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Abstract. The research addressed here concerns the generation of seismic accelerograms
compatible with a given response spectrum and other associated properties. The time sampling
of the stochastic accelerogram yields a time series represented by a random vector in high
dimension. The probability density function (pdf) of this random vector is constructed using
the Maximum Entropy (MaxEnt) principle under constraints defined by the available informa-
tion. In this paper, a new algorithm, adapted to the high stochastic dimension, is proposed to
identify the Lagrange multipliers introduced in the MaxEntprinciple to take into account the
constraints. This novel algorithm is based on (1) the minimization of an appropriate convex
functional and (2) the construction of the probability distribution defined as the invariant mea-
sure of an It Stochastic Differential Equation in order to estimate the integrals in high dimension
of the problem.
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1 INTRODUCTION

This research is devoted to the generation of seismic accelerograms which are compatible
with some design specifications such as the Velocity Response Spectrum, the Peak Ground Ac-
celeration (PGA), etc. The Maximum Entropy (MaxEnt) principle [3] is a powerful method
which allows us to construct a probability distribution of arandom vector under some con-
straints defined by the available information. This method has recently been applied in [5] for
the generation of spectrum-compatible accelerograms as trajectories of a non-Gaussian non-
stationary centered random process represented by a high-dimension random vector for which
the probability density function (pdf) is constructed using the MaxEnt principle under con-
straints relative to (1) the mean value, (2) the variance of the components and (3) the mean
value of the Velocity Response Spectrum (VRS). The objective of this paper is to take into ac-
count additional constraints which characterize the natural features of a seismic accelerogram.
To achieve this objective, the methodology proposed in [5] is extended to take into account
constraints relative to statistics on (1) the end values forthe velocity and the displacement, (2)
the PGA, (3) the Peak Ground Velocity (PGV), (4) the envelop of the random VRS and (5) the
Cumulative Absolute Velocity (CAV). The MaxEnt pdf is constructed and a generator of inde-
pendent realizations adapted to the high-stochastic dimension of an accelerogram is proposed.
Furthermore an adapted method for the identification of the Lagrange multipliers is developed.
In Section 2 the MaxEnt principle is used to construct the pdfof the acceleration random vector
under constraints defined by the available information. Finally, Section 3 is devoted to an ap-
plication of the methodology for which the target VRS is constructed following the Eurocode
8.

2 CONSTRUCTION OF THE PROBABILITY DISTRIBUTION

The MaxEnt principle is a powerful method to construct the probability distribution of a
random vector associated with a sampled stochastic processunder some constraints defined by
the available information.

The random acceleration of the soil is modelled by a second-order centered stochastic pro-
cess{A(t), t ∈ [0, T ]}. A time sampling of this stochastic process is introduced yielding a time
series{A1, . . . , AN} for which theRN -valued random vectorA = (A1, . . . , AN ) is associated
with. We then haveT = N∆t in which ∆t is the sampling time step. Finally, we have to
construct the probability distribution of the random vector A.

2.1 Maximum entropy principle

The objective of this section is to construct the pdfa 7→ pA(a) of the random vectorA
using the MaxEnt principle under the constraints defined by the available information relative
to random vectorA. The support of the pdf is assumed to be all the setR

N . Let E{.} be the
mathematical expectation. We suppose that the available information is written as

E{g(A)} = f , (1)

in which a 7→ g(a) is a given function fromRN into R
µ and wheref is a given (or target)

vector inRµ. Equation (1) can be rewritten as
∫

RN

g(a)pA(a)da = f . (2)
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An additional constraint relative to the normalization of the pdfpA(a) is introduced such that
∫

RN

pA(a)da = 1 . (3)

The entropy of the pdfa 7→ pA(a) is defined by

S(pA) = −
∫

RN

pA(a) log(pA(a))da , (4)

wherelog is the Neperian logarithm. LetC be the set of all the pdf defined onRN with values
in R

+, verifying the constraints defined by Eqs. (2) and (3). Then the MaxEnt principle consists
in constructing the probability density functiona 7→ pA(a) as the unique pdf inC which
maximizes the entropyS(pA). Then by introducing a Lagrange multiplierλ associated with
Eq. (2) and belonging to an admissible open subsetLµ of Rµ, it can be shown (see [3]) that the
MaxEnt solution, if it exists, is defined by

pA(a) = c0(λ
sol) exp(−〈λsol, g(a)〉) , (5)

in which λsol is such that Eq. (2) is satisfied and wherec0(λ) is the normalization constant
defined by

c0(λ) =

{
∫

RN

exp(−〈λ, g(a)〉) da

}−1

. (6)

2.2 Calculation of the Lagrange multipliers

In this section, we propose a general methodology for the calculation of the Lagrange multi-
pliersλsol.

2.2.1 Objective function and methododology

Using Eqs. (7) and (2), vectorλsol is the solution inλ of the following set ofµ nonlinear
algebraic equations

∫

RN

g(a) c0(λ) exp(−〈λ, g(a)〉) = f . (7)

A more convenient way to calculate vectorλsol consists in solving the following optimization
problem (see [2]),

λsol = arg min
λ∈Lµ⊂Rµ

Γ(λ) , (8)

in which the objective functionΓ is written as

Γ(λ) = 〈λ, f〉 − log(c0(λ)) . (9)

Let {Aλ , λ ∈ Lµ} be a family of random variables for which the pdf is defined, for all λ in
Lµ, by

pAλ
(a) = c0(λ) exp(−〈λ, g(a)〉) . (10)
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Then the gradient vector∇Γ(λ) and the Hessian matrix[H(λ)] of functionλ 7→ Γ(λ) are
written as

∇Γ(λ) = f − E{g(Aλ)} . (11)

[H(λ)] = E{g(Aλ)g(Aλ)
T} − E{g(Aλ)}E{g(Aλ)}T , (12)

in which uT is the transpose ofu. It is assumed that the constraints defined by Eq. (2) are
algebraically independent. Consequently, the Hessian matrix is positive definite and therefore,
functionλ 7→ Γ(λ) is strictly convex and reaches its minimum forλsol which is such that
∇Γ(λ) = 0 for λ = λsol. It can then be deduced that the minimum of functionλ 7→ Γ(λ)
corresponds to the solution of Eq. (7). The optimization problem defined by Eq. (8) is solved
using the Newton iterative method

λi+1 = λi − α [H(λi)]−1
∇Γ(λi) , (13)

in whichα belongs to]0 , 1] is an under-relaxation parameter which ensures the convergence to-
wards the solutionλsol. In general, for the non-Gaussian case, the integrals defined by Eqs. (11)
and (12) cannot explicitly (such as in the Gaussian Case) be calculated and cannot be discretized
in R

N . In this paper, these integrals are estimated using the Monte Carlo simulation method for
which independent realizations of the random vectorAλ are generated using a specific algo-
rithm presented below.

2.2.2 Generator of independent realizations

The objective of this section is to provide a generator of independent realizations of the ran-
dom variableAλ for all λ fixed inLµ. A generator of independent realizations for MaxEnt dis-
tributions has been proposed in [4, 5] in the class of the MCMCalgorithms. This methodology
consists in constructing the pdf of random vectorAλ as the density of the invariant measure
pAλ

(a)da, associated with the stationary solution of a second-ordernonlinear Itô Stochastic
differential equation (ISDE). The advantages of this generator compared to the other MCMC
generators such as the Metropolis-Hastings algorithm are:(1) The mathematical results con-
cerning the existence and the uniqueness of an invariant measure can be used, (2) a damping
matrix can be introduced in order to rapidly reach the invariant measure and (3) there is no need
to introduce a proposal distribution which can induce difficulties in high dimension. Below, we
directly introduce the generator of independent realizations using a discretization of the ISDE.
Details concerning the construction of this generator can be found in [4, 5].

As proposed in [4, 5], the ISDE is discretized using a semi-implicit integration scheme in
order to avoid the resolution of an algebraic nonlinear equation at each step while allowing
significantly increase of the time step compared to a purely explicit scheme.

We assume that the functiona 7→ g(a) introduced in Eq. (1) and defining the available
information is written asg(a) = (gL(a), gNL(a)) in whicha 7→ gNL(a) is a nonlinear function
from R

N into R
µNL and wherea 7→ gL(a) is a quadratic function fromRN into R

µL whose
components are such that

{gL(a)}i =
1

2
〈u, [Ki]u〉 , (14)
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in which {[Ki]}i=1,...,µL areµL symmetric(N × N) real matrices which are assumed to be
algebraically independent. Letu 7→ Φ(u,λ) be a potential function defined by

Φ(u,λ) = 〈λ, g(u)〉 . (15)

Let us introduce the decompositionλ = (λL,λNL) ∈ Lµ of the Lagrange multipliers. Then for
all λ ∈ Lµ, the potential function can be written as

Φ(u,λ) =
1

2
〈u, [KλL ]u〉+ ΦNL(u,λNL) , (16)

in which [KλL ] =
∑µL

j=1
{λL}j[Kj ] is assumed to be positive definite for allλL in Lµ and where

ΦNL(u,λNL) =
∑µNL

j=1
{λNL}j{gNL(u)}j. Therefore, the gradient of the potential function with

respect tou is written as

∇uΦ(u,λ) = [KλL ]u+∇uΦNL(u,λNL) , (17)

in which∇uΦNL(u,λNL) =
∑µNL

j=1
{λNL}j∇u{gNL(u)}j . Thus the gradient function∇uΦ(u,λ)

is decomposed into a linear part with respect tou and a nonlinear part.
Let∆rλ be the integration step size relative to the discretizationof the ISDE. Let∆W 1, . . . ,

∆WM beM mutually independent second-order Gaussian centered random vector with covari-
ance matrix equal to∆rλ [IN ]. We then introduce the time series{(U k,V k), k = 1, . . . ,M}
with values inRN × R

N for all k in {1, . . . ,M} and the second-order random vector of the
initial condition(U 0,V 0) with values inRN ×R

N and which is independent of the time series
{(U k,V k), k = 1, . . . ,M}.

For ℓ = 1, . . . , ns, usingns independent realizations{∆W k+1,ℓ, k = 1, . . . , M − 1}
of the family of random vectors{∆W k+1, k = 1, . . . ,M − 1} and ns independent real-
izations(U ℓ

0,V
ℓ
0) of the random initial conditions(U 0,V 0) (which are also independent of

{∆W k+1, k = 1, . . . ,M − 1}), thens independent realizationsUM,ℓ of the vector random
UM are generated by solvingns times, fork = 1, . . . ,M − 1, the following equations (which
correspond to the discretization of the ISDE, see [4])

[Eλ]V k+1,ℓ = [Bλ]V
k,ℓ −∆rλ[KλL ]U

k,ℓ +∆rλL
k,ℓ
NL + [Sλ]∆W k+1,ℓ ,

U k+1,ℓ = U k,ℓ + 1

2
∆rλ (V

k+1,ℓ + V k,ℓ) ,

U 1,ℓ = U ℓ
0 , V 1,ℓ = V ℓ

0 .

(18)

in which [Eλ] = [IN ] +
1

4
∆rλ [Dλ] +

1

4
∆r2

λ
[KλL ] and[Bλ] = [IN ]− 1

4
∆rλ [Dλ]− 1

4
∆r2

λ
[KλL ]

where [IN ] is the (N × N) identity matrix and where[Dλ] is a symmetric positive-definite
damping matrix and the lower triangular matrix[Sλ] is such that[Dλ] = [Sλ][Sλ]

T . The vector
Lk

NL is defined byLk
NL = −{∇uΦNL(u,λNL)}u=U

k .
Then, ifM is sufficiently large, thens independent realizations of the random vectorAλ are

constructed such thatAℓ
λ
≃ UM,ℓ for ℓ = 1, . . . , ns.

Concerning the initial conditions, the more the probability distribution of the initial condi-
tions is close to the invariant measure, the shorter is the transient response.
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2.2.3 Estimation of the mathematical expectations

The mean valueE{g(Aλ)} and the correlation matrixE{g(Aλ)g(Aλ)
T} are estimated

using the Monte Carlo simulation method by

E{g(Aλ)} ≃ 1

ns

ns
∑

ℓ=1

g(Aℓ
λ
) , (19)

E{g(Aλ)g(Aλ)
T} ≃ 1

ns

ns
∑

ℓ=1

g(Aℓ
λ
)g(Aℓ

λ
)T . (20)

3 APPLICATIONS

The acceleration stochastic process is sampled such that the final timeT = 20 s. The time
step is∆t = 0.0125 s. We then haveN = 1600 (we assumeA(0) = 0 ms−2 almost surely).

3.1 Available information

The available information relative to random vectorA is defined by:
(1) The random vectorA is centred.
(2) The standard deviation of the component ofA are imposed. The target values are plotted

in Fig. 1.
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Figure 1: Target standard deviation.

(3) The variance of the end-velocity (resulting from a numerical integration of random vector
A) is zero.

(4) The variance of the end-displacement (resulting from two successive numerical integra-
tions of random vectorA) is zero.

(5) The target mean VRS [1] is constructed following the Eurocode 8 for a A-type soil and
a PGA equal to5 ms−2. It is defined forξ = 0.05 of the damping ratio and for20 frequencies
which are (in rad/s)1.04, 1.34, 1.73, 2.23, 2.86, 3.69, 4.74, 6.11, 7.86, 10.11, 13.01, 16.74,
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Figure 2: Mean VRS.

21.53, 27.70, 35.64, 45.86, 59.00, 75.91, 97.67 and125.66. The target mean VRS is plotted in
Fig. 2.

(6) Let slow be the lower envelop defined byslow = 0.5 × s andsup be the upper envelop
defined bysup = 1.5 × s. The probability for random vectorA of being inside the region
delimited by the two envelops is0.99.

(7) The mean PGA is5 ms−2.
(8) The mean PGV is0.45 ms−1.
(9) The mean CAV is20 ms−2.

3.2 Results

The step size for the ISDE is∆rλ = 2 π/(β
√
2 λmax), in whichλmax = max{{λL}i, i =

1, . . . , N} andβ = 80. At each iteration, the damping matrix[Dλ] is a diagonal matrix such
that[Dλ]ii = 2 ξito

√

2 {λL}i, in whichξito = 0.7. For the ISDE, the number of integration steps
isM = 600. At each iteration,ns = 900 Monte Carlo simulations are carried out. The method-
ology developed in Section 2.2.1 is applied using30 iterations. The under-relaxation parameter
is α = 0.3. Figure 3 shows two independent realizations of the random vectorAλsol which is
generated using a classical generator for Gaussian random variable and which are representative
of two independent realizations of the random accelerogram. The corresponding trajectories of
the velocity times seriesV and of the displacement times seriesD result from two successive
numerical integrations of each realization of the random accelerogram and are plotted in Figs. 4
and 5. As expected, it can be seen that the end velocity and theend displacements are both equal
to zero. Figure 6 displays a comparison of the estimated standard deviation of the components
with the target values. Figure 7 shows a comparison of the mean VRS with the target mean
VRS. The Figure 8 shows100 trajectories of the random VRS and the envelopsslow andsup. It
can be seen in Figs. 6 to 8 a good matching between the estimated values and the target values.
Concerning the PGA, the PGV and the CAV, the results are summarized in Table 1. It can be
seen a good matching of the estimated means values for the PGA, the PGV and the CAV with
the target values.
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Figure 3: Two independent realizations of the random accelerogram.
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Figure 4: Two independent realizations of the random velocity.
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Figure 5: Two independent realizations of the random displacement.

Constraint Estimation Target
Mean PGA (ms−2) 5.08 5
Mean PGV (ms−1) 0.46 0.45
Mean CAV (ms−1) 19.99 20

Table 1: For the PGA, the PGV, the CAV: comparision of the estimated mean value with the target value.
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Figure 6: Variance: Target (thick dashed line) and estimation (thin solid line).
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Figure 7: Mean VRS: Target (dashed line), estimation (mixedline).

4 CONCLUSIONS

We have presented a new methodology for the generation of accelerograms compatible with
a given VRS and other properties. If necessary, additional constraints can easily be taken into
account in addition to those developed in this paper. The application shows a good matching
between the estimated values and the target values.
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Figure 8: Random VRS: 100 trajectories (thin lines), lower and upper envelop (thick lines)..

REFERENCES

[1] R. W. Clough, J. Penzien,Dynamics of Structures, McGraw-Hill, New York, 1975.

[2] A. Golan, G. Judge, D. Miller,Maximum entropy econometrics: robust estimation with
limited data, Wiley, New York, 1996.

[3] J. N. Kapur, H. K. Kevasan,Entropy Optimization Principles with Applications, Aca-
demic Press, San Diego, 1992

[4] C. Soize, Construction of probability distributions inhigh dimension using the maximum
entropy principle. Applications to stochastic processes,random fields and random matri-
ces, International Journal for Numerical Methods in Engineering, 76(10), 1583–1611,
2008.

[5] C. Soize, Information theory for generation of accelerograms associated with shock re-
sponse spectra,Computer-Aided Civil and Infrastructure Engineering, 25, 334–347,
2010.


	INTRODUCTION
	CONSTRUCTION OF THE PROBABILITY DISTRIBUTION
	Maximum entropy principle
	Calculation of the Lagrange multipliers
	Objective function and methododology
	Generator of independent realizations
	Estimation of the mathematical expectations


	APPLICATIONS
	Available information
	Results

	CONCLUSIONS
	ACKNOWLEDGMENT

