the agressiveness of the vehicle on the track and the probabilities of exceeding security and
comfort thresholds will be very different from one train to an other. These maintenance, cer-
tification and comfort criteria depend on the dynamic interaction between the vehicle and the
railway track and in particularly on the contact loads between the wheels and the rail, which
are very hard to evaluate experimentally. Therefore, the numerical simulation is bound to play
a key role in this context, as it is able to compute these quantities of interest. Nevertheless, the
track-vehicle system being strongly non-linear, this dynamic interaction has to be analyzed not
only on a few track portions but on the whole realm of possibilities of running conditions that
the train is bound to be confronted to during its lifecycle. In reply to this concern, this paper
presents a method to analyze the influence of the track geometry variability on the train behav-
ior, which could be very useful to evaluate and compare the agressiveness of different trains.
This method is based on a stochastic modeling of the track geometry, for which parameters have
been identified with experimental measurements.
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1 INTRODUCTION

If simulation is introduced in certification and conceptionprocesses, it has to be very repre-
sentative of the physical behaviour of the system. The modelhas thus to be fully validated and
the simulations have to be raised on a realistic and representative set of excitations.

Hence, this work presents a three steps method to characterize the influence of the track
geometry on the train dynamics. The first step, which is presented in Section 2, corresponds
to the classical description of the studied mechanical problem. A particuler attention has to be
paid to the definition of the quantities of interest, as this choice will play a major role on the
propagation method. Then, Section 3 deals with the characterization of the input variability. At
last, Section 3 presents the propagation of the variabilitythrough the mechanical system. Two
applications of the method will then be analyzed: the influence of an increase of the speed on
the train stability and the quantification of the agressiveness of three high speed trains that have
different mechanical properties.

2 STEP A: DESCRIPTION OF THE STOCHASTIC MECHANICAL MODELING

This section is devoted to the description of the stochasticmodeling of the railway system.

2.1 Description of the railway dynamic problem

As presented in Introduction, a railway dynamic problem canbe seen as the excitation of the
train by the track geometry through the wheel/rail contact forces, where the wheel/rail contact
forces are computed from the wheel profile and the rail profilethanks to the Hertz and Kalker
theories. The dynamic(ui(t), u̇i(t)) of each mass bodyi of the train at each time stept ≥ 0,
that we describe by the vector of the generalized coordinates,

U(t) = (u1(t), u2(t), · · · , u̇1(t), u̇2(t), · · ·) , (1)

can therefore be determined by solving the Euler-Lagrange equation, which reads:

d

dt

(

∂Ec

∂u̇i

)

− ∂Ec

∂ui
= Li(U , T ), (2)

with Ec the total kinetic energy of the train, andLi(U , T ) the general load that is applied to the
mass bodyi, which depends on the track geometryT and on the generalized coordinatesU .
Eq. (2) can be rewritten in a matricial form as:

[A(U )]U̇ = F (U , T ), (3)

with [A] andF two stronglynon-linear operators. This system is usually solved with an explicit
scheme.

The generalized coordinatesU , for which evolution is computed from Eq. (3), are then
post-treated to define the final outputs of the railway simulation. In this work, three criteria are
introduced to analyze the vehicule dynamics on a given trackgeometry of total lengthStot:

• a shifting criterion:

(Yℓ + Yr)max = max
wheelset w

max
0≤s≤Stot

{Y w
ℓ (s) + Y w

r (s)} , (4)
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• a derailment criterion:

(Y/Q)max = max
wheel q

max
0≤s≤Stot

{Yq(s)/Qq(s)} , (5)

• a wear criterion:

(Tγ) =
∑

wheel q

∫ Stot

0

Tq(s)γq(s)ds, (6)

where:

• Y k
ℓ andY k

r are the left and right lateral forces of the same wheelsetk, such that the higher
(Yℓ + Yr)max is, the more chance for a shifting of the track there is;

• Yq andQq are the lateral and vertical components of the wheel/rail contact force at wheel
q, such that the higher(Y/Q)max is, the more on the flange a wheel of the train can be;

• Tq andγq are respectively the creep force and the slip at wheelq, such that the higher
(Tγ) is, the higher the contact wear is likely to be for one run of the complete train.

Finally, the deterministic railway problem, corresponding to the dynamics of a vehicleV on
a track geometryT can be expressed as:

(V, T ) 7→ c = g (V, T ) , c = ((Yℓ + Yr)max, (Y/Q)max, (Tγ)) , (7)

where it is reminded thatg is a complex and non-linear operator.

2.2 Stochastic problem

In this work, it is supposed that a normalized model of a trainis available, for which me-
chanical parameters are fixed and have been accurately identified. Moreover, two description
scales can be distinguished for the track geometry:

• on the first hand, the track design, which corresponds to the parameters of the mean line
position, that is to say the vertical curvaturecV , the horizontal curvaturecH , and the track
superelevationcL, is decided once for all at the building of a new track for economical
and political reasons;

• on the second hand, for a fixed track design, the track irregularities are in constant evolu-
tion, due to the interactions between the train and the track, to the maintenance operations,
and to the wheather conditions. There are four kinds of trackirregularities: the horizontal
and vertical alignment irregularities,x1 andx2, the cant deficienciesx3, and the aligne-
ment irregularitiesx4.

It is supposed in this work that the track irregularities characterization can be separated
from the track design description. Hence, in the following,a measured track design is cho-
sen and only the track irregularities will be supposed to be variable. In this prospect, let
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X = (X1, X2, X3, X4) be the vector-valued random field corresponding to the four track ir-
regularities, for which statistical characteristics haveto be identified from experimental data.
As a consequence, vectorc, which gathers the three criteria of interest, becomes a random
vectorC, and the stochastic problem can be expressed by:

X 7→ C = G (X) . (8)

The choice of the quantities of interest is crucial as it willrule the choice of the propagation
method. In this work, we are interested in the PDF of each criterion, that are denoted bypCi

,
1 ≤ i ≤ 3.

3 STEP B: CHARACTERIZATION OF THE INPUT VARIABILITY

We assume in this work that the track irregularities can be seen as a vector-valued random
field, X = (X1, X2, X3, X4), which gathers the four kinds of track irregularities. Character-
izing the input variability of the railway stochastic problem amounts thus to identifying the
distribution ofX from experimental measurements.

To this end, the measurement train IRIS 320 has been running continuously since 2007 over
the French railway network, measuring and recording the track geometry of the main national
lines. Based on these experimental measurements, this section aims at developing a method-
ology to parameterize the physical properties as well as thevariability of track irregularities
random fieldX. This modeling will allow the numerical generation of trackgeometries that
are physically realistic and statistically representative of a whole railway network.

3.1 Local-global approach and available information

In this work, it is supposed that the track irregularities ofa whole high speed line of total
lengthStot has been measured. The track irregularity vector,

{

X(s) = (X1(s), X2(s), X3(s), X4(s)) , s ∈ [0, Stot]
}

, (9)

is a random field with values inR4, for which realizations are continuous functions. It is more-
over assumed thatX is a centered random field, such that:

E [X(s)] = 0, s ∈ [0, Stot], (10)

with E [·] the mathematical expectation.

Due to the specific interaction between the train and the track, this random field is neither
Gaussian nor stationary, which motivates a local-global approach for the characterization of the
distribution ofX. This approach is based on the hypothesis that a whole railway track can
be considered as the concatenation of a series of independent track portions of same lengthS,
for which physical and statistical properties are the same.Therefore, this asumption should
allow us to reduce the complexity of the problem, by restricting the characterization ofX to its
projection on the intervalΩ = [0, S], with S ≪ Stot. LengthS plays therefore a key role in
the modeling procedure, and its value has to be carefully evaluated. Indeed,S has to be long
enough for the statistical and spectral information ofX to be accurately taken into account.
However, the higherS is, the little number of independent realizations forX can be extracted
from the complete measurement of the railway network.
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For confidentiality reasons, lengthS is not given in this work, and it is assumed that it
has been carefully chosen as an optimum of the compromise between computational cost and
modeling precision. In the same manner, the spatial quantities will be normalized by lengthS
in the following.

Under the local-global hypothesis, it is now supposed thatνexp track portions of same length
S, that are denoted by

{

x1, · · · ,xνexp
}

, can be extracted from the experimental measurements.
It is reminded that these measurements are supposed to beνexp independent realizations of
random fieldX, which defines the maximum available information for the stochastic modeling
of the track geometry.

3.2 Track geometry stochastic modeling

3.2.1 Definition of the local model

The objective of the stochastic modeling is to identify in inverse the statistical properties of
X from itsνexp independent realizations. This modeling is based on a two steps decomposition.
First, a Karhunen-Loève (KL) expansion is performed (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19] for further details):

X =
+∞
∑

k=1

√

λku
k ηk, (11)

where couples(uk, λk) are solution of the Fredholm eigenvalue problem, such that for all
(s, s′) ∈ Ω× Ω:

E
[

X(s)X(s′)T
]

≈ [RXX(s, s′)] =
1

νexp

νexp
∑

i=1

xi(s)
(

xi(s′)
)T
, (12)

∫

Ω

[RXX(s, s′)]uk(s)ds = λku
k(s′), (13)

∫

Ω

uk(s)uℓ(s)ds = δkℓ, λ1 ≥ λ2 ≥ . . .→ 0, (14)

whereδkℓ is the Kronecker symbol, equal to one ifk = ℓ and zero otherwise, and{η1, η2, . . .}
are uncorrelated buta priori dependent random variables that verify by construction thefollow-
ing equalities:

E [ηkηℓ] = δkℓ. (15)

As an illustration, a particular projection of the empirical estimation of the covariance matrix-
valued function ofX, [RXX ], is represented in Figures 1, whereas four particular eigenfunc-
tions,u1, u5, u10 andu25, are shown in Figure 2. It can be noticed that the vectorial approach
allows us to take into account the spatial dependencies between the different track irregularities.

From a practical point of view, this sum is truncated to itsNη most influential terms:

X ≈ X(Nη) =

Nη
∑

k=1

√

λku
k ηk, (16)
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where the amplitude of the truncation residue,X −X(Nη), is evaluated by the normalizedL2

error,ε2KL(Nη), such that:

ε2KL(Nη) =

∥

∥

∥
X −X(Nη)

∥

∥

∥

2

2

‖X‖22
= 1−

∑

k≤Nη
λk

‖X‖22
, (17)

where for all second order and mean-square continuous vector-valued random fieldZ,

‖Z‖22 = E

[
∫

Ω

∫

Ω

Z(s)TZ(s′)dsds′
]

. (18)

The higherNη, the more precise the characterization of the track geometry, but the more
difficult the characterization of the random vectorη =

(

η1, . . . , ηNη

)

. As a good compromise,
the truncation parameterNη is fixed to the value 940 in the following, which corresponds to an
error threshold of 1% forε2KL.

The second step of the modeling ofX is the characterization in inverse of the multidimen-
sional probability density function (PDF) ofη, pη. In this prospect, a polynomial chaos expan-
sion (PCE) method (see [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] for further details about the
PCE identification in inverse) is used, which corresponds toa direct projection ofη on a chosen
polynomial hilbertian basisBorth = { ψj(ξ), 1 ≤ j } of all the second-order random vectors
with values inRNη , such that:

η =
+∞
∑

j=1

y(j)ψj(ξ). (19)

This sum is once again truncated with respect to two truncation parameters,N andNg, such
that:

η ≈ ηchaos(N) =
N
∑

j=1

y(j)ψj(ξ1, . . . , ξNg
), (20)

where projection basis
{

ψ1(ξ1, . . . , ξNg
), · · · , ψN (ξ1, . . . , ξNg

)
}

is now defined as the set gath-
ering theN polynomial functions of total degree inferior top, which are normalized with respect
to the PDFpξ1,...,ξNg

of
(

ξ1, . . . , ξNg

)

:

ψj(ξ1, . . . , ξNg
) =

N
∑

q=1

cqj ξ
α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
,

Ng
∑

ℓ=1

α
(q)
ℓ ≤ p, (21)

∫

R
Ng

ψj(x)ψn(x)pξ1,...,ξNg
(x)dx = δjn. (22)

For given values ofN andNg, identifying the distribution ofηchaos(N) amounts therefore to
identifying the values of the PCE projection coefficients,

{

y(j), 1 ≤ j ≤ N
}

, from the avail-
able information aboutη. According to Eqs. (11), (14) and (15), this available information
corresponds to theνexp independent realizations ofηchaos(N), {η1, · · · ,ηνexp}, which can be
deduced from theνexp independent realizations ofX , {x1, · · · ,xνexp}, such that:

ηik =
1√
λk

∫

Ω

(

xi(s)
)T

uk(s)ds, 1 ≤ i ≤ νexp, 1 ≤ k ≤ Nη. (23)
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Figure 3: Convergence analysis for the PCE expansion ofη.

In [28, 29], it has been shown that a good approach to identifysuch coefficients is to search
them as the arguments that maximize the likelihood of randomvectorηchaos(N) at the experi-
mental points{η1, · · · ,ηνexp}.

Finally, the last step of the identification of the distribution of ηchaos(N) is the justification
of the values for the truncation parametersN andNg. In this prospect, the log-error function
err(N,Ng) is introduced to quantify the amplitude of the residue of thePCE truncation,η −
ηchaos(N), such that:

err(N,Ng) =

Nη
∑

k=1

errk(N,Ng), (24)

errk(N,Ng) =

∫

BIk

∣

∣

∣
log10 (pηk(xk))− log10

(

pηchaos
k

(xk)
)
∣

∣

∣
dxk, (25)

whereBIk is the domain bounding the experimental values ofηk, pηk andpηchaos
k

are the PDFs
of ηk andηchaosk (N) respectively. Truncation parametersN andNg can thus be chosen with
respect to a given error threshold forerr(N,Ng).

For our study,ξ is aNg-dimension random vector, whose components are independent and
uniformly distributed between -1 and 1. According to Figure3, which represents the conver-
gence of error functionerr(N,Ng) with respect toN andNg, truncation parametersN andNg

are chosen equal to3, 276 and3 respectively.

To conclude, once truncation parametersNη, N , Ng have been identified according to con-
vergence analysis, once PCE projection coefficients

{

y(j), 1 ≤ j ≤ N
}

have been computed
with the advanced algorithms described in [29] and [28], thetrack irregularity random field is
completely characterized and can finally be estimated as:

X ≈
Nη
∑

k=1

√

λku
k

N
∑

j=1

y
(j)
k ψj(ξ1, . . . , ξNg

). (26)

For each realization of random vector(ξ1, . . . , ξNg
), a representative and realistic track ge-

ometry of lengthS can finally be generated.
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3.2.2 Definition of the global model

According to Section 2 and to the local-global hypothesis, arealistic track geometry of length
Stot = NT S can be generated from the concatenation ofNT track geometries of same lengthS.
However, a particular attention has to be paid to the interface between two different realizations
of X. Indeed, these junctions have to guarantee the continuity of the track irregularity vector
and at least the continuity of its first and second order spatial derivatives in order to avoid an
artificial perturbation of the train dynamics. Spline interpolations on a length corresponding to
the minimal wavelength of the measured irregularities are then used to fulfill these continuity
conditions.

From the local stochastic modeling developed in Section 3.2.1, it is now possible to generate
track geometries of lengthStot, which are representative of the whole track geometry of the
measured high speed line. As an illustration, an extract of lengthS of a complete generated
track geometryXtot (θ) is represented in Figure 4. This graph is centered at a junction between
the two first realizations that stem from the local stochastic modeling ofX. The values of the
four irregularity fields, for which mean value is zero, have been translated on purpose to allow
a better visualization of the results.

4 STEP C: PROPAGATION OF THE TRACK VARIABILITY TO THE TRAIN RE -
SPONSE

Sections 2 and 3 have presented the railway stochastic modeling and the characterization
of the input variability. This variability has now to be propagated through the model. After
presenting the chosen method for this propagation, this Section describes two applications of
the whole method. The first one analyses the influence of an increase of the train speed on the
three criteria of interest. The second one underlines in what extent such methods can be used to
compare the dynamical response of different high speed trains.
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4.1 Monte Carlo simulation

From Section 2, three outputs of the railway simulation are studied in this work: a shifting
criterion,C1 = (Yℓ + Yr)max, a derailment criterion,C2 = (Y/Q)max, and a wear criterion,
C3 = (Tγ).

As the relation between the three criteria and the track irregularity random field,X , is very
complex and strongly non-linear, the Monte Carlo method is agood approach to characterize
the statitical properties ofC1, C2 andC3, as the convergence of these properties is independent
of the statistical dimension,Nη, of the KL approximation ofX that is very high.

In this prospect, a measured track design of length5km around a high speed line horizontal
curve is considered. The track superelevationsc1L andc2L have been introduced to compensate
the inertial acceleration in curve for a train that runs at speedsS and1.2S respectively. For
confidentiality reasons, the value ofS is not given in this paper. Then,ν = 500 independent
track irregularities,

{

Xtot(θ1), . . . ,X
tot(θν)

}

, of total length5km are generated thanks to the
local-global approach and to the stochastic modeling of random fieldX on a lengthS, such that
ν = 500 realistic and representative running conditions around the same curve are available.

Coupled to the model of a train, these geometries can now be used in any rigid-multibodies
railway software to characterize its dynamic behavior. Forour study, a commercial code, which
is called Vampire, has been used.

4.2 Influence of an increase of the speed on the quantities of interest

The first application of the whole method deals with the influence of the speed on the distri-
butions of the three criteria considered for a normalized high speed train. Railway simulations
are therefore performed on the sameν realistic and representative track geometries, at the four
speedsS1 = S, S2 = 1.1S, S3 = 1.2S andS4 = 1.3S. Two other sets of simulations have
then been carried out for a different value of the track superelevation at speedsS3 = 1.2S and
S4 = 1.3S in order to quantify the importance of this track design parameter with respect to
the three criteria studied.

For each speed, the PDFs of each criterionC1, C2 andC3 are then estimated using kernel
smoothing on theν = 500 independent railway simulations. These PDFs are represented in
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Figure 7. In this figure, the non-linearity of the system can be noticed, as the consequences of
an increase of the speed of 10% to 30% are much higher than 30% for each criterion considered.
In particular, an increase of 30% of the speed of the train canlead to an increase of more than
500% of the contact wear if the track superelevation is not adjusted. In addition, this figure
emphasizes the importance of the adjustment of the track superelevation to the speed, in terms
of minization of the wear, of the shifting risk and of the riskof derailment.

4.3 Comparison of three high speed trains

In this section, it is supposed that three different models of three concurrential high speed
trains,V1, V2 andV3 are available, for which parameters have been carefully identified from
experimental measurements. Therefore, the method proposed in this paper allows us to compare
the dynamical response of these three trains when they are excited at speedS, by a represen-
tative set of the variable track conditions they can be confronted to during their lifecycle. The
results of this analysis are shown in Figure 7. In particular, criteriaC1 andC3 could be interes-
sant indicators to compare the agressiveness of each train,whereas criterionC2 could be used
to quantify the global stability in curve of each train.

5 CONCLUSIONS

A method to propagate the track geometry variability through railway mechanical simula-
tions is nowadays of great interest to face always more challenging railway issues. In this
prospect, this paper has presented a general method to completely parametrize the track geome-
try and its variability. This method is based on a local-global approach, and a double projection,
which can be applied to many other mechanical systems. First, a Karhunen-Loeve expansion
is used to decompose the projection of the random field as a truncated weighted sum of deter-
ministic spatial functions, for which weights area priori dependent but uncorrelated random
variables. The distribution of the high dimension random vector that gathers all these weights
is then characterized thanks to a truncated PCE. At last, complete track geometries that are re-
alistic and representative of a whole railway network can begenerated. These geometries can
finally be used in any railway software to characterize the dynamic behavior of trains. To this
end, two applications of the whole method have been described in this paper. The first one
analyses the impact of an increase of the speed on the train stability, whereas the second one
shows in what extent such an approach could be used to comparecompetitive high speed trains
with respect to their response on a set of representative track conditions.

REFERENCES

[1] C. Allery, A. Hambouni, D. Ryckelynck, and N. Verdon. A priori reduction method for
solving the two-dimensional burgers’ equations.Applied Mathematics and Computation,
217:6671–6679, 2011.

[2] J.A. Atwell and B.B. King. Proper orthogonal decomposition for reduced basis feedback
controllers for parabolic equations.Math. Comput. Modell., 33 (1-3):1–19, 2001.

[3] G. Berkooz, P. Holmes, and J.L. Lumley. The proper orthogonal decomposition in the
analysis of turbulent flows.Annu. Rev. Fluid Mech., 25:539–575, 1993.



G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling

0
0  

 

Value of criterionC1

P
D

F
S1, c1L
S2, c1L
S3, c1L
S4, c1L
S3, c2L
S4, c2L

0
0  

 

Value of criterionC2

P
D

F

S1, c1L
S2, c1L
S3, c1L
S4, c1L
S3, c2L
S4, c2L

0
0  

 

Value of criterionC3

P
D

F

S1, c1L
S2, c1L
S3, c1L
S4, c1L
S3, c2L
S4, c2L

Figure 6: Representation of the evolutions of the PDFs of thethree criteria
considered with respect to an increase of the train speed.



G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling

0
0  

 

Value of criterionC1

P
D

F

V1
V2
V3

0
0  

 

Value of criterionC2

P
D

F

V1
V2
V3

0
0  

 

Value of criterionC3

P
D

F

V1
V2
V3

Figure 7: Comparison between the PDFs of the three criteria considered with
respect to the train characteristics.



G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling

[4] G. P. Brooks and J. M. Powers. A karhunen-loève least-squares technique for optimiza-
tion of geometry of a blunt body in supersonic flow.Journal of Computational Physics,
195:387–412, 2004.

[5] E.A. Christensen, M. Brons, and J.M. Sorensen. Evaluation of proper orthogonal
decomposition-based decomposition techniques applied toparameter dependent nontur-
bulent flows.SIAM J. Sci. Comput, 21 (4):1419–1434, 2000.

[6] S.P. Huang, S.T. Quek, and K.K. Phoon. Convergence studyof the truncated karhunen-
loève expansion for simulation of stochastic processes.Int J Num Meth Engng, 52
(9):1029–43, 2001.

[7] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for
parabolic problems.Numer. Math., 90 (1):117–148, 2001.

[8] L. Li, K. Phoon, and S. Quek. Comparison between karhunen-loève expansion and
translation-based simulation of non-gaussian processes.Computers and Structures,
85:264–76, 2007.

[9] X. Ma and N. Zabaras. Kernel principal component analysis for stochastic input model
generation.Comptes rendus de l’Académie des sciences de Paris, 220, 1945.

[10] Y. M. Marzouk and H. N. Najm. Dimensionality reduction and polynomial chaos ac-
celeration of bayesian inference in inverse problems.J. Comput. Phys., 228:1862–1902,
2009.

[11] A. Nouy and O.P. Le Maître. Generalized spectral decomposition method for stochastic
non-linear problems.J. Comput. Phys., 228 (1):202–235, 2009.

[12] K.K. Phoon, S.P. Huang, and S.T. Quek. Implementation of karhunen-loeve expansion
for simulation using a wavelet-galerkin scheme.Probabilistic Engineering Mechanics,
17:293–303, 2002.

[13] K.K. Phoon, S.P. Huang, and S.T. Quek. Simulation of strongly non-gaussian pro-
cesses using karhunen-loeve expansion.Probabilistic Engineering Mechanics, 20:188–
198, 2005.

[14] Christoph Schwab and Radu Alexandru Todor. Karhunen-loeve approximation of random
fields by generalized fast multipole methods.Journal of Computational Physics, 217:100–
122, 2006.

[15] P.D. Spanos and B.A. Zeldin. Galerkin sampling method for stochastic mechanics prob-
lems.Journal of Engineering Mechanics, 120 (5):1091–1106, 1994.

[16] P.D. Spanos, M. Beer, and J. Red-Horse. Karhunen -loèveexpansion of stochastic pro-
cesses with a modified exponential covariance kernel.Journal of Engineering Mechanics,
133 (7):773–779, 2007.

[17] B. Wen and N. Zabaras. A multiscale approach for model reduction of random microstruc-
tures.Computational Materials Science, 63:269–285, 2012.



G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling

[18] M.M.R. Williams. The eigenfunctions of the karhunen-loeve integral equation for a spher-
ical system.Propabilistic Engineering Mechanics, 26:202–207, 2011.

[19] S. Q. Wu and S. S. Law. Statistical moving load identification including uncertainty.
Probabilistic Engineering Mechanics, 29:70–78, 2012.

[20] R. Ghanem and P.D. Spanos. Polynomial chaos in stochastic finite elements.Journal of
Applied Mechanics, Transactions of teh ASME 57:197–202, 1990.

[21] R. Ghanem and P. D. Spanos.Stochastic Finite Elements: A Spectral Approach, rev. ed.
Dover Publications, New York, 2003.

[22] M. Arnst, R. Ghanem, and C. Soize. Identification of bayesian posteriors for coefficients
of chaos expansions.Journal of Computational Physics, 229 (9):3134–3154, 2010.

[23] S. Das, R. Ghanem, and S. Finette. Polynomial chaos representation of spatio-temporal
random field from experimental measurements.J. Comput. Phys., 228:8726–8751, 2009.

[24] C. Desceliers, R. Ghanem, and C. Soize. Maximum likelihood estimation of stochas-
tic chaos representations from experimental data.Internat. J. Numer. Methods Engrg.,
66:978–1001, 2006.

[25] C. Desceliers, C. Soize, and R. Ghanem. Identification of chaos representations of elastic
properties of random media using experimental vibration tests. Comput. Mech., 39:831–
838, 2007.

[26] R.G. Ghanem and A. Doostan. On the construction and analysis of stochastic models:
Characterization and propagation of the errors associatedwith limited data. J. Comput.
Phys., 217:63–81, 2006.

[27] Y. M. Marzouk, H. N. Najm, and L. A. Rahn. spectral methods for efficient bayesian
solution of inverse problems.J. Comput. Phys., 224:560–586, 2007.

[28] G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling. Identification of polynomial
chaos representations in high dimension from a set of realizations. SIAM J. Sci. Com-
put., 34(6):2917–2945, 2012.

[29] C. Soize. Identification of high-dimension polynomialchaos expansions with random
coefficients for non-gausian tensor-valued random fields using partial and limited experi-
mental data.Computer Methods in Applied Mechanics and Engineering, 199:2150–2164,
2010.

[30] C. Soize. Generalized probabilistic approach of uncertainties in computational dynamics
using random matrices and polynomial chaos decompositions. Internat. J. Numer. Meth-
ods Engrg., 81:939–970, 2010.


	INTRODUCTION
	STEP A: DESCRIPTION OF THE STOCHASTIC MECHANICAL MODELING
	Description of the railway dynamic problem
	Stochastic problem

	STEP B: CHARACTERIZATION OF THE INPUT VARIABILITY
	Local-global approach and available information
	Track geometry stochastic modeling
	Definition of the local model
	Definition of the global model


	STEP C: PROPAGATION OF THE TRACK VARIABILITY TO THE TRAIN RESPONSE
	Monte Carlo simulation
	Influence of an increase of the speed on the quantities of interest
	Comparison of three high speed trains

	CONCLUSIONS

