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Abstract

We propose a novel method for the automatic segmentation of brain MRI

images by using discriminative dictionary learning and sparse coding tech-

niques. In the proposed method, dictionaries and classifiers are learned si-

multaneously from a set of brain atlases, which can then be used for the

reconstruction and segmentation of an unseen target image. The proposed

segmentation strategy is based on image reconstruction, which is in con-

trast to most existing atlas-based labeling approaches that rely on compar-

ing image similarities between atlases and target images. In addition, we
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propose a Fixed Discriminative Dictionary Learning for Segmentation (F-

DDLS) strategy, which can learn dictionaries offline and perform segmen-

tations online, enabling a significant speed-up in the segmentation stage.

The proposed method has been evaluated for the hippocampus segmenta-

tion of 80 healthy ICBM subjects and 202 ADNI images. The robustness of

the proposed method, especially of our F-DDLS strategy, was validated by

training and testing on different subject groups in the ADNI database. The

influence of different parameters were studied and the performance of the

proposed method was also compared with that of the nonlocal patch-based

approach. The proposed method achieved a median Dice coefficient of 0.879

on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive

compared with state-of-the-art methods.

Keywords: structural MR images, patch-based segmentation,

discriminative dictionary learning, sparse representation,

1. Introduction

The accurate and robust labeling of anatomical structures is an essential

step in quantitative brain magnetic resonance imaging (MRI) analysis. Many

clinical applications rely on the segmentation of MRI brain structures, which

enables us to describe how brain anatomy changes during aging or disease

progression. Since manual labeling by clinical experts is subject to inter and

intra rater variability and is also a highly laborious task, an automated tech-

nique is desirable to enable a routine analysis of brain MRIs in clinical use.

Despite the large number of existing techniques (Chupin et al., 2007; van der

Lijn et al., 2008; Aljabar et al., 2009; Wolz et al., 2010; Collins and Pruessner,
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2010; Coupé et al., 2011; Wang et al., 2011a), it still remains a challenging

task to develop fast and accurate automated segmentation methods due to

the complexity of subcortical structures.

Many automated methods have been introduced to extract cortical and

subcortical structures in the past decade. Among them, atlas-based meth-

ods have been shown to outperform other state-of-the-art algorithms (Collins

et al., 1995; Babalola et al., 2009). In atlas-based label propagation, an atlas

is matched to the target image using image registration. The segmentation

of the target image is then achieved by warping the atlas label to the target

image space. Segmentation errors produced by atlas-based methods can be

classified into random errors and systematic errors (Aljabar et al., 2009;

Wang et al., 2011a). Random errors, which may be caused by image noise

or subject variation, can be reduced by using multiple atlases (Rohlfing et al.,

2004; Heckemann et al., 2006) or by selecting the most similar atlases for a

given unseen image (Barnes et al., 2008; Aljabar et al., 2009; Artaechevar-

ria et al., 2009). Systematic errors occur consistently as the disagreement

between manual and automatic segmentations exhibits a systematic pattern,

which may be caused by consistent errors in the registration, partial vol-

ume effects or bias in the manual labeling of the atlases. For example, a

manual segmentation protocol may follow a specific anatomical criterion to

assign labels to different voxels. However, an automatic method may em-

ploy a slightly different criterion, which causes systematic labeling errors.

Recent work has been proposed to reduce such errors such as intensity mod-

els (van der Lijn et al., 2008; Wolz et al., 2009; Lotjonen et al., 2010) or a

learning-based method (Wang et al., 2011a). Several label fusion techniques
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have also been used to improve segmentation accuracy of the multi-atlas

segmentation method such as majority voting (Kittler, 1998; Aljabar et al.,

2009; Collins and Pruessner, 2010), STAPLE (Warfield et al., 2004) and lo-

cal weighted label fusion (Artaechevarria et al., 2009; Sabuncu et al., 2010;

Khan et al., 2011; Wang et al., 2011c,b). However, multi-atlas segmentation

requires pairwise, accurate registrations between atlas and target, which can

result in a significant computational burden.

Recently, nonlocal patch-based segmentation techniques have been pro-

posed (Coupé et al., 2011, 2012; Rousseau et al., 2011) to avoid the need

of accurate non-rigid registration in order to gain computational efficiency.

Instead of fusing propagated label maps as in multi-atlas segmentation, this

method obtains a label for every voxel by using similar image patches from

coarsely aligned atlases. First, image patches are extracted in a prede-

fined neighborhood around a particular voxel and across the training atlases.

Then, weights are given to these patches according to the similarity between

the target patch and the extracted atlas patches. The final label of the target

voxel is estimated by fusing the labels of the central voxels in the template

patch library. Such a technique allows one-to-many correspondences to select

the most similar patches for label fusion, and a validation on hippocampus

segmentation (Coupé et al., 2011, 2012) demonstrates a high accuracy of this

approach.

Although the local weighting label fusion strategy (Artaechevarria et al.,

2009; Sabuncu et al., 2010; Khan et al., 2011; Wang et al., 2011c,b) or the

nonlocal patch-based technique (Coupé et al., 2011, 2012; Eskildsen et al.,

2011; Rousseau et al., 2011) can produce accurate segmentation results, these
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methods are based on the similarity of image patches extracted from each

atlas. However, image similarities over small image patches may not be an

optimal estimator (Wang and Yushkevich, 2012). In this paper, we propose

a novel segmentation method based on image patch reconstruction. The

proposed approach uses discriminative dictionary learning methods (Zhang

and Li, 2010; Jiang et al., 2011; Yang et al., 2011a) and sparse coding tech-

niques (Wright et al., 2009). These methods have been successfully applied

to different problems in face recognition (Wright et al., 2009; Zhang and

Li, 2010; Jiang et al., 2011; Yang et al., 2011a). To the best of our knowl-

edge, these methods have never been used in subcortical brain segmentation.

The proposed method learns discriminative appearance dictionaries and is

different from the recent work in (Zhang et al., 2012), which learns shape

dictionaries for liver segmentations. In the proposed method, we abandon

the conventional idea to compare the similarity between patches in a neigh-

borhood. Instead, a dictionary and a linear classifier are learned from the

template patch library simultaneously for every voxel in the target image.

The surrounding patch of the target voxel can be reconstructed by the cor-

responding dictionary and the label of the target voxel will be estimated by

the corresponding classifier. Moreover, a new strategy has been proposed to

implement the method in an efficient way by learning dictionaries offline and

performing segmentation online.

In the remainder, we will first introduce the methodology of discriminative

dictionary learning and how we apply it to the segmentation of brain MR

images. The proposed method was evaluated on hippocampus segmentations

on 202 ADNI images (Mueller et al., 2005) and 80 healthy ICBM subjects
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(Mazziotta et al., 1995). We studied the influence of different parameters

and compared the performance of the proposed methods with that of the

nonlocal patch-based technique. The performance of different methods has

been compared on different subject groups of the ADNI dataset. Finally, we

discuss the strengths and weaknesses of the proposed method and conclude

the paper.

2. Materials and Methods

2.1. Datasets

Two different datasets were used for hippocampus segmentations. Im-

ages obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (www.loni.ucla.edu/ADNI) (Mueller et al., 2005) and images ob-

tained from the International Consortium for Brain Mapping (ICBM) database

(Mazziotta et al., 1995) were used to evaluate the proposed approach.

In the ADNI study, brain MR images are acquired at regular intervals

from approximately 200 cognitively normal older individuals, 400 people with

Mild Cognitive Impairment (MCI), and 200 people with early AD. A more de-

tailed description of the ADNI study is given in Appendix A. The subgroup

we used consists of 202 subjects obtained from different scanners (68 nor-

mal subjects, 93 subjects with MCI and 41 patients with AD). An overview

of these 202 subjects is shown in Table 1. These 202 images were selected

because their reference segmentations are available through ADNI. The se-

lected subgroup is representative of the whole ADNI dataset as no significant

difference was observed on age and MMSE scores between the selected group

and the whole dataset on Students t-test (p > 0.1). A commercially available
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high dimensional brain mapping tool (Medtronic Surgical Navigation Tech-

nologies, Louisville, CO) was used to carry out semi-automated hippocampal

volumetry for defining these reference segmentations. These label maps were

inspected and if necessary manually corrected by qualified reviewers (Hsu

et al., 2002).

Number Age MMSE

Normal 68 76.31 ± 5.20 [62-88] 29.18 ± 0.88 [26-30]

SMCI 49 74.96 ± 7.28 [60-89] 27.55 ± 1.67 [24-30]

PMCI 44 75.38 ± 6.92 [60-88] 26.80 ± 1.69 [24-30]

AD 41 76.08 ± 7.23 [56-87] 23.12 ± 1.79 [20-26]

Table 1: Demographic information describing 202 ADNI images used in this study.

For a direct comparison with the previously published patch-based method,

the proposed method was also evaluated on a subset of the ICBM dataset,

which consists of 80 healthy subjects (Mazziotta et al., 1995). The T1-

weighted data were acquired at the Montreal Neurological Institute on a

Philips Gyroscan 1.5 T scanner with 3D spoiled gradient-echo acquisition

with TR=17 ms, TE=10ms, flip angle=30◦, and a resolution of 1 mm3 vox-

els. The 80 subjects consist of 39 males and 41 females of similar ages (mean

age: 25.09± 4.9 years). The MR images were manually segmented by an ex-

pert directly in stereotaxic space using the protocol described in (Pruessner

et al., 2000). The resulting segmentations obtained an intraclass reliability

coefficient (ICC) of 0.900 for inter-rater reliability (4 raters) and 0.925 for

intra-rater reliability (5 repeats).
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Figure 1: Flow chart of labeling one target voxel by three different methods: Patch-

based Labeling, Sparse Representation Classification (SRC) and Discriminative Dictionary

Learning for Segmentation (DDLS). The red box in the target image represents the target

patch. The blue boxes in atlas images represent the search volume area for extracting

template patches.
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2.2. Overview of the method

The basic assumption of non-local means patch-based segmentation is

that the central voxels of similar patches are considered to belong to the

same structure (Coupé et al., 2011). This method assigns higher weights to

similar patches and smaller weights to dissimilar patches. As a result, similar

patches from each training atlas contribute more to the final label estimation.

The assumption of our method is that the target patch which will be labeled

can be represented by a few template patches from the same structure in a

low-dimensional manifold or by a few representative atoms from a learned

dictionary. After the coding of the target patch, the target voxel is labeled

based on the coding coefficients and the dictionary. Therefore, there are two

phases for labeling a voxel in the proposed method: coding and classification.

In the proposed method, a different dictionary is learned for labeling each

different target voxel, which means that the learned dictionaries are voxel

based. Based on different types of dictionaries used for coding, we divided

our proposed method into two groups: Sparse Representation Classification

(SRC) and Discriminative Dictionary Learning for Segmentation (DDLS).

For SRC, the whole template patch library is directly defined as the dic-

tionary for sparse coding. In this predefined dictionary, each atom is a patch

extracted from an atlas image and we then know the corresponding labels of

all the atoms. After the target patch is coded by this predefined dictionary,

the labeling of the target voxel is done by assessing which group of patches

provides the minimal reconstruction error.

However, the direct way of using all the training patches as the dic-

tionary may result in a huge size for the dictionary, increasing the coding
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complexity. In addition, this predefined dictionary may not fully exploit the

discriminative information in the training patch library. In this paper, we

also extend the proposed SRC method by learning discriminative dictionar-

ies for segmentation. In this DDLS method, a small-sized dictionary and a

linear classifier are learned from the template training patch library, which

will provide reconstructive and discriminative information for MR brain seg-

mentation work. Figure 1 demonstrates the proposed segmentation process

for one target voxel and compares the major differences with non-local means

patch-based methods.

In the proposed SRC and DDLS approaches, the coding procedure by

dictionaries replaces the patch similarity weighting in the patch-based seg-

mentation strategy. However, each subject is segmented by learning specific

dictionaries from the atlas database, which will be computationally expen-

sive. The ultimate goal of our work is to learn fixed dictionaries and classi-

fiers offline. Then, segmentations can be performed online by using the fixed

dictionaries and classifiers. In order to do this, we also proposed a Fixed Dis-

criminative Dictionary Learning for Segmentation (F-DDLS) strategy, which

could enable a significant speed-up in the segmentation phase. This F-DDLS

strategy has been evaluated on the ICBM dataset and different subject groups

of the ADNI dataset.

2.3. Sparse Representation Classification

The SRC method uses a template patch library as a predefined dictionary.

First, the extraction of a patch library from atlases will be introduced. Then,

this predefined dictionary will be used for the reconstruction of a target

patch and the sparse coding process will be introduced. Finally, the sparse
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representation of the target patch and the labels of center voxels of template

patches will be used for estimating the label of the target voxel.

Construction of patch library: First, atlas selection is carried out for

every target subject based on the sum of squared intensity differences (SSD)

in a template space as done in (Coupé et al., 2011). Then for labeling a

target voxel in the target image, the surrounding patch (illustrated by the

red box overlaid on the target image in Figure 1) is extracted and denoted

as the target patch pt in this paper. A search volume Vi (illustrated by the

blue box overlaid on the atlas images in Figure 1) is defined in each atlas

image. All template patches in the search volume across a set of similar

atlases are extracted to form a patch library. The number of patches in the

patch library is proportional to the search volume size and typically contains

thousands of patches. Each patch in the library is a volume. We denote each

patch as a column vector and group all the patches together as a matrix PL.

Suppose that the patch library contains n patches, then the patch library

can be represented as PL = [p1, p2, · · · , pn] ∈ Rm×n.

Inspired by work in face recognition (Wright et al., 2009), we propose

to use a sparse representation classification strategy for patch selection and

weighting. In the SRC method, the patch library is directly considered as

a dictionary, so the target patch pt will approximately lie in the subspace

spanned by the training patches in the library PL:

pt = a1p1 + a2p2 + · · ·+ anpn (1)

Since the SRC method imposes a constraint that the representation is

sparse, most of the coefficients ai will be zero. Let a = [a1, a2, · · · , an] ∈ Rn,
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then the sparse solution can be obtained by solving the following equation:

â = min
a
‖a‖0 subject to ‖pt − PLa‖22 ≤ ε (2)

where the l0-norm denotes the number of nonzero coefficients, which is the

sparse constraint of this equation. The linear system pt = PLa is underde-

termined since n > m, so this equation does not have a unique solution. It is

difficult to approximate the sparsest solution of an underdetermined system

of linear equations because the problem is NP-hard. In general, if the solu-

tion of Equation (2) is sparse enough, then it can be shown to be equivalent

to the solution of the following l1-minimization problem (Wright et al., 2009):

â = min
a
‖a‖1 subject to ‖pt − PLa‖22 ≤ ε (3)

Equation (3) can be solved efficiently by several sparse coding methods

(Yang et al., 2010). In Wright et al. (2009), Equation (3) was solved using

the Lasso method (Tibshirani, 1996). The L1 Lasso is a relaxed version

of Equation (3). However, if the number of predictors (n) is much higher

than the number of observations (k), the Elastic Net (EN) approach always

outperforms the Lasso method for achieving a satisfactory variable selection

(Zou and Hastie, 2005). Considering that the number of patches in the library

is much higher than the number of patches selected for representation, our

case belongs to this ‘large n small k’ problem. To achieve robust sparse

representations, EN (Zou and Hastie, 2005) has been used for obtaining the

sparse coding coefficients:

â = min
a

1

2
‖pt − PLa‖22 + λ1‖a‖1 +

λ2
2
‖a‖22 (4)
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Equation (4) adds a coefficient magnitude penalty to the objective func-

tion in Equation (3), which is a convex combination of L1 lasso and L2 ridge

penalties. EN encourages a grouping effect while keeping a similar sparsity

of representation (Zou and Hastie, 2005). This grouping effect, which selects

groups of highly correlated variables, is helpful for the final classification and

could thus improve the segmentation performance.

After we obtain the sparse solution, the labeling of the target voxel is

based on the coding coefficients â and the selected patches for representation.

The main idea is that the sparse nonzero coefficients should concentrate on

the training patches with the same class label as the target patch. This

means that the training patches from the correct class will yield the minimal

reconstruction error when the coding coefficients are computed using training

patches from all classes. There are two key points in our assumption. First,

the coding coefficients are very sparse. In fact, both the training patches

from the correct class and the wrong class can represent the target patch

very well if enough training patches from each class are given. However,

when the sparsity is imposed on the coding coefficients, each class can only

use a few patches to represent the target patch. In this case, the training

patches from the correct class are likely to represent the target patch with

less error. Second, the coding coefficients are computed using all classes,

which also helps for classification. This is because the training patches from

each class will compete to represent the target patch in the same process.

These two points were verified in Yang et al. (2011b). Therefore, the labeling

of the target voxel is achieved by comparing which class of training patches

gives the minimal reconstruction error. The residual (reconstruction error)
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with the sparse coefficients âj associated to each structure/class j is described

as:

rj (pt) = ‖pt − Pj
Lâ

j
∥∥ (5)

The label value v for the center voxel of target patch pt is assigned as the

class with the minimum residual over all classes:

v= arg min
j

(rj (pt)) j=1, . . . C (6)

In our case, the patches associated with non-zero coefficients are divided

into two groups (C = 2): patches belonging to the hippocampus and patches

belonging to the background. If the patches belonging to the hippocampus

can represent the target patch pt with a smaller reconstruction error, then

the target voxel is labelled as hippocampus, and vice versa.

2.4. Discriminative Dictionary Learning

In the above SRC scheme, a large number of training patches are directly

used as the predefined dictionary, which will increase the computational bur-

den on the sparse coding process. Also, this predefined dictionary may not

fully exploit the discriminative information in the training patch library.

These drawbacks may be overcome by learning a small-sized task-specific

dictionary. Several methods have been proposed for learning a small-sized

dictionary (Mairal et al., 2008, 2009b; Zhang and Li, 2010; Jiang et al., 2011;

Yang et al., 2011a) that has good reconstructive power and discriminative

ability. In particular, the method proposed in (Zhang and Li, 2010) incor-

porated the classification error into the objective function of the K-SVD
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algorithm, which allows to learn the dictionary and the classifier by the same

optimization procedure simultaneously. In this paper, we used a similar idea

as described in (Zhang and Li, 2010) for our segmentation purpose. Let

PL = [p1, p2, · · · , pn] ∈ Rm×n denote the training patch library, containing n

patches. A reconstructive dictionary with K atoms can be learned from the

input patch library PL by solving the following problem:

〈D,α〉 = arg min
D,α

‖PL −Dα‖22 subject to ‖α‖0 ≤ T (7)

where D = [d1, d2, · · · , dK ] ∈ Rm×K is the learned dictionary. α ∈ Rn×K

is the sparse coding coefficient matrix of the input patch library, and T is

a sparsity constraint parameter. In Equation (7), the objective function

includes the reconstruction error term and the sparsity constraint term with-

out considering the discriminative power. Thus, the learned dictionary is not

suitable for our classification task. To address this problem, a linear classi-

fier f(α,W ) = Wα as in (Zhang and Li, 2010) was added to the objective

function for learning dictionaries with both reconstructive and discriminative

power. The objective function can then be defined as follows:

〈D,W,α〉 = arg min
D,W,α

‖PL −Dα‖22 + β1 ‖H −Wα‖22

subject to ‖α‖0 ≤ T

(8)

where the classification error term ‖H −Wα‖22 is added to Equation (7). H

represents the labels of the central voxels of the patches in the library PL.

Each column of H is a label vector corresponding to a template patch. Each

label vector is defined as hi = [0, 0 . . . 1 . . . 0, 0], where the non-zero entry

position indicates the label of the center voxel of the corresponding patch. W
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denotes the linear classifier parameters and β1 controls the trade-off between

the reconstruction error term and the classification error term.

In (Zhang and Li, 2010; Jiang et al., 2011), the problem of Equation (8)

was solved by using the K-SVD algorithm since only one dictionary was re-

quired for the face recognition task under study. However, due to the high

anatomical variability across subjects’ brain scans, it is difficult to achieve

good segmentation performance by just learning one dictionary and a single

global classifier. Therefore, in our work, a dictionary and a corresponding

classifier are learned for every target voxel. In this case, there will be thou-

sands of dictionaries to be learned for every target subject and it will be very

computationally expensive if the K-SVD algorithm is used for solving Equa-

tion (8). Here, we use an online dictionary learning algorithm as proposed

in (Mairal et al., 2009a), which has faster performance and generates better

dictionaries than classical batch learning algorithms. Appendix B shows

how Equation (8) is solved by using the online dictionary learning algorithm.

After Equation (8) is solved, a dictionary D̂t and a classifier Ŵ are learned

for every target voxel. Figure 2 shows an example of the learned dictionary

D̂t. For labeling the target voxel, the surrounding patch pt is first extracted.

Then, the sparse representation α̂t of the target patch pt is computed by

solving the following problem:

α̂t = arg min
αt

∥∥∥pt − D̂tαt

∥∥∥2
2

+ β2‖αt‖1 (9)

Equation (9) is a relaxed version of Equation (3). Finally, we can estimate

the label value v of the target voxel by using the linear predictive classifier:

16



Figure 2: An example of a learned dictionary. The dictionary has 16x16 atoms of size 53.

This figure shows a slice of this dictionary.


ht=Ŵtα̂t

v = arg max
j

ht(j)
(10)

where ht is the class label vector for the target voxel. The label value v of

the target voxel is decided by the index of the largest element in label vector

ht. Ideally, ht will be {0, 0, · · · , 1, · · · , 0, 0} with only one non-zero element,

indicating the label of the class. In our binary segmentation, there are only

two elements in label vector ht, the values of which indicate the probability

belonging to hippocampus and the probability belonging to the background

respectively.
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3. Experiments and Results

The proposed methods were applied to 202 images from the ADNI database

and 80 images from the ICBM database. The ADNI images were prepro-

cessed by the ADNI pipline described in (Jack et al., 2008) and the ICBM

images were preprocessed as described in (Coupé et al., 2011, 2012). All

images were linearly registered to the MNI152 template space by using affine

registrations. Image intensities were then normalized by using the method

proposed in (Nyul and Udupa, 2000). After that, intensities were rescaled to

the interval [0 100]. Finally, a leave-one-out procedure was used in our vali-

dation and the most similar subjects were selected by comparing the squared

intensity differences (SSD) in the MNI152 template space as described in

Section 2.3.

For the ADNI images, all segmentations were performed in the native

image space because the reference segmentations of the hippocampus are

defined in native space. Transforming the labels and MR images into tem-

plate space would decrease label accuracy due to interpolation artefacts of

the target reference segmentations. After atlas selection in the MNI152 tem-

plate space, we affinely transformed the selected atlases and labels to the

native space of the target image to perform the segmentation in the target

coordinate system.

For the ICBM images, all the segmentations were performed in the MNI152

template space as the labels are defined in the template space. The influ-

ence of different parameters were studied on segmenting the hippocampus on

the 202 ADNI images. After the optimal parameters were estimated, both

datasets were used to compare the performance of different methods.
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For learning dictionaries, the parameter β1 in Equation (B.2) was set to

1 and β2 was set to 0.15 for all experiments. β2 was determined via cross

validation according to the parameter settings described in (Mairal et al.,

2012). During parameter optimization, when a certain parameter was op-

timized, the other parameters were set to fixed values. Since neighborhood

voxels share most of the template patches and will have very similar dictio-

naries and classifiers, we used a sampling strategy to train the dictionaries in

order to achieve a better performance. Dictionaries are trained for every n

(n > 1) voxels rather than every voxel. In theory, this strategy will achieve

an approximate n3 speedup for the training process. In order to label tar-

get voxels without a corresponding dictionary, we use neighbor dictionaries

to perform sparse coding for its target patch. Since neighborhood voxels

share most of their template patches and will have very similar dictionaries

and classifiers, this sampling strategy will not result in a dramatic degrada-

tion of the segmentation accuracy. In our 3D segmentation work, we used

6 nearest neighbor dictionaries for sparse coding for all experiments. By us-

ing the same classification strategy, we could obtain 6 class label vectors for

the target voxel. The final label value is estimated by using the average of

these label vectors. Finally, all the experiments were evaluated by computing

the Dice coefficient between the reference segmentations and the automated

segmentations.

3.1. Influence of Parameters for Dictionary Training

First, experiments were carried out to study the influence of the dictionary

size K (the number of atoms in each dictionary) on segmentation accuracy.

10 atlases from the ADNI dataset were selected in a leave-one-out procedure
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Figure 3: Effect of Dictionary size on segmentation accuracy. The results were obtained by

using a patch size of 5×5×5 voxels and a search volume of 7×7×7 voxels, extracted from

the 10 most similar atlases. The sampling step size was set to 3 for learning dictionaries.

Figure 4: Effect of sampling step size on segmentation accuracy. The results were obtained

by using a patch size of 5× 5× 5 voxels and a search volume of 7× 7× 7 voxels, extracted

from the 10 most similar atlases.
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for each target image. We found that the larger the size of dictionaries

was, the higher the achieved overlap value was. However, the improvement

using K > 256 over K = 256 is not significant and more time is required

for learning a larger size of dictionaries. Considering the trade-off between

computational time and segmentation accuracy, we chose K = 256 for the

following experiments according to the results shown in Figure 3.

Since a sampling strategy was used for learning dictionaries, the influence

of the sampling step size l on segmentation accuracy was also studied. The

sampling step size l means that dictionaries are trained for every lth voxel.

As expected, the smaller sampling step size we used for learning dictionaries,

the more dictionaries we could get and the higher median Dice index could be

achieved. However, we could gain more computational efficiency by learning

fewer dictionaries. Based on the results shown in Figure 4, a sampling step

size of 3 (every third voxels for learning dictionaries) is a good choice for

balancing the speed and accuracy of the proposed method.

3.2. Influence of Patch Size and Neighborhood Size

The influence of patch size and neighborhood size was also studied on

the ADNI dataset. The patch size is related to the local geometry and the

neighborhood size reflects the anatomical variability (Coupé et al., 2011).

The Dice coefficient distributions over varying patch and neighborhood sizes

are presented in Figure 5 and 6. The best median Dice coefficient was ob-

tained with a patch size of 5 × 5 × 5 and a neighborhood size of 7 × 7 × 7.

Therefore, we used these parameter settings for all other experiments.
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Figure 5: Effect of patch size on segmentation accuracy. The results were obtained by

using a search volume of 7× 7× 7 voxels, extracted from the 10 most similar atlases.

Figure 6: Effect of neighborhood size on segmentation accuracy. The results were obtained

by using a patch size of 5× 5× 5 voxels, extracted from the 10 most similar atlases.
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Figure 7: Effect of the number of training atlases on segmentation accuracy. The results

were obtained by using a patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7

voxels.
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Figure 8: The performance of Fixed Discriminative Dictionary Learning on 80 ICBM

subjects. The results were obtained by using a patch size of 5× 5× 5 voxels and a search

volume of 7 × 7 × 7 voxels. The experiment was repeated 10 times. The average median

Dice coefficient is 0.887.

Figure 9: Effect of the number of training atlases on the performance of Fixed Discrimi-

native Dictionary Learning. The results were obtained by using a patch size of 5× 5× 5

voxels and a search volume of 7× 7× 7 voxels. The median Dice coefficient is 0.864 when

using 30 subjects for offline training and the remaining 172 subjects for online testing.
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3.3. Influence of the number of training atlases

We also studied the impact of the number of training atlases on the

performance of the proposed method. The results for varying numbers of

training atlases out of the 202 ADNI images are shown in Figure 7. As can

be seen, increasing the number of training atlases provides higher median

Dice overlap values. The best median Dice coefficient is 0.879 by selecting

25 atlases, which is a small improvement in comparison with a median Dice

value of 0.872 by using 10 atlases. As can be seen in Figure 7, the median

Dice coefficient stabilizes around 10 atlases, which is similar to the trends

reported in (Coupé et al., 2011; Rousseau et al., 2011). Therefore, we selected

10 atlases in our experiments as this produces comparable results with a

significantly lower computational burden comparing to selecting 25 atlases,

making the method more efficient and attractive.

3.4. Fixed Discriminative Dictionary Learning for Segmentation

The ultimate goal of our work is to learn fixed dictionaries offline. Then

the learned dictionaries can be used to efficiently perform segmentation on-

line. In order to do this, we randomly selected a subgroup of the whole

dataset as the training atlases. Then discriminative dictionaries were trained

from these randomly selected training atlases. Finally, the same testing pro-

cedure as described in Section 2.4 was performed to segment the remaining

testing subjects. The F-DDLS strategy was evaluated on the 80 healthy

ICBM subjects. 40 images were randomly selected for training dictionaries

and classifiers. The remaining 40 atlases were used for testing. The exper-

iment was repeated 10 times. The results are presented in Figure 8. The
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Figure 10: Comparison of Dice Coefficient Distribution of four methods on 41 AD sub-

jects. The results of F-DDLS were obtained by randomly selecting 30 healthy subjects

for training. The other results were obtained by using the 10 most similar atlases in a

leave-one-out procedure. The Patch-based and SRC methods were implemented by using

a patch size of 7 × 7 × 7 voxels and a search volume of 9 × 9 × 9 voxels. The DDLS and

F-DDLS methods were implemented by using a sampling step size of 3, a patch size of

5× 5× 5 voxels and a search volume of 7× 7× 7 voxels.
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average median Dice coefficient is 0.887. These results indicate that the pro-

posed F-DDLS strategy can be performed in a computationally more efficient

way, while yielding comparable segmentation results. In particular, each un-

seen subject can be segmented in less than 1 minute by using the proposed

F-DDLS strategy.

3.5. Discriminative Dictionary Learning for Segmentation using Fixed Train-

ing Dataset

For the ICBM dataset, all images were transformed to MNI template

space and the reference segmentations were then carried out in this space.

Since label images and MRIs are in the same space for the whole dataset,

fixed dictionaries can directly be learned in this common space. For the ADNI

dataset, the segmentations were performed in the target image space because

the reference segmentation is defined in this space. We used a work-around

to simulate a common space for the whole dataset: after randomly selecting a

fixed training subgroup, dictionaries were learned after warping the training

images to the testing target image space. Although the learned dictionaries

were not fixed in different spaces, they were learned from the fixed training

dataset. Therefore, the dictionaries can be regarded as identical dictionaries

transformed to different coordinate space.

We compared the results by using different numbers of training atlases

in the fixed subgroup. The results are presented in Figure 9. By using the

simulated fixed discriminative dictionary learning strategy, the median Dice

coefficient is 0.864 when using 30 subjects for training and the remaining 172

subjects for testing. Although this is slightly lower than the median Dice

coefficient (0.879) by selecting 25 atlases in a leave-one-out procedure, it also

27



demonstrates the effectiveness of the proposed method.

We also tested the proposed simulated F-DDLS method on different

groups of data from ADNI. 30 healty subjects were randomly selected for

training fixed dictionaries. Segmentations were then performed on the 41

AD subjects by using the learned dictionaries from healthy subjects. The

performance of different methods on the 41 AD subjects are presented in

Figure 10. It can be seen that DDLS achieved the highest mean Dice coef-

ficient of 0.866 for the segmentations of the 41 AD subjects, which is much

higher than a mean Dice coefficient of 0.826 by using the nonlocal patch-based

method. The mean Dice coefficient is 0.860 for the 41 AD subjects by using

the simulated F-DDLS method, which shows that the proposed method is

able to generalize from one type of data to morphologically different datasets.

3.6. Comparison with other methods

The proposed DDLS and SRC were compared with the nonlocal patch-

based technique proposed in (Coupé et al., 2011). For the proposed DDLS

method, we used a sampling step size of 3, a patch size of 5 × 5 × 5 and

a neighborhood size of 7 × 7 × 7 as suggested in Section 3.2. For SRC, 80

patches were selected for representation and classification. λ1 and λ2 were

set to 0.15 for obtaining the sparse representation to solve Equation (4).

These two parameters were determined via cross validation following the

parameter settings described in (Mairal et al., 2012). For a fair comparison,

the nonlocal patch-based method was carried out in the same settings (a

patch size of 7 × 7 × 7 voxels and a search volume of 9 × 9 × 9 voxels) as

described in (Coupé et al., 2011). The same patch preselection process as

described in (Coupé et al., 2011) was performed for both patch-based method
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Method right hippocampus left hippocampus whole hippocampus

Patch-based 0.882(0.026) 0.882(0.025) 0.882(0.022)

SRC 0.888(0.023) 0.889(0.021) 0.888(0.019)

DDLS 0.892(0.024) 0.887(0.020) 0.890(0.019)

F-DDLS* 0.888(0.027) 0.886(0.025) 0.887(0.022)

Table 2: Median Dice overlaps for 80 ICBM subjects. The results of F-DDLS* were

obtained by randomly selecting 40 atlases for training and using the remaining 40 subjects

for evluation. The experiment was repeated 10 times. The other results were obtained by

using the most similar 20 atlases in a leave-one-out procedure. The Patch-based and SRC

methods were implemented by using a patch size of 7×7×7 voxels and a search volume of

9× 9× 9 voxels. The DDLS and F-DDLS methods were implemented by using a sampling

step size of 3, a patch size of 5 × 5 × 5 voxels and a search volume of 7 × 7 × 7 voxels.

The difference between Patch-based and DDLS is statistically significant with p<0.001 on

Students two-tailed paired t-test.

Method right hippocampus left hippocampus whole hippocampus

Patch-based 0.848(0.032) 0.842(0.029) 0.844(0.027)

SRC 0.873(0.027) 0.869(0.026) 0.871(0.022)

DDLS 0.872(0.027) 0.872(0.031) 0.872(0.024)

F-DDLS* 0.865(0.042) 0.859(0.048) 0.864(0.035)

Table 3: Median Dice overlaps for 202 ADNI subjects. The results of F-DDLS* were

obtained by randomly selecting 30 atlases for training and using the remaining 172 subjects

for evluation. The other results were obtained by using the 10 most similar atlases in a

leave-one-out procedure. The Patch-based and SRC methods were implemented by using

a patch size of 7 × 7 × 7 voxels and a search volume of 9 × 9 × 9 voxels. The DDLS and

F-DDLS methods were implemented by using a sampling step size of 3, a patch size of

5×5×5 voxels and a search volume of 7×7×7 voxels. The difference between Patch-based

and DDLS is statistically significant with p<0.001 on Students two-tailed paired t-test.
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Best subject k = 0.9079 k = 0.9058 k = 0.8767

Median subject k = 0.8939 k = 0.8721 k = 0.8233

Worst subject k = 0.7709 k = 0.7509 k = 0.7088

Reference Segmentations DDLS SRC Patch-based

Figure 11: Method comparison. Segmentation results were obtained by DDLS, SRC and

the patch-based method for the subjects from ADNI dataset with the best, a median and

the worst Dice coefficients.

and SRC method in order to reduce computational time.

For a direct and fair comparison with the nonlocal patch-based method,

hippocampus segmentations were performed on the 80 healthy ICBM sub-

jects in the MNI152 template space. 20 atlases were selected in a leave-

one-out procedure for each target image as suggested in (Coupé et al., 2011).

The patch-based method obtained a median Dice value of 0.882, the proposed

SRC approach obtained 0.888, and the proposed DDLS obtained 0.890. Al-

though the SRC method produces similar results as those produced by DDLS,

the latter can be implemented with a much faster speed than the SRC method
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Figure 12: Comparison of mean Dice overlaps of three methods on four different groups.

(as discussed in the next section). The DDLS method obtained significantly

better results than the patch-based method with a p-value�0.001 using Stu-

dents two-tailed paired t-test.

Hippocampus segmentations on the 202 ADNI images were performed in

the native image space. 10 atlases were selected in a leave-one-out procedure

for each target image. Table 3 presents the median Dice coefficients of these

three approaches. The median Dice coefficient is 0.872 by using the proposed

DDLS and 0.871 by using SRC, both of which is higher than the median

Dice value of 0.844 by using the nonlocal patch-based method. Figure 11

provides a visual comparison of the segmentation results by using these three

methods. We also compared the performances of these three methods on

four different groups of subjects. Figure 12 shows the mean Dice coefficients

for the segmentations of 68 control subjects, 49 stable MCI subjects, 44

progressive MCI subjects and 41 AD patients. As revealed in Figure 12, the
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segmentation accuracy decreases with disease progression, which indicates

that smaller hippocampi, due to atrophy, are more challenging for automated

segmentation approaches.

3.7. Computational time

We implemented the DDLS and SRC methods in MATLAB 7.13.0 using

C/MEX code. The SPAMS software (http://spams-devel.gforge.inria.fr) was

used for dictionary learning and sparse coding. Since the patch-based method

is not open source, we used our version in a C++ implementation. The

experiments were carried out using a single core of an Intel Core i7-2600

processor at 3.4 GHz with 8 GB of RAM. It took approximately 10 minutes

for segmenting one subject by using the patch-based method with a patch

size of 7 × 7 × 7, a neighborhood size of 9 × 9 × 9 and 10 similar atlases.

The SRC method took around 40 minutes for segmenting one subject with

the same parameter settings. For the proposed DDLS method, it took 3-6

minutes to segment one subject with the suggested parameter settings (a

sampling step size of 3, a dictionary size of 256, a patch size of 5× 5× 5, a

neighborhood size of 7× 7× 7 and 10 similar atlases). However, if one wants

to achieve more accurate results by learning more dictionaries with a larger

size, it will be more time consuming. In addition, if fixed dictionaries are

trained offline, it only takes less than 1 minute for segmenting one subject

in the testing stage with less than a 1.5%-drop in Dice overlap compared to

the results by using the DDLS method.
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4. Discussion and Conclusion

In this work we developed a novel approach for the segmentation of sub-

cortical brain structures. Dictionary learning and sparse coding techniques

have been proposed for the segmentation of brain MRI images. In contrast

to other methods that rely on intensity similarities, the proposed method

is based on the minimization of patch reconstruction errors. Dictionaries

and classifiers are learned from atlases in one framework simultaneously.

The learned dictionaries can be used for patch reconstruction and the corre-

sponding classifiers can be used for label estimation. The proposed approach

belongs to supervised learning methods by exploiting the discriminative in-

formation in the patch library extracted from atlases. To the best of our

knowledge, discriminative dictionary learning has never been used in subcor-

tical brain segmentation. The evaluation on hippocampus extraction of 202

ADNI images and 80 healthy ICBM subjects demonstrates the accuracy and

robustness of the proposed method. The highest median Dice coefficient is

0.879 on ADNI dataset and 0.890 on ICBM dataset, which is competitive

compared with state-of-the-art methods.

In order to reduce the computational burden of the dictionary learning

process, we combined the online algorithm (Mairal et al., 2009a) with the dis-

criminative dictionary learning approach (Zhang and Li, 2010). We also used

a sampling strategy to learn the dictionaries so that the runtime of training

will be shortened significantly. The dictionary and classifier related to one

target voxel are learned from patches extracted in a local search volume across

the atlases. Therefore, neighborhood voxels share most of template patches

and will have very similar dictionaries and classifiers. This means that neigh-
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borhood voxels can share dictionaries and classifiers. This may explain why

the proposed sampling strategy still keeps almost the same accuracy, while

generating a much faster implementation. The proposed method also uses

affine registrations rather than non-rigid registrations in order to gain compu-

tational efficiency as described in the non-local means patch-based method

(Coupé et al., 2011, 2012; Rousseau et al., 2011). In the end, an unseen

subject can be segmented in approximately 6 minutes while keeping a high

segmentation accuracy.

Due to different datasets for evaluation and different qualities of manual

segmentations, comparison with state-of-the-art methods is always difficult.

Recent works (Chupin et al., 2007; Barnes et al., 2008; Aljabar et al., 2009;

Wolz et al., 2010; Collins and Pruessner, 2010; Coupé et al., 2011; Wang et al.,

2011a) reported Dice values greater than 0.80 for hippocampus segmentation.

Our approach can yield results comparable or more accurate than these recent

published results. Our proposed method was also evaluated on the same 80

healthy ICBM subjects as those used for validations of methods proposed

in (Collins and Pruessner, 2010; Coupé et al., 2011; Hu et al., 2011). A

median Dice value of 0.87-0.886 was achieved in these works. In comparison,

our method can achieve similar or slightly improved results with a very fast

implementation, especially compared to the multi-atlas method as described

in (Collins and Pruessner, 2010).

The results obtained on the ICBM dataset showed a higher Dice overlap

(0.890) compared to the results on the ADNI dataset (0.879). The difference

may come from the higher anatomical and scanner-based variability within

the 202 ADNI subjects compared to that of the 80 heathy ICBM subjects,
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who were scanned on the same scanner. In addition, the improvement of

the proposed DDLS method over the patch-based method is approximately

3% on the ADNI dataset compared to only 1% on the ICBM dataset in

terms of Dice overlap. This difference of improvement may be caused by

several factors. First, the higher anatomical variability of the ADNI dataset

compared to the ICBM datatset might make segmentations more challeng-

ing. Second, the preprocessing pipelines involved for both datasets were not

similar. For the ADNI dataset, the used processing may be less optimal

than the pipeline used for the ICBM dataset. A less accurate intensity nor-

malization might explain the lower performance of the nonlocal patch-based

method on the ADNI dataset. However, this result highlights the robustness

of the proposed methods face of intensity normalization issues compared to

patch-based method. Contrary to the patch-based method, in the proposed

methods the patches in the template library were normalized before used for

leaning dictionaries. Finally, another reason may be that the accuracy of the

proposed DDLS method on ICBM dataset may reach an upper bound be-

cause of the rater variability of manual labels (Aljabar et al., 2009), resulting

in a smaller improvement on this group.

In recent work (Wang et al., 2011b; Shu et al., 2012), sparse coding tech-

niques were also used for medical image segmentation. These methods di-

rectly used training patches as dictionaries, which are similar to the proposed

SRC approach except the label fusion strategy. Weighted voting was used to

fuse the labels in these approaches while the reconstruction error was used

in the proposed SRC method. A further experiment was performed to com-

pare these two different label fusion strategies. The median Dice overlaps
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using weighted voting as the label fusion strategy are 0.870(0.023) on the

ADNI dataset and 0.887(0.019) on the ICBM dataset respectively, which

are nearly identical to the results by using reconstruction error as the label

fusion strategy (0.871(0.022) and 0.888(0.019) respectively). These results

show that both weighted voting and reconstruction error can be chosen as

reliable label fusion strategies. However, it should be noted that weighted

voting cannot be used to estimate the labels in the proposed DDLS and

F-DDLS approaches because the corresponding labels of the atoms in the

dictionaries are unknown.

Although the proposed method can produce accurate results in a very ef-

ficient way, there are several aspects that may improve the proposed method.

(1) First, the proposed approach will be improved if one discriminative dictio-

nary with a larger size is learned for every voxel without using the sampling

strategy. However, this will increase the computational cost significantly. (2)

The segmentation accuracy may be improved if more complicated classifiers

rather than linear classifiers are learned (Mairal et al., 2008, 2009b). More-

over, the discriminative information in the sparse coding coefficients could

be also exploited and added to the objective function (Yang et al., 2011a) to

improve the segmentation accuracy, although this may lead to a complicated

optimization process of dictionary learning. (3) The use of non-registration

instead of affine registration may also improve the segmentation results as

reported in (Rousseau et al., 2011; Fonov et al., 2012). (4) Segmentation

accuracy may be improved by using intensity models (Wolz et al., 2009;

Lotjonen et al., 2010) or a learning-based method (Wang et al., 2011a) to

correct systematic errors of the proposed method.
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In Section 3.4, we also used a fixed subgroup of subjects as atlases to

learn dictionaries and classifiers. The aim of this experiment was trying to

learn a new format of ’atlases’ and ’labels’. The dictionaries are learned from

atlas images, which will contain the information of atlas images and can then

be considered as new ’atlases’. Also, the corresponding classifiers contain the

prior information of reference segmentations and can then be considered as

new ’labels’. It may take several days to learn very good representative

dictionaries and optimal discriminative classifiers offline. Once learned, it

is possible to segment one target image very quickly (less than 1 minute)

by using the new format of ’atlases’ (dictionaries) and ’labels’ (classifiers).

Although the median Dice value by using F-DDLS strategy drops slightly

(less than 1.5%) compared to the results by using the DDLS method, it

indicates that this may be a very potential direction for human brain labeling

in future work.

When comparing the DDLS and F-DDLS methods, the DDLS method

can achieve a better performance because it selects the most similar atlases

for segmentation while in the F-DDLS method, atlases are randomly selected

for segmentation, which indicates that the proposed method will have a bet-

ter performance if similar types of data are used. However, the F-DDLS still

achieves promising segmentation results. This means that this approach is

able to segment images reliably without explicitly choosing atlases similar to

the test data. The futher experiment that was validated on different groups

of datasets shows that the proposed F-DDLS method is able to generalize

from one type of data to morphologically different datasets. The main reason

may be that the proposed method learns dictionaries at a very localised level
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rather than a global one. However, It should be noted that the dictionar-

ies were trained on the same imaging modality (T1 images) with the same

manual segmentation protocol in our work. If the segmentation protocol,

acquisition protocol or imaging modality changes, the dictionaries should be

retrained.

Future research will focus on the extension of the proposed approach on

the segmentation of multiple structures of brain MR images. In this paper, we

just applied the proposed method to the segmentation of the hippocampus.

However, it is possible to extend our proposed method to segment multiple

structure by adding the corresponding label information to the label vector

H in Equation (8). In addition, we plan to apply the proposed method to the

measurement of hippocampal atrophy and patient classification as proposed

in (Coupé et al., 2012).
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Appendix A. The Alzheimer’s Disease Neuroimaging Initiative

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched

in 2003 by the National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Ad-

ministration (FDA), private pharmaceutical companies and non-profit orga-

nizations, as a $60 million, 5-year public-private partnership. The primary

goal of ADNI has been to test whether serial MRI, positron emission tomog-

raphy (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of MCI and AD.

Determination of sensitive and specific markers of very early AD progression
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is intended to aid researchers and clinicians to develop new treatments and

monitor their effectiveness, as well as lessen the time and cost of clinical tri-

als. The Principle Investigator of this initiative is Michael W. Weiner, M.D.,

VA Medical Center and University of California - San Francisco. ADNI is

the result of efforts of many co-investigators from a broad range of academic

institutions and private corporations, and subjects have been recruited from

over 50 sites across the U.S. and Canada. The initial goal of ADNI was to

recruit 800 adults, ages 55 to 90, to participate in the research – approxi-

mately 200 cognitively normal older individuals to be followed for 3 years,

400 people with MCI to be followed for 3 years, and 200 people with early AD

to be followed for 2 years. For up-to-date information see www.adni-info.org.

Appendix B. Derivation of Discriminative Dictionary Learning

For solving Equation (8), we rewrite the equation as:

〈D,W,α〉 = arg min
D,W,α

∥∥∥∥∥∥
 PL

√
β1H

−
 D
√
β1W

α

∥∥∥∥∥∥
2

2

subject to ‖α‖0 ≤ T

(B.1)

Let D̃ = (Dt,
√
β1W

t)t, P̃L = (PL
t,
√
β1H

t)t. Each column of the input

signal P̃L will thus include the original patch and its corresponding label

information. Each atom of dictionary D̃ is always normalized. We also use

the l1 norm to achieve a sparse solution for α in the dictionary optimization

process. Equation (B.1) can be rewritten as:

〈
D̃, α

〉
= arg min

D̃,α

∥∥∥P̃L − D̃α
∥∥∥2
2

+ β2‖α‖1 (B.2)
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and can be efficiently solved by the online dictionary learning technique de-

scribed in (Mairal et al., 2009a). This online approach draws one patch

from the patch library at a time for updating the dictionary. In our imple-

mentation, a mini-batch strategy (Mairal et al., 2009a), which draws a few

patches at each iteration rather than a single patch, was used to improve the

convergence speed of online learning.

After online dictionary learning, we obtain a dictionary and a classifier

for every target voxel. The corresponding dictionary and classifier of the

target patch pt can be represented as:

D̃t =


 d̃1
√
β1w̃1

 ,

 d̃2
√
β1w̃2

 , · · · ,

 d̃K
√
β1w̃K

 (B.3)

where the learned dictionary and the corresponding classifier parameters are

normalized jointly. As a result, we cannot use these dictionaries and the

classifiers directly for labeling. However, the desired dictionary D̂t and the

classifier parameters Ŵt can be computed from D̃t:

D̂t =

{
d̃1

‖d̃1‖
2

, d̃2

‖d̃2‖
2

, . . . , d̃K

‖d̃K‖
2

}

Ŵt =

{
w̃1

‖d̃1‖
2

, w̃2

‖d̃2‖
2

, . . . , w̃K

‖d̃K‖
2

} (B.4)

The proofs of Equation (B.4) is available in (Zhang and Li, 2010).
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Coupé, P., Eskildsen, S., Manjón, J., Fonov, V., Collins, D., 2012. Simultane-

ous segmentation and grading of anatomical structures for patient’s classifi-

cation: Application to Alzheimer’s disease. NeuroImage 59 (4), 3736–3747.
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