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Abstract. Since 2012, European high speed railway networks are medmdve gone to mar-
ket. Hence, several high speed trains, such as ICE, TGV, BORSapsan..., are likely to run
on the same tracks, whereas they have been originally degifpr specific and different rail-
way networks. Due to different mechanical properties andcstires, the dynamic behaviors,
the agressiveness of the vehicle on the track and the prhtiedbiof exceeding security and
comfort thresholds will be very different from one train to @ther. These maintenance, cer-
tification and comfort criteria depend on the dynamic int#¢ian between the vehicle and the
railway track and in particularly on the contact loads betwethe wheels and the rail, which
are very hard to evaluate experimentally. Therefore, th@ewical simulation is bound to play
a key role in this context, as it is able to compute these dquesbdf interest. Nevertheless, the
track-vehicle system being strongly non-linear, this dgiainteraction has to be analyzed not
only on a few track portions but on the whole realm of posiied of running conditions that
the train is bound to be confronted to during its lifecycla.réply to this concern, this paper
presents a method to analyze the influence of the track gepwaatability on the train behav-
ior, which could be very useful to evaluate and compare thressjveness of different trains.
This method is based on a stochastic modeling of the traakgey, for which parameters have
been identified with experimental measurements.
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1 INTRODUCTION

If simulation is introduced in certification and conceptfmocesses, it has to be very repre-
sentative of the physical behaviour of the system. The miogekhus to be fully validated and
the simulations have to be raised on a realistic and reprasenset of excitations.

Hence, this work presents a three steps method to chawctée influence of the track
geometry on the train dynamics. The first step, which is prieskin Sectioml2, corresponds
to the classical description of the studied mechanicallprobA particuler attention has to be
paid to the definition of the quantities of interest, as thisice will play a major role on the
propagation method. Then, Sectidn 3 deals with the chaizat®n of the input variability. At
last, Section 3 presents the propagation of the varialthiityugh the mechanical system. Two
applications of the method will then be analyzed: the infageof an increase of the speed on
the train stability and the quantification of the agressegsof three high speed trains that have
different mechanical properties.

2 STEP A: DESCRIPTION OF THE STOCHASTIC MECHANICAL MODELING

This section is devoted to the description of the stochastideling of the railway system.

2.1 Description of the railway dynamic problem

As presented in Introduction, a railway dynamic problemlsaiseen as the excitation of the
train by the track geometry through the wheel/rail contactés, where the wheel/rail contact
forces are computed from the wheel profile and the rail prtfidanks to the Hertz and Kalker
theories. The dynamitu;(t), u;(t)) of each mass bodiof the train at each time step> 0,
that we describe by the vector of the generalized coordsnate

U(t) = (ul(t)7u2(t>7 7u1<t)7u2(t)7)7 (1)
can therefore be determined by solving the Euler-Lagrangeaten, which reads:
d (O0F. OE.
with E. the total kinetic energy of the train, add(U, 7) the general load that is applied to the

mass bodyi, which depends on the track geomefryand on the generalized coordinatés
Eq. (2) can be rewritten in a matricial form as:

AU = F(U.T), (3)
with [A] and F' two stronglynon-linear operators. This system is usually solved with an explicit
scheme.

The generalized coordinaté$, for which evolution is computed from EqL](3), are then
post-treated to define the final outputs of the railway sitmrta In this work, three criteria are
introduced to analyze the vehicule dynamics on a given tgacknetry of total lengtlg**:

e a shifting criterion:

(Yo + Yo )mar = max — max {V"(s) +V,"(s)}, (4)

wheelset w 0<s< Stot
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e a derailment criterion:

(Y/Q)maz = max  max {¥,(s)/Qq(s)}, (5)

wheel g 0<s< Stot

e a wear criterion:

Stot
T =3 / T, (s)1a(s)ds, (6)

wheel ¢

where:

e Y/ andY* are the left and right lateral forces of the same whegisstich that the higher
(Yz + Y. )maz 1S, the more chance for a shifting of the track there is;

e Y, and@), are the lateral and vertical components of the wheel/raitaxt force at wheel
q, such that the highdy’/Q),.... iS, the more on the flange a wheel of the train can be;

e T, and~, are respectively the creep force and the slip at wheslich that the higher
(T) is, the higher the contact wear is likely to be for one run ef¢bmplete train.

Finally, the deterministic railway problem, corresporgito the dynamics of a vehiclé on
a track geometry™ can be expressed as:

(Vv T) =c=g (Vv T) , €= ((n + Y;“)mamv (Y/Q)maxa (T'Y)) ) (7)
where it is reminded thaj is a complex and non-linear operator.

2.2 Stochastic problem

In this work, it is supposed that a normalized model of a trgiavailable, for which me-
chanical parameters are fixed and have been accuratelyfie@ntMoreover, two description
scales can be distinguished for the track geometry:

e on the first hand, the track design, which corresponds to dhanpeters of the mean line
position, that is to say the vertical curvatuse the horizontal curvaturey, and the track
superelevation;, is decided once for all at the building of a new track for emoical
and political reasons;

e on the second hand, for a fixed track design, the track iregijigls are in constant evolu-
tion, due to the interactions between the train and the ttacke maintenance operations,
and to the wheather conditions. There are four kinds of ti@efularities: the horizontal
and vertical alignment irregularities; andx,, the cant deficiencies;, and the aligne-
ment irregularities.

It is supposed in this work that the track irregularities relegerization can be separated
from the track design description. Hence, in the followiagneasured track design is cho-
sen and only the track irregularities will be supposed to aegable. In this prospect, let



G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling

X = (X4, Xy, X3, Xy) be the vector-valued random field corresponding to the fagktir-
regularities, for which statistical characteristics h&avde identified from experimental data.
As a consequence, vector which gathers the three criteria of interest, becomes domn
vectorC', and the stochastic problem can be expressed by:

X—»C=G(X). (8)

The choice of the quantities of interest is crucial as it wilke the choice of the propagation
method. In this work, we are interested in the PDF of eacleroin, that are denoted by,
1< <3,

3 STEP B: CHARACTERIZATION OF THE INPUT VARIABILITY

We assume in this work that the track irregularities can lem $es a vector-valued random
field, X = (Xi, X, X3, X4), which gathers the four kinds of track irregularities. Gicter-
izing the input variability of the railway stochastic prebh amounts thus to identifying the
distribution of X from experimental measurements.

To this end, the measurement train IRIS 320 has been runomghaously since 2007 over
the French railway network, measuring and recording thektggegometry of the main national
lines. Based on these experimental measurements, thiersaains at developing a method-
ology to parameterize the physical properties as well as/déin@bility of track irregularities
random fieldX. This modeling will allow the numerical generation of trag&gometries that
are physically realistic and statistically representatfa whole railway network.

3.1 Local-global approach and available information

In this work, it is supposed that the track irregularitiesaoivhole high speed line of total
length.S™* has been measured. The track irregularity vector,

{X(S) = (X1(5)7X2(5)>X3(5)>X4(5))7 s € [07 Smt]}a (9)

is a random field with values iR*, for which realizations are continuous functions. It is Bor
over assumed th&X is a centered random field, such that:

E[X(s)]=0, s€][0,5", (10)

with E [-] the mathematical expectation.

Due to the specific interaction between the train and theéridacs random field is neither
Gaussian nor stationary, which motivates a local-globpft@gch for the characterization of the
distribution of X. This approach is based on the hypothesis that a whole sailkaak can
be considered as the concatenation of a series of indepietndek portions of same length),
for which physical and statistical properties are the samieerefore, this asumption should
allow us to reduce the complexity of the problem, by restigcthe characterization oX to its
projection on the intervall = [0, S], with S < S**. LengthS plays therefore a key role in
the modeling procedure, and its value has to be carefulljueted. IndeedsS has to be long
enough for the statistical and spectral informationXfto be accurately taken into account.
However, the highef is, the little number of independent realizations &rcan be extracted
from the complete measurement of the railway network.
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For confidentiality reasons, length is not given in this work, and it is assumed that it
has been carefully chosen as an optimum of the compromigeebatcomputational cost and
modeling precision. In the same manner, the spatial quesititill be normalized by length
in the following.

Under the local-global hypothesis, it is now supposeditfi@ttrack portions of same length
S, that are denoted b{/:pl, e ,m”e"p}, can be extracted from the experimental measurements.
It is reminded that these measurements are supposed #&hedependent realizations of
random fieldX, which defines the maximum available information for theckstic modeling
of the track geometry.

3.2 Track geometry stochastic modeling

3.2.1 Definition of the local model

The objective of the stochastic modeling is to identify imarse the statistical properties of
X from itsv**? independent realizations. This modeling is based on a ggsstecomposition.
First, a Karhunen-Loéve (KL) expansion is performed (5¢2[E,[4/5] 6/ 7, 8,/9, 10, 11,12,
13,1415/ 16, 17, 18, 19] for further details):

+oo
X =) Vb, (11)
k=1

where couplegwuy, ;) are solution of the Fredholm eigenvalue problem, such tba@af
(s,5") € Qx

LEXP

E[X(5)X(s)"] = [Rxx(s,5) = Z:c , (12)
/Q[Rxx(s, s]u"(s)ds = Auf(s'), (13)
/ uF(s)u'(s)ds = 6o, M > N> ... =0, (14)

Q

whered,, is the Kronecker symbol, equal to onekif= ¢ and zero otherwise, andy, 7, ...}
are uncorrelated bt priori dependent random variables that verify by constructioriahew-
ing equalities:

E 111 = Oge- (15)

As an illustration, a particular projection of the empitiestimation of the covariance matrix-
valued function ofX, [Rx x], is represented in Figuré$ 1, whereas four particular éigen
tions,u!, u°, u'® andu?, are shown in Figurl 2. It can be noticed that the vectoript@ach
allows us to take into account the spatial dependenciesegtiihe different track irregularities.

From a practical point of view, this sum is truncated taNtsmost influential terms:

Ny

X ~ XM) = Z \//\Tyguk Mk (16)

k=1
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where the amplitude of the truncation residie — X ™), is evaluated by the normalizeg
error,e%, (N,), such that:

2

X — xn) A
2 H 2 ZkSNN k
exr(Ny) = =1-—7 "5, (7)
! 1X115 1X115
where for all second order and mean-square continuousrveaiioed random field&,
1Z|>=FE U / Z(s)TZ(s’)dsds’} . (18)
QJQ
The higherN,, the more precise the characterization of the track gegmiatt the more
difficult the characterization of the random vecipe (771, o 777Nn)' As a good compromise,

the truncation parametey, is fixed to the value 940 in the following, which corresponaan
error threshold of 1% fot?; .

The second step of the modeling &f is the characterization in inverse of the multidimen-
sional probability density function (PDF) ef, p,,. In this prospect, a polynomial chaos expan-
sion (PCE) method (see [20,/121,22] 23,124,25] 26, 2[7, 28,A9p8further details about the
PCE identification in inverse) is used, which correspondsdoect projection of) on a chosen
polynomial hilbertian basig,.., = { ¥;(§), 1 < j } of all the second-order random vectors
with values inR™7, such that:

+oo
n= Z yV;(8). (19)

This sum is once again truncated with respect to two truocgiarametersy andN,, such
that:

N
nan™(N) =y, ), (20)
j=1

where projection basi§s (&1, ..., &, ), -+ ¥n (&1, - -, &y,) } is now defined as the set gath-
ering theN polynomial functions of total degree inferiorgpwhich are normalized with respect

N (@ ol o
Ui(€r b, = Y e €t X x &0 Y el <, (21)
q=1 /=1
Vj(®)Un(®)pe,....£n, (T)d = 07y (22)

RNg
For given values ofV and N, identifying the distribution of;*2°( N') amounts therefore to
identifying the values of the PCE projection coefficier{tg,(ﬂ, 1< < N}, from the avail-
able information about). According to Eqgs. [(11)[(14) an@ (15), this available infation
corresponds to the®*? independent realizations @f"#(N), {n',--- ,n*""}, which can be
deduced from the®® independent realizations &, {x',--- , """}, such that:

n = —/Q (wi(s))Tuk(s)ds, 1<i<v™P 1<k <N, (23)
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Figure 3: Convergence analysis for the PCE expansian of

In [28,[29], it has been shown that a good approach to idestith coefficients is to search
them as the arguments that maximize the likelihood of randeotorn**s( V) at the experi-
mental point{n!,--- , """ }.

Finally, the last step of the identification of the distrilout of <"2°5( V) is the justification
of the values for the truncation parametéfsand N,. In this prospect, the log-error function
err(N, N,) is introduced to quantify the amplitude of the residue of B@E truncationy —
nhaos(N), such that:

N,
err(N, Ny) Zer'rk (N, Ny) (24)
erri(IN, Ny) = / ‘loglo (P (1)) — logro (pnzhaos (xk)) ‘ dxy, (25)
BI,

whereBI, is the domain bounding the experimental values;ofp,, andpnzhaos are the PDFs

of n,. andn**s( V) respectively. Truncation paramete¥sand N, can thus be chosen with
respect to a given error threshold fon (N, V).

For our studyg is a N,-dimension random vector, whose components are indepeaddn
uniformly distributed between -1 and 1. According to Fig@revhich represents the conver-
gence of error functioarr (N, N,) with respect taV and V,, truncation parameters and N,
are chosen equal & 276 and3 respectively.

To conclude, once truncation parametais N, N, have been identified according to con-
vergence analysis, once PCE projection coeffici§mts), 1 < j < N} have been computed
with the advanced algorithms described(in/[29] and [28],tthek irregularity random field is
completely characterized and can finally be estimated as:

~qu Zy Vi€, En)- (26)

For each realization of random vecl(cfﬁ, ...,&n,), arepresentative and realistic track ge-
ometry of lengthS can finally be generated.
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Figure 4. Extract of a simulated track geometry.

3.2.2 Definition of the global model

According to Sectiohl2 and to the local-global hypothesisgadistic track geometry of length
St — NS can be generated from the concatenatioVgftrack geometries of same length
However, a particular attention has to be paid to the interfeetween two different realizations
of X. Indeed, these junctions have to guarantee the contintittyeatrack irregularity vector
and at least the continuity of its first and second order apdgrivatives in order to avoid an
artificial perturbation of the train dynamics. Spline iqtelations on a length corresponding to
the minimal wavelength of the measured irregularities hemtused to fulfill these continuity
conditions.

From the local stochastic modeling developed in Se¢tiodl3i@is now possible to generate
track geometries of length**, which are representative of the whole track geometry of the
measured high speed line. As an illustration, an extracewngth.S of a complete generated
track geometnyX *** (9) is represented in Figué 4. This graph is centered at a pmbtween
the two first realizations that stem from the local stocleastbdeling ofX. The values of the
four irregularity fields, for which mean value is zero, haeeb translated on purpose to allow
a better visualization of the results.

4 STEP C: PROPAGATION OF THE TRACK VARIABILITY TO THE TRAIN RE -
SPONSE

Sections P anfll3 have presented the railway stochastic mgdsid the characterization
of the input variability. This variability has now to be piagated through the model. After
presenting the chosen method for this propagation, thisd@edescribes two applications of
the whole method. The first one analyses the influence of aease of the train speed on the
three criteria of interest. The second one underlines irt eki@nt such methods can be used to
compare the dynamical response of different high speeaktrai
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Figure 5: Track Design of the simulated railway track.

4.1 Monte Carlo simulation

From Section 2, three outputs of the railway simulation @nelied in this work: a shifting
criterion, C; = (Y + Y, )mas, @ derailment criterionCy; = (Y/Q)mae, and a wear criterion,
Cs = (T'y).

As the relation between the three criteria and the trackrdegity random field X, is very
complex and strongly non-linear, the Monte Carlo methodg®ad approach to characterize
the statitical properties @f', C; andC3, as the convergence of these properties is independent
of the statistical dimensiony,, of the KL approximation ofX that is very high.

In this prospect, a measured track design of leigtih around a high speed line horizontal
curve is considered. The track superelevatignandc? have been introduced to compensate
the inertial acceleration in curve for a train that runs aesfsS and 1.2S respectively. For
confidentiality reasons, the value &fis not given in this paper. Thew, = 500 independent
track irregularities{ X'*(6;), ..., X*"(6,)}, of total length5km are generated thanks to the
local-global approach and to the stochastic modeling afeamfield X on a lengthS, such that
v = 500 realistic and representative running conditions arouedséime curve are available.

Coupled to the model of a train, these geometries can nowdxskiosany rigid-multibodies
railway software to characterize its dynamic behavior. dtorstudy, a commercial code, which
is called Vampire, has been used.

4.2 Influence of an increase of the speed on the quantities aiterest

The first application of the whole method deals with the infleeeof the speed on the distri-
butions of the three criteria considered for a normalizeghlspeed train. Railway simulations
are therefore performed on the sameealistic and representative track geometries, at the four
speedsS1 = S, 82 = 1.15, §3 = 1.28 andS4 = 1.3S. Two other sets of simulations have
then been carried out for a different value of the track selpeation at speedS3 = 1.2S and
S4 = 1.3S in order to quantify the importance of this track design pagter with respect to
the three criteria studied.

For each speed, the PDFs of each critexign C5; andC5 are then estimated using kernel
smoothing on thes = 500 independent railway simulations. These PDFs are repredent
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Figurel7. In this figure, the non-linearity of the system cambticed, as the consequences of
an increase of the speed of 10% to 30% are much higher than@08adch criterion considered.
In particular, an increase of 30% of the speed of the trainlead to an increase of more than
500% of the contact wear if the track superelevation is naisdd. In addition, this figure
emphasizes the importance of the adjustment of the trackrslgvation to the speed, in terms
of minization of the wear, of the shifting risk and of the rigkderailment.

4.3 Comparison of three high speed trains

In this section, it is supposed that three different modélhiee concurrential high speed
trains, V1, V2 andV3 are available, for which parameters have been carefulliytified from
experimental measurements. Therefore, the method prdpotdas paper allows us to compare
the dynamical response of these three trains when they aredat speed, by a represen-
tative set of the variable track conditions they can be @ori&d to during their lifecycle. The
results of this analysis are shown in Figlfe 7. In particdateriaC; andC;5 could be interes-
sant indicators to compare the agressiveness of eachwhereas criterior’, could be used
to quantify the global stability in curve of each train.

5 CONCLUSIONS

A method to propagate the track geometry variability thtougjlway mechanical simula-
tions is nowadays of great interest to face always more ehgilhg railway issues. In this
prospect, this paper has presented a general method toetetygarametrize the track geome-
try and its variability. This method is based on a local-gladpproach, and a double projection,
which can be applied to many other mechanical systems., Bitksarhunen-Loeve expansion
is used to decompose the projection of the random field amaated weighted sum of deter-
ministic spatial functions, for which weights aaepriori dependent but uncorrelated random
variables. The distribution of the high dimension randormateethat gathers all these weights
is then characterized thanks to a truncated PCE. At lastpietrack geometries that are re-
alistic and representative of a whole railway network caméeerated. These geometries can
finally be used in any railway software to characterize theaghyic behavior of trains. To this
end, two applications of the whole method have been destribéhis paper. The first one
analyses the impact of an increase of the speed on the tedoilityt whereas the second one
shows in what extent such an approach could be used to cormpagetitive high speed trains
with respect to their response on a set of representatigie t@nditions.
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