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The research addressed here concerns the generation of seismic accelerograms compatible with a given response spectrum and other associated properties. The time sampling of the stochastic accelerogram yields a time series represented by a random vector in high dimension. The probability density function (pdf) of this random vector is constructed using the Maximum Entropy (MaxEnt) principle under constraints defined by the available information. In this paper, a new algorithm, adapted to the high stochastic dimension, is proposed to identify the Lagrange multipliers introduced in the MaxEnt principle to take into account the constraints. This novel algorithm is based on (1) the minimization of an appropriate convex functional and (2) the construction of the probability distribution defined as the invariant measure of an It Stochastic Differential Equation in order to estimate the integrals in high dimension of the problem.

INTRODUCTION

This research is devoted to the generation of seismic accelerograms which are compatible with some design specifications such as the Velocity Response Spectrum, the Peak Ground Acceleration (PGA), etc. The Maximum Entropy (MaxEnt) principle [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF] is a powerful method which allows us to construct a probability distribution of a random vector under some constraints defined by the available information. This method has recently been applied in [START_REF] Soize | Information theory for generation of accelerograms associated with shock response spectra[END_REF] for the generation of spectrum-compatible accelerograms as trajectories of a non-Gaussian nonstationary centered random process represented by a high-dimension random vector for which the probability density function (pdf) is constructed using the MaxEnt principle under constraints relative to (1) the mean value, (2) the variance of the components and (3) the mean value of the Velocity Response Spectrum (VRS). The objective of this paper is to take into account additional constraints which characterize the natural features of a seismic accelerogram. To achieve this objective, the methodology proposed in [START_REF] Soize | Information theory for generation of accelerograms associated with shock response spectra[END_REF] is extended to take into account constraints relative to statistics on [START_REF] Clough | Dynamics of Structures[END_REF] the end values for the velocity and the displacement, [START_REF] Golan | Maximum entropy econometrics: robust estimation with limited data[END_REF] the PGA, (3) the Peak Ground Velocity (PGV), (4) the envelop of the random VRS and (5) the Cumulative Absolute Velocity (CAV). The MaxEnt pdf is constructed and a generator of independent realizations adapted to the high-stochastic dimension of an accelerogram is proposed. Furthermore an adapted method for the identification of the Lagrange multipliers is developed. In Section 2 the MaxEnt principle is used to construct the pdf of the acceleration random vector under constraints defined by the available information. Finally, Section 3 is devoted to an application of the methodology for which the target VRS is constructed following the Eurocode 8.

CONSTRUCTION OF THE PROBABILITY DISTRIBUTION

The MaxEnt principle is a powerful method to construct the probability distribution of a random vector associated with a sampled stochastic process under some constraints defined by the available information.

The random acceleration of the soil is modelled by a second-order centered stochastic process {A(t), t ∈ [0, T ]}. A time sampling of this stochastic process is introduced yielding a time series {A 1 , . . . , A N } for which the R N -valued random vector A = (A 1 , . . . , A N ) is associated with. We then have T = N∆t in which ∆t is the sampling time step. Finally, we have to construct the probability distribution of the random vector A.

Maximum entropy principle

The objective of this section is to construct the pdf a → p A (a) of the random vector A using the MaxEnt principle under the constraints defined by the available information relative to random vector A. The support of the pdf is assumed to be all the set R N . Let E{.} be the mathematical expectation. We suppose that the available information is written as

E{g(A)} = f , (1) 
in which a → g(a) is a given function from R N into R µ and where f is a given (or target) vector in R µ . Equation (1) can be rewritten as

R N g(a)p A (a)da = f . (2) 
An additional constraint relative to the normalization of the pdf p A (a) is introduced such that

R N p A (a)da = 1 . (3) 
The entropy of the pdf a → p A (a) is defined by

S(p A ) = - R N p A (a) log(p A (a))da , ( 4 
)
where log is the Neperian logarithm. Let C be the set of all the pdf defined on R N with values in R + , verifying the constraints defined by Eqs. ( 2) and (3). Then the MaxEnt principle consists in constructing the probability density function a → p A (a) as the unique pdf in C which maximizes the entropy S(p A ). Then by introducing a Lagrange multiplier λ associated with Eq. ( 2) and belonging to an admissible open subset L µ of R µ , it can be shown (see [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF]) that the MaxEnt solution, if it exists, is defined by

p A (a) = c 0 (λ sol ) exp(-λ sol , g(a) ) , (5) 
in which λ sol is such that Eq. ( 2) is satisfied and where c 0 (λ) is the normalization constant defined by

c 0 (λ) = R N exp(-λ, g(a) ) da -1 . (6) 

Calculation of the Lagrange multipliers

In this section, we propose a general methodology for the calculation of the Lagrange multipliers λ sol .

Objective function and methododology

Using Eqs. ( 7) and (2), vector λ sol is the solution in λ of the following set of µ nonlinear algebraic equations

R N g(a) c 0 (λ) exp(-λ, g(a) ) = f . (7) 
A more convenient way to calculate vector λ sol consists in solving the following optimization problem (see [START_REF] Golan | Maximum entropy econometrics: robust estimation with limited data[END_REF]),

λ sol = arg min λ∈Lµ⊂R µ Γ(λ) , (8) 
in which the objective function Γ is written as

Γ(λ) = λ, f -log(c 0 (λ)) . (9) 
Let {A λ , λ ∈ L µ } be a family of random variables for which the pdf is defined, for all λ in L µ , by

p A λ (a) = c 0 (λ) exp(-λ, g(a) ) . (10) 
Then the gradient vector ∇Γ(λ) and the Hessian matrix [H(λ)] of function λ → Γ(λ) are written as

∇Γ(λ) = f -E{g(A λ )} . (11) [H(λ)] = E{g(A λ )g(A λ ) T } -E{g(A λ )} E{g(A λ )} T , (12) 
in which u T is the transpose of u. It is assumed that the constraints defined by Eq. ( 2) are algebraically independent. Consequently, the Hessian matrix is positive definite and therefore, function λ → Γ(λ) is strictly convex and reaches its minimum for λ sol which is such that ∇Γ(λ) = 0 for λ = λ sol . It can then be deduced that the minimum of function λ → Γ(λ) corresponds to the solution of Eq. ( 7). The optimization problem defined by Eq. ( 8) is solved using the Newton iterative method

λ i+1 = λ i -α [H(λ i )] -1 ∇Γ(λ i ) , (13) 
in which α belongs to ]0 , 1] is an under-relaxation parameter which ensures the convergence towards the solution λ sol . In general, for the non-Gaussian case, the integrals defined by Eqs. ( 11) and ( 12) cannot explicitly (such as in the Gaussian Case) be calculated and cannot be discretized in R N . In this paper, these integrals are estimated using the Monte Carlo simulation method for which independent realizations of the random vector A λ are generated using a specific algorithm presented below.

Generator of independent realizations

The objective of this section is to provide a generator of independent realizations of the random variable A λ for all λ fixed in L µ . A generator of independent realizations for MaxEnt distributions has been proposed in [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF][START_REF] Soize | Information theory for generation of accelerograms associated with shock response spectra[END_REF] in the class of the MCMC algorithms. This methodology consists in constructing the pdf of random vector A λ as the density of the invariant measure p A λ (a)da, associated with the stationary solution of a second-order nonlinear Itô Stochastic differential equation (ISDE). The advantages of this generator compared to the other MCMC generators such as the Metropolis-Hastings algorithm are: [START_REF] Clough | Dynamics of Structures[END_REF] The mathematical results concerning the existence and the uniqueness of an invariant measure can be used, (2) a damping matrix can be introduced in order to rapidly reach the invariant measure and (3) there is no need to introduce a proposal distribution which can induce difficulties in high dimension. Below, we directly introduce the generator of independent realizations using a discretization of the ISDE. Details concerning the construction of this generator can be found in [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF][START_REF] Soize | Information theory for generation of accelerograms associated with shock response spectra[END_REF].

As proposed in [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF][START_REF] Soize | Information theory for generation of accelerograms associated with shock response spectra[END_REF], the ISDE is discretized using a semi-implicit integration scheme in order to avoid the resolution of an algebraic nonlinear equation at each step while allowing significantly increase of the time step compared to a purely explicit scheme.

We assume that the function a → g(a) introduced in Eq. ( 1) and defining the available information is written as g(a) = (g L (a), g NL (a)) in which a → g NL (a) is a nonlinear function from R N into R µ NL and where a → g L (a) is a quadratic function from R N into R µ L whose components are such that

{g L (a)} i = 1 2 u, [K i ]u , (14) 
in which {[K i ]} i=1,...,µ L are µ L symmetric (N × N) real matrices which are assumed to be algebraically independent. Let u → Φ(u, λ) be a potential function defined by

Φ(u, λ) = λ, g(u) . (15) 
Let us introduce the decomposition λ = (λ L , λ NL ) ∈ L µ of the Lagrange multipliers. Then for all λ ∈ L µ , the potential function can be written as

Φ(u, λ) = 1 2 u, [K λ L ]u + Φ NL (u, λ NL ) , (16) 
in which

[K λ L ] = µ L j=1 {λ L } j [K j
] is assumed to be positive definite for all λ L in L µ and where Φ NL (u, λ NL ) = µ NL j=1 {λ NL } j {g NL (u)} j . Therefore, the gradient of the potential function with respect to u is written as

∇ u Φ(u, λ) = [K λ L ]u + ∇ u Φ NL (u, λ NL ) , ( 17 
) in which ∇ u Φ NL (u, λ NL ) = µ NL j=1 {λ NL } j ∇ u {g NL (u)} j .
Thus the gradient function ∇ u Φ(u, λ) is decomposed into a linear part with respect to u and a nonlinear part.

Let ∆r λ be the integration step size relative to the discretization of the ISDE. Let ∆W 1 , . . . , ∆W M be M mutually independent second-order Gaussian centered random vector with covariance matrix equal to ∆r λ [I N ]. We then introduce the time series {(U k , V k ), k = 1, . . . , M} with values in R N × R N for all k in {1, . . . , M} and the second-order random vector of the initial condition (U 0 , V 0 ) with values in R N × R N and which is independent of the time series

{(U k , V k ), k = 1, . . . , M}.
For ℓ = 1, . . . , n s , using n s independent realizations {∆W k+1,ℓ , k = 1, . . . , M -1} of the family of random vectors {∆W k+1 , k = 1, . . . , M -1} and n s independent realizations (U ℓ 0 , V ℓ 0 ) of the random initial conditions (U 0 , V 0 ) (which are also independent of {∆W k+1 , k = 1, . . . , M -1}), the n s independent realizations U M,ℓ of the vector random U M are generated by solving n s times, for k = 1, . . . , M -1, the following equations (which correspond to the discretization of the ISDE, see [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF])

[E λ ]V k+1,ℓ = [B λ ]V k,ℓ -∆r λ [K λ L ]U k,ℓ + ∆r λ L k,ℓ NL + [S λ ]∆W k+1,ℓ , U k+1,ℓ = U k,ℓ + 1 2 ∆r λ (V k+1,ℓ + V k,ℓ ) , U 1,ℓ = U ℓ 0 , V 1,ℓ = V ℓ 0 . ( 18 
) in which [E λ ] = [I N ] + 1 4 ∆r λ [D λ ] + 1 4 ∆r 2 λ [K λ L ] and [B λ ] = [I N ] -1 4 ∆r λ [D λ ] -1 4 ∆r 2 λ [K λ L ]
where [I N ] is the (N × N) identity matrix and where [D λ ] is a symmetric positive-definite damping matrix and the lower triangular matrix

[S λ ] is such that [D λ ] = [S λ ][S λ ] T . The vector L k NL is defined by L k NL = -{∇ u Φ NL (u, λ NL )} u=U k .
Then, if M is sufficiently large, the n s independent realizations of the random vector A λ are constructed such that A ℓ λ ≃ U M,ℓ for ℓ = 1, . . . , n s . Concerning the initial conditions, the more the probability distribution of the initial conditions is close to the invariant measure, the shorter is the transient response.

Estimation of the mathematical expectations

The mean value E{g(A λ )} and the correlation matrix E{g(A λ )g(A λ ) T } are estimated using the Monte Carlo simulation method by

E{g(A λ )} ≃ 1 n s ns ℓ=1 g(A ℓ λ ) , (19) 
E{g(A λ )g(A λ ) T } ≃ 1 n s ns ℓ=1 g(A ℓ λ )g(A ℓ λ ) T . ( 20 
)

APPLICATIONS

The acceleration stochastic process is sampled such that the final time T = 20 s. The time step is ∆t = 0.0125 s. We then have N = 1600 (we assume A(0) = 0 ms -2 almost surely).

Available information

The available information relative to random vector A is defined by: (1) The random vector A is centred.

(2) The standard deviation of the component of A are imposed. The target values are plotted in Fig. 1. (3) The variance of the end-velocity (resulting from a numerical integration of random vector A) is zero.

(4) The variance of the end-displacement (resulting from two successive numerical integrations of random vector A) is zero.

(5) The target mean VRS [START_REF] Clough | Dynamics of Structures[END_REF] is constructed following the Eurocode 8 for a A-type soil and a PGA equal to 5 ms -2 . It is defined for ξ = 0.05 of the damping ratio and for 20 frequencies which are (in rad/s) 1.04, 1.34, 1.73, 2.23, 2.86, 3.69, 4.74, 6.11, 7.86, 10.11, 13.01, 16.74, (6) Let s low be the lower envelop defined by s low = 0.5 × s and s up be the upper envelop defined by s up = 1.5 × s. The probability for random vector A of being inside the region delimited by the two envelops is 0.99.

(7) The mean PGA is 5 ms -2 . (8) The mean PGV is 0.45 ms -1 . (9) The mean CAV is 20 ms -2 .

Results

The step size for the ISDE is ∆r λ = 2 π/(β √ 2 λ max ), in which λ max = max{{λ L } i , i = 1, . . . , N} and β = 80. At each iteration, the damping matrix [D λ ] is a diagonal matrix such that [D λ ] ii = 2 ξ ito 2 {λ L } i , in which ξ ito = 0.7. For the ISDE, the number of integration steps is M = 600. At each iteration, n s = 900 Monte Carlo simulations are carried out. The methodology developed in Section 2.2.1 is applied using 30 iterations. The under-relaxation parameter is α = 0.3. Figure 3 shows two independent realizations of the random vector A λ sol which is generated using a classical generator for Gaussian random variable and which are representative of two independent realizations of the random accelerogram. The corresponding trajectories of the velocity times series V and of the displacement times series D result from two successive numerical integrations of each realization of the random accelerogram and are plotted in Figs. 4 and5. As expected, it can be seen that the end velocity and the end displacements are both equal to zero. Figure 6 displays a comparison of the estimated standard deviation of the components with the target values. Figure 7 shows a comparison of the mean VRS with the target mean VRS. The Figure 8 shows 100 trajectories of the random VRS and the envelops s low and s up . It can be seen in Figs. 6 to 8 a good matching between the estimated values and the target values. Concerning the PGA, the PGV and the CAV, the results are summarized in Table 1. It can be seen a good matching of the estimated means values for the PGA, the PGV and the CAV with the target values. 

Constraint

Estimation Target Mean PGA (ms -2 ) 5.08 5 Mean PGV (ms -1 ) 0.46 0.45 Mean CAV (ms -1 )

19.99 20

Table 1: For the PGA, the PGV, the CAV: comparision of the estimated mean value with the target value. 

CONCLUSIONS

We have presented a new methodology for the generation of accelerograms compatible with a given VRS and other properties. If necessary, additional constraints can easily be taken into account in addition to those developed in this paper. The application shows a good matching between the estimated values and the target values.
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 3 Figure 3: Two independent realizations of the random accelerogram.
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