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Abstract: We are interested in the construction of stochastic reduced-order models in low-frequency range for dynamical
structures which are made up of a stiff master structure and several flexible substructures. In the low-frequency range,
this type of structure is characterized by the fact that it exhibits not only the classical global elastic modes but also
numerous local elastic modes which cannot easily be separated from the global elastic modes. To solve this difficult
problem, a new approach has recently been proposed for constructing a reduced-order model adapted to this case.
This method consists in introducing two unusual eigenvalueproblems. The solutions of this two eigenvalue problems
provide a basis of the admissible displacement space which is written as the direct sum of a global displacements space
and of a local displacements space. A stochastic reduced-order model is then introduced in order to take into account
uncertainties. Two industrial applications are presented. The first one is relative to an automotive vehicle and the second
one is relative to a fuel assembly.
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1 INTRODUCTION

This paper is devoted to the construction of a stochastic Reduced-Order Model (ROM) for dynamical structures having
a high-modal density in the Low-Frequency (LF) range. We areinterested in structures which are made up of stiff parts
and flexible components. In the LF range, this type of structures exhibits not only the classical global elastic modes but
also numerous local elastic modes. The first objective is to construct a ROM using a basis of the global displacements
space. Due to the coupling between the global displacementsand the local displacements, the elastic modes cannot strictly
and easily be separated into global and local elastic modes.

The objective of this paper is to construct a reduced-order computational model with a very small dimension and which
has the capability to predict the dynamical responses of thestructure observed on the stiff part with a good accuracy. Since
the contributions of the local displacements are negligible in the displacements of the stiff part, we have to constructthe
reduced-order computational model using a basis adapted tothe prediction of the global displacements and therefore,
we have to filter the local displacements in the constructionof the basis. To achieve this objective, most of previous
researches have been based on a spatial filtering of the shortwavelengths. Concerning the experimental methods, such
a filtering is carried out using regularization techniques (Bucher and Braun, 1997), image-based finite element methods
(Hahn and Kikuchi, 2005) or an extraction of eigenvectors ofthe frequency mobility matrix (Guyader, 2009). Concerning
numerical methods, most of the techniques are based on the lumped mass methods. In the Guyan method (Guyan, 1965),
the masses are lumped at a few nodes and the inertia forces of the other nodes are neglected. It should be noted that
the choice of points in which the masses are concentrated is not obvious to do for complex structures (Bouhaddi and
Fillod, 1992), (Ong, 1987), (Li, 2003). The convergence properties of the solution obtained using the lumped mass
method have been studied (Chan et al., 1993), (Jensen, 1996), (Belytschko and Mindle 1980). In (Langley and Bremmer,
1999), the authors propose to construct a basis of the globaldisplacements space using a rough finite element model. For
slender dynamical structures, another method consists in the construction of an equivalent beam or plate model (Noor
et al., 1978), (Planchard, 1995). In (Guyader, 1990), the author circumvent the problem of the high modal density by
extrapolating the dynamical response using a few elastic modes. This method is interesting when one has an analytical
expression for the modal shape, that is not the case for the structures considered in this paper. In (Ji, 2006), the authors use
a free-interface substructuring method in order to extractlong wavelength free modes of a master structure. The Proper
Orthogonal Decomposition (POD) method (see (Karhunen, 1945), (Loève, 1963), (Holmes et al., 1997)) allows in some
cases to extract an accurate small size basis in order to construct a reduced-order computational model of a nonlinear
dynamical system (see for instance (Azeez and Vakakis, 2001), (Kunisch and Volkwein, 2001), (Matthies and Keese,
2005), (Sampaio and Soize, 2007)), but this basis has to be constructeda posteriori, which means that a sufficiently rich
nonlinear response has to be constructed. Moreover, the PODbasis is only optimal for a given external load (or imposed
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displacement). In (Soize, 1998), a similar method to POD is used for linear dynamical systems but the basis which is
constructed is independent of any given external load.

Recently, a new method has been proposed to construct a reduced-order computational model in linear structural
dynamics for structures having numerous local elastic modes in the low-frequency band (Soize and Batou, 2010). To
solve this difficult problem, a new approach has recently been proposed for constructing a reduced-order dynamical model
adapted to this type of structures in the LF range (Soize and Batou, 2010). This approach allows a basis of the global
displacements and a basis of the local displacements to be constructed by solving two unusual eigenvalue problems.
Due to the coupling between the global displacements and thelocal displacements, a part of the mechanical energy is
transferred from the global coordinates to the local coordinates which store this energy and then induced an apparent
damping on the global coordinates. The second objective is to take into account uncertainties induced by modelling errors
in the computational model and the irreducible errors introduced by neglecting the local displacements. This second
objective is achieved using a probabilistic approach. The methodology presented is applied to the case of two complex
dynamical systems: an automotive vehicle and the fuel assemblies of a pressurized water reactor.

2 CONSTRUCTION OF THE REDUCED-ORDER MODEL

In this section, we summarize the method introduced in (Soize and Batou, 2010). This method allows a basis of
the global displacements and a basis of the local displacements to be constructed by solving two separated eigenvalue
problems. It should be noted that these two bases are not madeup of the usual elastic modes. The method is based on the
construction of a projection operator which reduces the kinetic energy while the elastic energy remains exact.

2.1 Reference reduced model

We are interested in predicting the frequency response functions of a dynamical structure occupying a domainΩ,
in the frequency band of analysisB = [ωmin,ωmax] with 0 < ωmin. Let U(ω) be the complex vector of them DOF of
the computational model constructed by the finite element method. Let[M] and[K] be the mass and stiffness matrices
which are positive-definite symmetric(m×m) real matrices. The eigenfrequenciesλ and the elastic modesϕϕϕ in R

m of
the conservative part of the dynamical computational modelof the structure are the solution of the following eigenvalue
problem,

[K]ϕϕϕ = λ [M]ϕϕϕ . (1)

Then an approximationUn(ω) at ordern of U(ω) can be written as

Un(ω) =
n∑

α=1

qα(ω)ϕϕϕα = [Φ]qqq(ω) , (2)

in which qqq(ω) = (q1(ω), . . . ,qn(ω)) is the complex vector of then generalized coordinates and where[Φ] = [ϕϕϕ1 . . .ϕϕϕn]

is the(m×n) real matrix of the elastic modes associated with then first eigenvalues.

2.2 Decomposition in subdomains for kinematic energy reduc tion.

In this section, we introduce a decomposition of the domain of the structure which allows the kinematic energy to be
reduced. We then obtained an associated mass matrix which isadapted to the calculation of the global elastic modes in
the low-frequency band of analysis in which there are also a large there are a large number of local elastic modes. The
details of the methodology for the the continuous and the discrete cases are presented in (Soize and Batou, 2010).

2.2.1 Decomposition of the domain

The domainΩ is partitioned intonJ subdomainsΩ j such that, forj andk in {1, . . . ,nJ},

Ω =

nJ⋃

j=1

Ω j , Ω j ∩Ωk = /0. (3)

The choice of the length of subdomains is related to the smallest ”wavelength” of the global elastic modes that we want

to extract in presence of numerous local modes.

2.2.2 Projection operator

Let uuu 7→ hr(uuu) be the linear operator defined by

{hr(uuu)}(xxx) =
nJ∑

j=1

IΩ j (xxx)
1

mj

∫

Ω j

ρ(xxx′)uuu(xxx′)dxxx′ , (4)
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in which xxx 7→ IΩ j (xxx) = 1 if xxx is in Ω j and equal to 0 otherwise. The local massmj is defined, for allj in {1, . . . ,nJ}, by

mj =
∫

Ω j
ρ(xxx)dxxx, wherexxx 7→ ρ(xxx) is the mass density. Letuuu 7→ hc(uuu) be the linear operator defined by

hc(uuu) = uuu−hr(uuu) . (5)

Functionhr(uuu) will also be denoted byuuur and functionhc(uuu) by uuuc. We then haveuuu = hr(uuu) + hc(uuu) that is to say,

uuu = uuur + uuuc. Let [Hr ] be the(m×m) matrix relative to the finite element discretization of the projection operatorhr

defined by Eq. (4). Therefore, the finite element discretizationU of uuu can be written asU=U
r +U

c, in which

U
r = [Hr ]U

and
U

c = [Hc]U= U−U
r ,

which shows that[Hc] = [Im]− [Hr ]. Then, the reduced(m×m) mass matrix[Mr ] is such that

[Mr ] = [Hr ]T [M][Hr ] ,

and the complementary(m×m) mass matrix[Mc] is such that

[Mc] = [Hc]T [M][Hc] .

Using the properties of the projection operator defined by Eq. (4), it can be shown [Soize 2010] that

[Mc] = [M]− [Mr ] .

2.3 Global and local displacements bases

There are two methods to calculate the global displacementsbasis and the local displacements basis. The first one is
the direct method that will be used to reduce the matrix equation. In such a method, the basis of the global displacements
and the basis of the local displacements are directly calculated using matrix[Mr ]. The second one, is the double projection.
This method is less intrusive with respect to the commercialsoftware and less time-consuming than the direct method.
The global displacements eigenvectorsφφφ g in R

m are solution of the following generalized eigenvalue problem

[K]φφφg = λ g[Mr ]φφφ g . (6)

The local displacements eigenvectorsφφφ ℓ in R
m are solution of the generalized eigenvalue problem

[K]φφφ ℓ = λ ℓ[Mc]φφφ ℓ . (7)

The solutions of the generalized eigenvalue problems defined by Eqs. (6) and (7) are then written, forn sufficiently large,
as

φφφg = [Φ] φ̃φφ
g

, φφφ ℓ = [Φ] φ̃φφ
ℓ
, (8)

in which [Φ], defined in Eq. (2), is the matrix of the elastic modes. The global displacements eigenvectors are the solutions

of the generalized eigenvalue problem
[K̃] φ̃φφ

g
= λ g [M̃r ] φ̃φφ

g
, (9)

in which [M̃r ] = [Φr ]T [M] [Φr ] and[K̃] = [Φ]T [K] [Φ], and where the(m×n) real matrix[Φr ] is such that[Φr ] = [Hr ] [Φ].

The local displacements eigenvectors are the solutions of the generalized eigenvalue problem

[K̃] φ̃φφ
ℓ
= λ ℓ[M̃c] φ̃φφ

ℓ
, (10)

in which [M̃c] = [Φc]T [M] [Φc] and where the(m×n) real matrix[Φc] is such that[Φc] = [Hc] [Φ] = [Φ]− [Φr ]. It is

proven in (Soize and Batou, 2010) that the family{φφφg
1, . . . ,φφφ

g
3nJ

,φφφ ℓ
1, . . . ,φφφ

ℓ
m−3nJ

} is a basis ofRm. The mean reduced

matrix model is obtained by the projection ofU(ω) on the family{φφφg
1, . . . ,φφφ

g
ng
,φφφ ℓ

1, . . . ,φφφ
ℓ
nℓ
} of real vectors associated

with the ng first global displacements eigenvectors such thatng ≤ 3nJ ≤ m and with thenℓ first local displacements
eigenvectors such thatnℓ ≤ m. It should be noted that, if the double projection method is used, then we must haveng ≤ n,
nℓ ≤ n andnt ≤ n in whichnt = ng+nℓ. Then, the approximationUng,nℓ(ω) of U(ω) at order(ng,nℓ) is written as

Ung,nℓ(ω) =

ng∑

α=1

qg
α(ω)φφφg

α +

nℓ∑

β=1

qℓβ (ω)φφφ ℓ
β . (11)

This decomposition is then used to construct the generalized mass, stiffness and damping matrices which can be written
in a block representation as

[M] =

(
Mgg Mgl

Mlg Mll

)
, [D] =

(
Dgg Dgl

Dlg Dll

)
, [K] =

(
Kgg Kgl

K lg K ll

)
. (12)
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2.4 Reduced-order model for the global displacements

The aim of this work is to construct a reduced-order model adapted to the low-frequency range in which the synthesis
of the frequency responses can be obtained using only the global displacements eigenvectors. So the new approximation
Ung(ω) of U(ω) at orderng is written as

Ung(ω) =

ng∑

α=1

qg
α(ω)φφφg

α . (13)

The corresponding reduced-order matrix equation is than written as

(−ω2[Mgg]+ iω [Dgg]+ [Kgg])gg = Fg . (14)

2.5 Probabilistic model of uncertainties

A probabilistic model of uncertainties is introduced in thereduced-order computational model in order to take into
account the system-parameter uncertainties and the model uncertainties induced by modeling errors in the reference
model from which the reduced-order model has been deduced. We also have to take into account uncertainties induced
by the irreducible errors introduced by neglecting the contribution of the local displacements in the constructed reduced-
order model. To take into account all these sources of uncertainties, we use the nonparametric probabilistic approach
(Soize, 2005) which consists in replacing, in the reduced-order computational model, the deterministic generalized mass,
damping and stiffness matrices by random matrices. In this work, the uncertainties are not taken into account on the
generalized damping matrix (it has previously been proven that the random frequency responses are not sensitive to the
statistical fluctuations of the damping matrix in the framework of the nonparametric probabilistic approach). Therefore the
matrices[Mgg] and[Kgg] are replaced by the random matrices[Mgg] and[Kgg] for which the probability density functions
(PDF) and the generator of independent realizations are given in (Soize, 2005). The probability density functions of
these two random matrices depend on two dispersion parameters (δMgg andδKgg) which have to be identified using the
random frequency response of the stochastic reference model and the maximum likelihood method. Therefore, the random
frequency response of the stochastic reduced-order model (Ug(ω ;δMgg;δKgg)) is solution of the equation

Ug(ω ;δMgg;δKgg) =

ng∑

α=1

Qα(ω ;δMgg;δKgg)φφφ α , (15)

(−ω2[Mgg(δMgg)]+ iω [Dgg
mod]+ [Kgg(δKgg)])Qg(ω ;δMgg;δKgg) = Fg . (16)

This equation is solved using the Monte Carlo simulation method.

3 APPLICATION TO AN AUTOMOTIVE VEHICLE

3.1 Presentation

We are interested in the frequency response of the structural part of an automotive vehicle for which the Finite Element
model has 250 000 nodes and contains various types of finite elements such as volume finite elements, surface finite
elements and beam elements. The frequency band of analysis isB =]0,120]Hz. The structure has 1,462,698 DOF.

Figure 1 – The Finite Element model of an automotive vehicule
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3.2 Decompostion of the domain

The subdomains are generated using the Fast Marching Method[Sethian 1996, Arnoux 2012] which allows fronts to
be propagated from a set of starting points. This method is applied to the mesh of the structure of the automotive model.
The centers of the subdomains and the subdomains obtained from these centers are represented in Fig. 2.

Figure 2 – Centers of the subdomains (left) and subdomains (r ight)

3.3 Elastic modes, global and local displacements eigenvec tors

In a first step, the elastic modes are calculated with the finite element model. There are 160 eigenfrequencies in
the frequency band of analysisB. In a second step, the global and local displacements eigenvectors are constructed
using the double projection method. In frequency band]0,120] Hz, there areng = 36 global displacements eigenvectors
andnℓ = 124 local displacements eigenvectors. To see the good separation obtained between the global displacements
eigenvectors and the local displacements eigenvectors, Fig. 3 displays the eleventh elastic mode (right figure) for which
there are local displacements and the corresponding fourthglobal displacements eigenvector (left figure) for which the
local displacements have been filtered.

Figure 3 – Fourth global displacements eigenvector (left) a nd corresponding eleventh elastic mode (right).

3.4 Frequency response functions

For all ω ∈ B, the structure is subjected to an external point load equal to 1 N applied to two nodes, Exc1 and Exc2,
located in the stiff part of the structure. The frequency response is calculated at one observation point, Obs1, which is
located in the stiff part (see Fig. 1). The modulus, in log scale, of the frequency response function is displayed in Fig. 4.
It can be seen that the response calculated with the using theglobal displacement basis is very close to the reference
response calculated with a classical frequency response analysis.

3.5 Random response

The stochastic reference computational model is constructed with the reference nominal computational model and us-
ing the non-parametric probabilistic approach of uncertainties as explained in [Durand 2008]. The values of the dispersion
parametersδM andδK are those identified in [Durand 2008].
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Figure 4 – Modulus, in log scale, of the frequency response fu nction for Obs 1: reference (solid line),
reduced-order model (dashed line).

All the calculations are carried out with the Monte Carlo simulation method for which 1, 000 independent realisations
are used. The confidence regions corresponding to a probability level Pc = 0.95 have been calculated and are plotted in
Fig. 5 (dark gray regions).

The random frequency response functions of the stochastic reduced-order model are also calculated with the Monte
Carlo simulation method with 1, 000 independent realisations. The first step consists in calculating the optimal valuesof
the dispersion parametersδMgg andδKgg using the maximum likelihood method. In a second step, for these optimal values
of the dispersions parameters, the confidence regions corresponding to a probability level Pc = 0.95 have been calculated
and are plotted in Fig. 5 (light gray regions). In the reduced-order model, there is an additional modeling error (with
respect to the reference nominal computational model) induced by the projection which is performed only on the global
displacements eigenvectors (the local displacements contributions for the prediction of the responses on the stiff part, in
the Low-Frequency range, are neglected). Consequently, the level of uncertainties is larger in the reduced-order model
than in the reference nominal computational model and therefore, the confidence regions predicted by the stochastic the
reduced-order model must be larger than the confidence regions predicted by the stochastic reduced-order model. The
validation is obtained if, for each observation, the confidence region computed with the stochastic reduced-order model is
included in the confidence region computed with the stochastic reference nominal computational model, for most of the
frequencies of band B, that is the case.

Figure 5 – Modulus, in log scale, of the random frequency resp onse function. Confidence region (dark gray
region) computed with the reference computational model. C onfidence region (light gray region) computed with

the stochatic reduced-order model.
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4 APPLICATION TO FUEL ASSEMBLIES

In this Section, we present another industrial applicationof the methodology which consists in the dynamical analysis
of fuel assembly of pressurized water reactor. For this application, only a deterministic ROM is constructed.

4.1 Reference computational model

A fuel assembly is a slender structure which is made up of 264 flexible fuel rods, 25 stiff guide tubes and 10 stiff
grids which hold the tubes in position (see the finite elementmesh in Fig. 6). The guide tubes are soldered to the grids
while the fuel rods are fixed to the grids by springs. The longitudinal (vertical) direction is denoted byzzz. The transverse
directions are denoted byxxx andyyy. The fuel rods and the guide tubes are modeled by Timoshenko beams and the grids are

Figure 6 – Finite element mesh of a fuel assembly: Grids (blac k), fuel rods (blue) and guide tubes (red). Left
figure: Complete fuel assembly. Right figure: Grids and guide tubes only.

modeled by solid elements. The end of guide tubes are fixed to the containment building. All the displacements following
yyy-direction are set to zero. For a single fuel assembly, the finite element model has 44,844 elements and 449,580 DOFs.
There are 7,364 elastic modes in the band[0,400] Hz. The eight first elastic modes are ensemble modes (all the structure
moves in phase), the corresponding eigenfrequencies are 3.09 Hz, 6.31 Hz, 9.78 Hz, 13.5 Hz, 17.6 Hz, 22.2 Hz, 27.3 Hz
and 32.7 Hz. Beyond these ensemble modes, there are numerous local elastic modes (only a part of the structure moves)
and a few global elastic modes (all the structure moves but not in phase). The 2nd elastic mode (global) and the 20th elastic
mode (local) are plotted in Fig. 7.

Figure 7 – Left: 2nd elastic mode (global). Rigth: 20th elastic mode (local).
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4.2 Construction and validation of the reduced-order compu tational model

In this section, a single fuel assembly is considered. The first step consists in the construction of the subdomainsΩ j .
Since we want to filter the local transverse displacements, the subdomains are chosen as 100 slides of equal thickness. The
eigenvectorsϕϕϕg

j are then computed. In the frequency band[0,400] Hz, there are 35 eigenvectors. The 9th eigenvector is
plotted in Fig. 8. In the band[0,400] Hz, the number of eigenvectors (35) is much lower than the number of elastic modes

Figure 8 – 9th eigenvector.

(7,364). A Rayleigh damping model is used and is constructed forthe frequencies 3 Hz and 400 Hz with a damping ratio
0.04. A point load is applied to the nodePexc which is located at the middle of the 9th grid (from bottom to top). This
load is equal to 1 N in the frequency band[0,400] Hz following xxx-direction. The containment building is fixed. The
measurement nodePobs is located at the middle of the 4th grid. The frequency response functions at pointsPobs andPexc
are plotted in Figs. 9 and 10. These figures show a very good accuracy of the reduced-order computational model in
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Figure 9 – Modulus of the frequency response function of the a cceleration in xxx-direction at point Pobs:
reduced-order computational model (solid line) and refere nce computational model (dashed line).

the frequency band[0,100] Hz. In the frequency band[100,300] Hz, the accuracy of the reduced-order computational
model is less. These small deviations are due to the local contributions in the neighborhood of the observation points,
which are not taken into account when the basis of the global displacements space is used to construct the reduced-order
computational model.

5 CONCLUSIONS

In this work, we have applied a new methodology allowing a reduced-order computational dynamical model to be
constructed for the low-frequency domain in which there aresimultaneously global and local elastic modes which cannot
easily be separated with usual method. An associated stochastic reduced-order model has then been introduced to take
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Figure 10 – Modulus of the frequency response function of the acceleration in xxx-direction at point Pexc:
reduced-order computational model (solid line) and refere nce computational model (dashed line).

into account uncertainties in the adapted reduced-order model. The results obtained are good with respect to the objectives
fixed in this work consisting in constructing a reduced-order model with a very low dimension, which has the capability
to predict the frequency responses in the low-frequency range.
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