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Abstract. The research addressed here concerns the generation ohiseg&celerograms
compatible with a given response spectrum and other asatoperties. The time sampling
of the stochastic accelerogram yields a time series repteseby a random vector in high
dimension. The probability density function (pdf) of thamdom vector is constructed using
the Maximum Entropy (MaxEnt) principle under constraing$ided by the available informa-
tion. In this paper, a new algorithm, adapted to the high kastic dimension, is proposed to
identify the Lagrange multipliers introduced in the Maxpminciple to take into account the
constraints. This novel algorithm is based on (1) the min&tion of an appropriate convex
functional and (2) the construction of the probability distition defined as the invariant mea-
sure of an It Stochastic Differential Equation in order tdisste the integrals in high dimension
of the problem.
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1 INTRODUCTION

This research is devoted to the generation of seismic acgglans which are compatible
with some design specifications such as the Velocity Regp8pectrum, the Peak Ground Ac-
celeration (PGA), etc. The Maximum Entropy (MaxEnt) prpiei[3] is a powerful method
which allows us to construct a probability distribution ofandom vector under some con-
straints defined by the available information. This methas tecently been applied inl [5] for
the generation of spectrum-compatible accelerogramsagectories of a non-Gaussian non-
stationary centered random process represented by a mgmsion random vector for which
the probability density function (pdf) is constructed ugithhe MaxEnt principle under con-
straints relative to (1) the mean value, (2) the variancehefdomponents and (3) the mean
value of the Velocity Response Spectrum (VRS). The objeativthis paper is to take into ac-
count additional constraints which characterize the adhfeatures of a seismic accelerogram.
To achieve this objective, the methodology proposed in $5¢xtended to take into account
constraints relative to statistics on (1) the end valuestervelocity and the displacement, (2)
the PGA, (3) the Peak Ground Velocity (PGV), (4) the envelbfhe random VRS and (5) the
Cumulative Absolute Velocity (CAV). The MaxEnt pdf is constted and a generator of inde-
pendent realizations adapted to the high-stochastic diraerof an accelerogram is proposed.
Furthermore an adapted method for the identification of tagrange multipliers is developed.
In Section 2 the MaxEnt principle is used to construct theghdiie acceleration random vector
under constraints defined by the available informationalymSection 3 is devoted to an ap-
plication of the methodology for which the target VRS is domsted following the Eurocode
8.

2 CONSTRUCTION OF THE PROBABILITY DISTRIBUTION

The MaxEnt principle is a powerful method to construct thebability distribution of a
random vector associated with a sampled stochastic prooeles some constraints defined by
the available information.

The random acceleration of the soil is modelled by a secaddraentered stochastic pro-
cess{A(t),t € [0,T]}. Atime sampling of this stochastic process is introducettymg a time
series{ A, ..., Ay} for which theR"-valued random vectaA = (A,, ..., Ay) is associated
with. We then havd™ = NAt¢ in which At is the sampling time step. Finally, we have to
construct the probability distribution of the random vecth

2.1 Maximum entropy principle

The objective of this section is to construct the pdf— pa(a) of the random vectoA
using the MaxEnt principle under the constraints definedhieyavailable information relative
to random vectord. The support of the pdf is assumed to be all theRset Let £{.} be the
mathematical expectation. We suppose that the availatdemation is written as

E{g(A)}=F, (1)

in whicha — g(a) is a given function fronRR" into R* and wheref is a given (or target)
vector inR*. Equation[(lL) can be rewritten as

| s@palada = . @
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An additional constraint relative to the normalizationleé pdfp 4 (a) is introduced such that

/NpA(a)da =1. (3)

The entropy of the pd# — pa(a) is defined by

S(pa) == | pa(a)log(pa(a)da. @

wherelog is the Neperian logarithm. Lét be the set of all the pdf defined @ with values
in R, verifying the constraints defined by Eds. (2) dnd (3). TlenMaxEnt principle consists
in constructing the probability density functian — pa(a) as the unique pdf i which
maximizes the entropy(pa). Then by introducing a Lagrange multiplidrassociated with
Eq. (2) and belonging to an admissible open sugatf R*, it can be shown (see![3]) that the
MaxEnt solution, if it exists, is defined by

pa(a) = co(X*) exp(— (A%, g(a))). ()

in which A% is such that Eq.[{2) is satisfied and whegé) is the normalization constant
defined by

W ={ [ ent-ingansal ©

2.2 Calculation of the Lagrange multipliers

In this section, we propose a general methodology for theutation of the Lagrange multi-
pliers A%,

2.2.1 Objective function and methododology

Using Egs.[(7) and{2), vectox®™ is the solution in\ of the following set ofu nonlinear
algebraic equations

[ st ex-(x.g(a) - £ @

A more convenient way to calculate vectsi® consists in solving the following optimization
problem (se€ [2]),

X% =arg min T(A), (8)

AEL,CRE
in which the objective functiof is written as
LX) = (A, f) = log(co(N)) - 9)

Let {Ax, A € £,} be a family of random variables for which the pdf is defined,&t A in
L,, by

pas(@) = co(A) exp—(A, g(a))) . (10)
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Then the gradient vectdVI'(A) and the Hessian matripd ()] of function A — T'(A) are
written as

VI'(A) = f — E{g(Ax)} . (11)

[H(X)] = E{g(Ax)g(Ax)"} — E{g(Ax)} E{g(AN}", (12)

in which u” is the transpose of. It is assumed that the constraints defined by Ef. (2) are
algebraically independent. Consequently, the Hessiammsipositive definite and therefore,
function A — I'(X) is strictly convex and reaches its minimum & which is such that
VI'(A) = 0for A = A% It can then be deduced that the minimum of functiom> T'(X)
corresponds to the solution of EQl (7). The optimizatiorbfgm defined by EqL{8) is solved
using the Newton iterative method

A= X' — o [HA)] T VDAY, (13)

in whicha belongs tdo0 , 1] is an under-relaxation parameter which ensures the coeneego-
wards the solutiod®®. In general, for the non-Gaussian case, the integrals detin&qgs. (1)
and [12) cannot explicitly (such as in the Gaussian Caseglbalated and cannot be discretized
in RY. In this paper, these integrals are estimated using thedatlo simulation method for
which independent realizations of the random vecigrare generated using a specific algo-
rithm presented below.

2.2.2 Generator of independent realizations

The objective of this section is to provide a generator oépehdent realizations of the ran-
dom variableA for all A fixed in £,,. A generator of independent realizations for MaxEnt dis-
tributions has been proposed in([4, 5] in the class of the MGNforithms. This methodology
consists in constructing the pdf of random vectbs as the density of the invariant measure
pa, (a)da, associated with the stationary solution of a second-ondefinear 1td Stochastic
differential equation (ISDE). The advantages of this gateercompared to the other MCMC
generators such as the Metropolis-Hastings algorithm @eThe mathematical results con-
cerning the existence and the uniqueness of an invariandune@an be used, (2) a damping
matrix can be introduced in order to rapidly reach the irardrmeasure and (3) there is no need
to introduce a proposal distribution which can induce ditties in high dimension. Below, we
directly introduce the generator of independent realiretiusing a discretization of the ISDE.
Details concerning the construction of this generator eafobnd in [4]5].

As proposed in[[4, 5], the ISDE is discretized using a senghait integration scheme in
order to avoid the resolution of an algebraic nonlinear &gonaat each step while allowing
significantly increase of the time step compared to a purghi@t scheme.

We assume that the functian — g(a) introduced in Eq.[{1) and defining the available
information is written ag(a) = (g, (a), gy (a)) inwhicha — gy, (a) is a nonlinear function
from RY into R* and wherea +— g, (a) is a quadratic function fronR"Y into R whose
components are such that

{gu(@)) = 5w, [Ki]uw), (14)
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in which {[K;]}i=1,.,, arep. symmetric(N x N) real matrices which are assumed to be
algebraically independent. Lat— ®(u, \) be a potential function defined by

D(u, A) = (A, g(u)) . (15)

Let us introduce the decomposition= (A_, An) € £, of the Lagrange multipliers. Then for
all X € £, the potential function can be written as

D, A) = G, [ o)+ B (1, M) (16)

inwhich [ICx ] = > 1, {AL};[K] is assumed to be positive definite for ll in £, and where
e (u, An) = D5 {An}j{gn (u)};. Therefore, the gradient of the potential function with
respect tau is written as

Vu®(“> A) - [ICAL]'U’ + V'll,éNL(’u’a ANL) ) (17)

inwhichV, & (w, Anc) = 325 {An} Vu{gn () }5. Thus the gradient functioW, @ (u, A)
is decomposed into a linear part with respectitand a nonlinear part.

Let Ary be the integration step size relative to the discretizatidhe ISDE. LetAW!, . . .,
AW™M pe M mutually independent second-order Gaussian centeredmawector with covari-
ance matrix equal td\ry [Iy]. We then introduce the time serié€U", V*) &k = 1,..., M}
with values inRY x RY for all kin {1,..., M} and the second-order random vector of the
initial condition (U, V') with values inRY x RY and which is independent of the time series
{((U*,V*),k=1,...,M}.

For¢ = 1,...,n,, usingn, independent realizationsAW"* ™ t = 1,.... M — 1}
of the family of random vector§ AW**! k. = 1,.... M — 1} andn, independent real-
izations (U, V'§) of the random initial conditionsU,, Vo) (which are also independent of
{AWH k= 1,..., M — 1}), then, independent realizatiorg™+* of the vector random
U™ are generated by solving, times, fork = 1,..., M — 1, the following equations (which
correspond to the discretization of the ISDE, see [4])

[5>\]Vk+1’z = [B)\]Vk’g — AT)\ [ICAL]Uk’Z + ATALﬁ’f + [S)\]Awarl’z s

UM = UM L Ay (VI VR (18)

vt'=u;, , v"=Vvyg.

in which [8)‘] = [IN] + i Ary [D)\] + i A'f’i [IC)‘L] and[B)‘] = [IN] — i Ary [D)\] — % AT%\ [IC)\L]
where[Iy] is the (N x N) identity matrix and where¢D,] is a symmetric positive-definite
damping matrix and the lower triangular matf4| is such thafD,] = [S»][Sa]?. The vector
Lﬁ”_ is defined byLﬁL = —{qu)NL(’U,, ANL)}u:U’C-

Then, if M is sufficiently large, the., independent realizations of the random vecdgrare
constructed such that§ ~ UM*for¢ =1,..., n,.

Concerning the initial conditions, the more the probapitiistribution of the initial condi-
tions is close to the invariant measure, the shorter is #restent response.
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2.2.3 Estimation of the mathematical expectations

The mean valugZ{g(A,)} and the correlation matri¥x’{g(Ax)g(A,)T} are estimated
using the Monte Carlo simulation method by

Blg(An)} = > g(A}). (19
E{g(Axg(AN"} = -3 g(A)g(AY)" (20)

8 =1
3 APPLICATIONS
The acceleration stochastic process is sampled such théihti time7 = 20 s. The time
step isAt = 0.0125 s. We then havéV = 1600 (we assumel(0) = 0 ms 2 almost surely).
3.1 Availableinformation

The available information relative to random vectbiis defined by:

(1) The random vectaoA is centred.

(2) The standard deviation of the componentdoére imposed. The target values are plotted
in Fig.[d.

2
('I\]A
2 1.5/
=t
S
ks
2 1
©
=
[
205
50.
09}
O L L L
0 5 10 15 20

Time (s)

Figure 1: Target standard deviation.

(3) The variance of the end-velocity (resulting from a nuicarintegration of random vector
A) is zero.

(4) The variance of the end-displacement (resulting from $wccessive numerical integra-
tions of random vectoA) is zero.

(5) The target mean VR$][1] is constructed following the Eoxte 8 for a A-type soil and
a PGA equal t& ms2. It is defined foré = 0.05 of the damping ratio and fat0 frequencies
which are (in rad/s).04, 1.34, 1.73, 2.23, 2.86, 3.69, 4.74, 6.11, 7.86, 10.11, 13.01, 16.74,
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Figure 2: Mean VRS.

21.53, 27.70, 35.64, 45.86, 59.00, 75.91, 97.67 and125.66. The target mean VRS is plotted in
Fig.[2.

(6) Let s be the lower envelop defined 3" = 0.5 x s ands"? be the upper envelop
defined bys"* = 1.5 x s. The probability for random vectad of being inside the region
delimited by the two envelops 599.

(7) The mean PGA i5 ms2.

(8) The mean PGV i8.45 ms™.

(9) The mean CAV i20 ms™2.

3.2 Reaults
The step size for the ISDE &ry = 27/(5 V2 Amax), IN Which Ay = max{{A};,i =
1,...,N} andg = 80. At each iteration, the damping matrik,] is a diagonal matrix such

that[Dx]i = 2 it /2 {AL}s, INnWhich&y,, = 0.7. For the ISDE, the number of integration steps
is M = 600. At each iterationp, = 900 Monte Carlo simulations are carried out. The method-
ology developed in Sectidn 2.2.1 is applied usiigterations. The under-relaxation parameter
is = 0.3. Figure[3 shows two independent realizations of the randectov A »_, which is
generated using a classical generator for Gaussian ranaaatle and which are representative
of two independent realizations of the random accelerogfidra corresponding trajectories of
the velocity times serie¥ and of the displacement times serig@sesult from two successive
numerical integrations of each realization of the randocerogram and are plotted in Fids. 4
andB’. As expected, it can be seen that the end velocity arehthdisplacements are both equal
to zero. Figurél6 displays a comparison of the estimatediatdrdeviation of the components
with the target values. Figufe 7 shows a comparison of thenrvdS with the target mean
VRS. The Figur&l8 shows)0 trajectories of the random VRS and the envelgp% ands"?. It
can be seen in Figs| 6 fd 8 a good matching between the edtivaltees and the target values.
Concerning the PGA, the PGV and the CAV, the results are suinethin Tabld 1. It can be

seen a good matching of the estimated means values for the R&ERGV and the CAV with
the target values.
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Figure 3: Two independent realizations of the random acogtam.
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Figure 4: Two independent realizations of the random véjoci
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Figure 5: Two independent realizations of the random desptzent.

Constraint Estimation| Target
Mean PGA (ms?) 5.08 5
Mean PGV (ms?) 0.46 0.45
Mean CAV (ms!) 19.99 20

Table 1: For the PGA, the PGV, the CAV: comparision of thereated mean value with the target value.
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Standard Deviation (ms_z)
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Figure 6: Variance: Target (thick dashed line) and estiomafihin solid line).
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Figure 7: Mean VRS: Target (dashed line), estimation (miies).

4 CONCLUSIONS

We have presented a new methodology for the generation efeaograms compatible with
a given VRS and other properties. If necessary, additiomasicaints can easily be taken into
account in addition to those developed in this paper. Thécgtipn shows a good matching
between the estimated values and the target values.
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Figure 8: Random VRS: 100 trajectories (thin lines), lowsd apper envelop (thick lines)..
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