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Abstract: We are interested in the construction of stodbastiuced-order models in low-frequency range for dynainic
structures which are made up of a stiff master structure anesal flexible substructures. In the low-frequency range,
this type of structure is characterized by the fact that hibits not only the classical global elastic modes but also
numerous local elastic modes which cannot easily be separfam the global elastic modes. To solve this difficult
problem, a new approach has recently been proposed for natstg a reduced-order model adapted to this case.
This method consists in introducing two unusual eigenvploblems. The solutions of this two eigenvalue problems
provide a basis of the admissible displacement space whiahiiten as the direct sum of a global displacements space
and of a local displacements space. A stochastic reduceédranodel is then introduced in order to take into account
uncertainties. Two industrial applications are present&be first one is relative to an automotive vehicle and theiséc
one is relative to a fuel assembly.
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1 INTRODUCTION

This paper is devoted to the construction of a stochasticiBettOrder Model (ROM) for dynamical structures having
a high-modal density in the Low-Frequency (LF) range. Weirterested in structures which are made up of stiff parts
and flexible components. In the LF range, this type of stmestexhibits not only the classical global elastic modes but
also numerous local elastic modes. The first objective iotsttuct a ROM using a basis of the global displacements
space. Due to the coupling between the global displaceraadtthe local displacements, the elastic modes canndtystric
and easily be separated into global and local elastic modes.

The objective of this paper is to construct a reduced-oraerputational model with a very small dimension and which
has the capability to predict the dynamical responses dittiieture observed on the stiff part with a good accuragceSi
the contributions of the local displacements are neglgiblthe displacements of the stiff part, we have to consthect
reduced-order computational model using a basis adaptdtetprediction of the global displacements and therefore,
we have to filter the local displacements in the construatibthe basis. To achieve this objective, most of previous
researches have been based on a spatial filtering of thewgaeetengths. Concerning the experimental methods, such
a filtering is carried out using regularization technigugsdcher and Braun, 1997), image-based finite element methods
(Hahn and Kikuchi, 2005) or an extraction of eigenvectorheffrequency mobility matrix (Guyader, 2009). Concerning
numerical methods, most of the techniques are based onrtipeimass methods. In the Guyan method (Guyan, 1965),
the masses are lumped at a few nodes and the inertia forcbe other nodes are neglected. It should be noted that
the choice of points in which the masses are concentratedtisbvious to do for complex structures (Bouhaddi and
Fillod, 1992), (Ong, 1987), (Li, 2003). The convergencepemies of the solution obtained using the lumped mass
method have been studied (Chan et al., 1993), (Jensen,,18@8)tschko and Mindle 1980). In (Langley and Bremmer,
1999), the authors propose to construct a basis of the gliidyelacements space using a rough finite element model. For
slender dynamical structures, another method consistseirta@nstruction of an equivalent beam or plate model (Noor
et al., 1978), (Planchard, 1995). In (Guyader, 1990), ttthawcircumvent the problem of the high modal density by
extrapolating the dynamical response using a few elastidesioThis method is interesting when one has an analytical
expression for the modal shape, that is not the case forrihetistes considered in this paper. In (Ji, 2006), the asthse
a free-interface substructuring method in order to extiatg wavelength free modes of a master structure. The Proper
Orthogonal Decomposition (POD) method (see (Karhunen5)1$loéve, 1963), (Holmes et al., 1997)) allows in some
cases to extract an accurate small size basis in order taraoha reduced-order computational model of a nonlinear
dynamical system (see for instance (Azeez and Vakakis, )2QRinisch and Volkwein, 2001), (Matthies and Keese,
2005), (Sampaio and Soize, 2007)), but this basis has tormroateda posteriorj which means that a sufficiently rich
nonlinear response has to be constructed. Moreover, thel2OB is only optimal for a given external load (or imposed
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displacement). In (Soize, 1998), a similar method to PODsidufor linear dynamical systems but the basis which is
constructed is independent of any given external load.

Recently, a new method has been proposed to construct aegduder computational model in linear structural
dynamics for structures having numerous local elastic redunlehe low-frequency band (Soize and Batou, 2010). To
solve this difficult problem, a new approach has recentiynlreposed for constructing a reduced-order dynamical inode
adapted to this type of structures in the LF range (Soize atdlB 2010). This approach allows a basis of the global
displacements and a basis of the local displacements to m&raoted by solving two unusual eigenvalue problems.
Due to the coupling between the global displacements antbttad displacements, a part of the mechanical energy is
transferred from the global coordinates to the local comtdis which store this energy and then induced an apparent
damping on the global coordinates. The second objectivetake into account uncertainties induced by modellingrerro
in the computational model and the irreducible errors ihiiced by neglecting the local displacements. This second
objective is achieved using a probabilistic approach. Tleéwdology presented is applied to the case of two complex
dynamical systems: an automotive vehicle and the fuel dsiéesrof a pressurized water reactor.

2 CONSTRUCTION OF THE REDUCED-ORDER MODEL

In this section, we summarize the method introduced in aizd Batou, 2010). This method allows a basis of
the global displacements and a basis of the local displacente be constructed by solving two separated eigenvalue
problems. It should be noted that these two bases are not upaafethe usual elastic modes. The method is based on the
construction of a projection operator which reduces thetiirenergy while the elastic energy remains exact.

2.1 Reference reduced model

We are interested in predicting the frequency responsetiimecof a dynamical structure occupying a domg&in
in the frequency band of analysi& = [wmin, Wmax] With 0 < whin. Let U(w) be the complex vector of the DOF of
the computational model constructed by the finite elemernbate Let[M] and[K] be the mass and stiffness matrices
which are positive-definite symmetrim x m) real matrices. The eigenfrequenclesind the elastic modef in R™ of
the conservative part of the dynamical computational motlghe structure are the solution of the following eigenealu
problem,

K]$ =AM (1)

Then an approximatioti,(w) at ordem of U(w) can be written as

Un(w) =) da(w)§, = [®]a(w), )
a=1

in whichq(w) = (q1(w),...,dn(w)) is the complex vector of the generalized coordinates and whéte = [¢;... ¢ ]

is the(mx n) real matrix of the elastic modes associated withrtliiest eigenvalues.

2.2 Decomposition in subdomains for kinematic energy reduc tion.

In this section, we introduce a decomposition of the dométh® structure which allows the kinematic energy to be
reduced. We then obtained an associated mass matrix whéclajsted to the calculation of the global elastic modes in
the low-frequency band of analysis in which there are alsargel there are a large number of local elastic modes. The
details of the methodology for the the continuous and thereie cases are presented in (Soize and Batou, 2010).

2.2.1 Decomposition of the domain

The domainQ is partitioned intan; subdomaing; such that, forj andkin {1,...,n;},
ny
o=JQ . Qn=0. ©)
j=1

The choice of the length of subdomains is related to the ssidivavelength” of the global elastic modes that we want

to extract in presence of numerous local modes.

2.2.2 Projection operator

Letu~ h'(u) be the linear operator defined by

MW =3 Io, (x)mij [ poyuix)ax. (4)
=1 j
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in whichx— Ig; (x) = 1 if xis in Qj and equal to 0 otherwise. The local massis defined, for allj in {1,...,ny}, by

mj = fQj p(x)dx, wherex — p(x) is the mass density. Let— h(u) be the linear operator defined by
h®(u) =u—h'(u). (5)
Functionh’ (u) will also be denoted by and functionh®(u) by u®. We then havau = h"(u) + h®(u) that is to say,

u=u" +ut. Let[H'] be the(mx m) matrix relative to the finite element discretization of thejpction operatoh’
defined by Eqg. (4). Therefore, the finite element discratipdl] of u can be written a& = U" 4 UC, in which

U'=[H"U

and

U¢=[HU=U-U" ,
which shows thafH®| = [Iy] — [H']. Then, the reduce@n x m) mass matriXxM'] is such that

M) = [HTT[MI[HT
and the complementafyn x m) mass matri¥M°€] is such that

[M°] = [H]" [M][H]
Using the properties of the projection operator defined by(&) it can be shown [Soize 2010] that

(M = [M] — [M]

2.3 Global and local displacements bases

There are two methods to calculate the global displacentasis and the local displacements basis. The first one is
the direct method that will be used to reduce the matrix égnatn such a method, the basis of the global displacements
and the basis of the local displacements are directly catiedlusing matrifM"]. The second one, is the double projection.
This method is less intrusive with respect to the commesoétvare and less time-consuming than the direct method.
The global displacements eigenvectgfsin R™ are solution of the following generalized eigenvalue peotl

(K] = AIM'] @ (6)
The local displacements eigenvectgfsin R™ are solution of the generalized eigenvalue problem
Klg" = A" Mg’ (7)

The solutions of the generalized eigenvalue problems ditfigdEgs. (6) and (7) are then written, fosufficiently large,

as iy =
P =0l . ¢=[Pe, ®)
in which [®], defined in Eq. (2), is the matrix of the elastic modes. Théagldisplacements eigenvectors are the solutions

of the generalized eigenvalue problem
g

K@’ =A9N'] ¢, ©
in which [M"] = [®"]T [M] [®'] and[K] = [®]" [K] [®], and where thém x n) real matrix|®'] is such thaf®'] = [H'] [®).
The local displacements eigenvectors are the solutiortseajéneralized eigenvalue problem

o ~0 .~

Kl =A' Mo, (10)

in which [M¢] = [®°]T [M] [®°] and where thém x n) real matrix|[®°] is such thaf®®] = [HY] [®] = [®] — [®]. Itis

proven in (Soize and Batou, 2010) that the fandig, ..., @3, @i, ..., @, 3} is a basis oR™. The mean reduced

matrix model is obtained by the projection Bf w) on the family{qﬁ,...,q)%g,q)ﬁ, .. .,qrf,[} of real vectors associated
with the ng first global displacements eigenvectors such tha 3n; < m and with then, first local displacements
eigenvectors such that < m. It should be noted that, if the double projection methodsisd) then we must havg <n,

ne < nandny < ninwhichn = ng-+n,. Then, the approximatiolﬁng’n[(w) of U(w) at order(ng, ny) is written as

Ng N

Ung.n, () = qu(‘*’) 4’%"’2%(@)%- (11)
a=1 B=1

This decomposition is then used to construct the genedalizss, stiffness and damping matrices which can be written

in a block representation as

v = (e ) 21= (B o0) = (s 1) (12
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2.4 Reduced-order model for the global displacements

The aim of this work is to construct a reduced-order modepsathto the low-frequency range in which the synthesis
of the frequency responses can be obtained using only tihalgiisplacements eigenvectors. So the new approximation
Uy (w) of U(w) at ordemy is written as

Ng
Ung(@) =) da(w) @§ - (13)
a=1
The corresponding reduced-order matrix equation is théttenras

(~w*[M%] +iw[D%) + [K99)gd = F9 . (14)

2.5 Probabilistic model of uncertainties

A probabilistic model of uncertainties is introduced in leeluced-order computational model in order to take into
account the system-parameter uncertainties and the modertainties induced by modeling errors in the reference
model from which the reduced-order model has been deducedal$ have to take into account uncertainties induced
by the irreducible errors introduced by neglecting the dbation of the local displacements in the constructed cedd
order model. To take into account all these sources of usiogigs, we use the nonparametric probabilistic approach
(Soize, 2005) which consists in replacing, in the reduceocomputational model, the deterministic generalizedsn
damping and stiffness matrices by random matrices. In tloikwthe uncertainties are not taken into account on the
generalized damping matrix (it has previously been prohanthe random frequency responses are not sensitive to the
statistical fluctuations of the damping matrix in the franoekof the nonparametric probabilistic approach). Thenetbe
matricesM99] and[K99] are replaced by the random matri¢ks?9] and[K 99] for which the probability density functions
(PDF) and the generator of independent realizations amengiv (Soize, 2005). The probability density functions of
these two random matrices depend on two dispersion pares(&igs and dkes) which have to be identified using the
random frequency response of the stochastic referencelimodée maximum likelihood method. Therefore, the random
frequency response of the stochastic reduced-order mo8& dvas; dkae)) is solution of the equation

Ng

U9(w; dvoe; Okag) = ZQG(OJ; Omog; Okas) @7 (15)
a=1
(— P [M99(Byts0)] +10[DY  + K 9%(c)])QC(60: uos; o) = F. (16)

This equation is solved using the Monte Carlo simulationhoet

3 APPLICATION TO AN AUTOMOTIVE VEHICLE
3.1 Presentation

We are interested in the frequency response of the struigianizof an automotive vehicle for which the Finite Element
model has 250 000 nodes and contains various types of firdtaeglts such as volume finite elements, surface finite
elements and beam elements. The frequency band of analy8is-i0,120 Hz. The structure has, 462 698 DOF.

Figure 1 — The Finite Element model of an automotive vehicule
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3.2 Decompostion of the domain

The subdomains are generated using the Fast Marching Mg#etician 1996, Arnoux 2012] which allows fronts to
be propagated from a set of starting points. This methodp$iexpto the mesh of the structure of the automotive model.
The centers of the subdomains and the subdomains obtaoredliese centers are represented in Fig. 2.
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Figure 2 — Centers of the subdomains (left) and subdomains (r ight)

3.3 Elastic modes, global and local displacements eigenvec tors

In a first step, the elastic modes are calculated with theefigiément model. There are 160 eigenfrequencies in
the frequency band of analysi®. In a second step, the global and local displacements esgéong are constructed
using the double projection method. In frequency bhd20 Hz, there areng = 36 global displacements eigenvectors
andn, = 124 local displacements eigenvectors. To see the gooda&paobtained between the global displacements
eigenvectors and the local displacements eigenvectars3Hisplays the eleventh elastic mode (right figure) foraluhi
there are local displacements and the corresponding folotial displacements eigenvector (left figure) for which th
local displacements have been filtered.

1000

Figure 3 — Fourth global displacements eigenvector (left) a nd corresponding eleventh elastic mode (right).

3.4 Frequency response functions

For all w € 4, the structure is subjected to an external point load equaN applied to two nodes, Excl and Exc2,
located in the stiff part of the structure. The frequencyossse is calculated at one observation point,Qtich is
located in the stiff part (see Fig. 1). The modulus, in lodecaf the frequency response function is displayed in Fig. 4
It can be seen that the response calculated with the usingldbal displacement basis is very close to the reference
response calculated with a classical frequency resporagsis

3.5 Random response

The stochastic reference computational model is congttueith the reference nominal computational model and us-
ing the non-parametric probabilistic approach of uncatims as explained in [Durand 2008]. The values of the dEper
parameters$y anddx are those identified in [Durand 2008].
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Velocity (ms *Hz %)

0 20 40 60 80 100 120
Frequency (Hz)

Figure 4 — Modulus, in log scale, of the frequency response fu nction for Obs ;: reference (solid line),
reduced-order model (dashed line).

All the calculations are carried out with the Monte Carlo siation method for which 1, 000 independent realisations
are used. The confidence regions corresponding to a prabadilel Pc = 0.95 have been calculated and are plotted in
Fig. 5 (dark gray regions).

The random frequency response functions of the stochasticced-order model are also calculated with the Monte
Carlo simulation method with 1, 000 independent realisetid he first step consists in calculating the optimal vabfes
the dispersion parametadgas anddkes using the maximum likelihood method. In a second step, fes¢roptimal values
of the dispersions parameters, the confidence regionsspameling to a probability level Pc = 0.95 have been calcdlate
and are plotted in Fig. 5 (light gray regions). In the reduoedier model, there is an additional modeling error (with
respect to the reference nominal computational model)deduiy the projection which is performed only on the global
displacements eigenvectors (the local displacementsibatibns for the prediction of the responses on the stiff,ga
the Low-Frequency range, are neglected). Consequenglyettel of uncertainties is larger in the reduced-order rhode
than in the reference nominal computational model and foergethe confidence regions predicted by the stochastic the
reduced-order model must be larger than the confidencenggiedicted by the stochastic reduced-order model. The
validation is obtained if, for each observation, the confieregion computed with the stochastic reduced-order hide
included in the confidence region computed with the stoahasterence nominal computational model, for most of the
frequencies of band B, that is the case.

Velocity (ms'Hz™

O 20 40 60 80 100
Frequency (Hz)
Figure 5 — Modulus, in log scale, of the random frequency resp onse function. Confidence region (dark gray

region) computed with the reference computational model. C onfidence region (light gray region) computed with
the stochatic reduced-order model.
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4 APPLICATION TO FUEL ASSEMBLIES

In this Section, we present another industrial applicatifthe methodology which consists in the dynamical analysis
of fuel assembly of pressurized water reactor. For thisiegibn, only a deterministic ROM is constructed.

4.1 Reference computational model

A fuel assembly is a slender structure which is made up of 28dbfle fuel rods, 25 stiff guide tubes and 10 stiff
grids which hold the tubes in position (see the finite elenme@sh in Fig. 6). The guide tubes are soldered to the grids
while the fuel rods are fixed to the grids by springs. The lardjnal (vertical) direction is denoted tzy The transverse
directions are denoted byandy. The fuel rods and the guide tubes are modeled by Timoshexdmb and the grids are

Figure 6 — Finite element mesh of a fuel assembly: Grids (blac k), fuel rods (blue) and guide tubes (red). Left
figure: Complete fuel assembly. Right figure: Grids and guide tubes only.

modeled by solid elements. The end of guide tubes are fixdtetodntainment building. All the displacements following
y-direction are set to zero. For a single fuel assembly, thefadlement model has 4844 elements and 44880 DOFs.
There are 7364 elastic modes in the baf@l 400 Hz. The eight first elastic modes are ensemble modes (altthetsre
moves in phase), the corresponding eigenfrequencies@e-x, 631 Hz, 978 Hz, 135 Hz, 176 Hz, 222 Hz, 273 Hz
and 327 Hz. Beyond these ensemble modes, there are numerous llastat enodes (only a part of the structure moves)
and a few global elastic modes (all the structure moves tiibmhase). The™® elastic mode (global) and the ®@lastic
mode (local) are plotted in Fig. 7.

mode 2 mode 20

Figure 7 — Left: 2" elastic mode (global). Rigth: 20" elastic mode (local).
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4.2 Construction and validation of the reduced-order compu tational model

In this section, a single fuel assembly is considered. Tedtep consists in the construction of the subdom@ins
Since we want to filter the local transverse displacememsstibdomains are chosen as 100 slides of equal thickness. Th
eigenvectoraf)ﬁ?J are then computed. In the frequency badd00 Hz, there are 35 eigenvectors. THE Sigenvector is
plotted in Fig. 8. In the banf®, 400 Hz, the number of eigenvectors (35) is much lower than thelrarrof elastic modes

mode 9

Figure 8 — 9t eigenvector.

(7,364). A Rayleigh damping model is used and is constructethifrequencies 3 Hz and 400 Hz with a damping ratio
0.04. A point load is applied to the nodRyc Which is located at the middle of thé'@rid (from bottom to top). This
load is equal to 1 N in the frequency bafl 400 Hz following x-direction. The containment building is fixed. The
measurement nod@y,sis located at the middle of thé™grid. The frequency response functions at poRis; andPexc
are plotted in Figs. 9 and 10. These figures show a very goagracy of the reduced-order computational model in

Acceleration (ms'2 Hz'l)

0 50 100 150 200 250 300 350 400
Frequency (Hz)

Figure 9 — Modulus of the frequency response function of the a cceleration in  x-direction at point  Pypg
reduced-order computational model (solid line) and refere nce computational model (dashed line).

the frequency ban{D,100 Hz. In the frequency band 00,300 Hz, the accuracy of the reduced-order computational
model is less. These small deviations are due to the locdtibations in the neighborhood of the observation points,
which are not taken into account when the basis of the globplatements space is used to construct the reduced-order

computational model.

5 CONCLUSIONS

In this work, we have applied a new methodology allowing aupedi-order computational dynamical model to be
constructed for the low-frequency domain in which theresameultaneously global and local elastic modes which cannot
easily be separated with usual method. An associated stticheduced-order model has then been introduced to take
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Figure 10 — Modulus of the frequency response function of the acceleration in  x-direction at point  Pexc:

reduced-order computational model (solid line) and refere nce computational model (dashed line).

into account uncertainties in the adapted reduced-orddeim@he results obtained are good with respect to the abgsct
fixed in this work consisting in constructing a reduced-ordedel with a very low dimension, which has the capability
to predict the frequency responses in the low-frequenayean
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