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Introduction

By Mostow rigidity, the volume of complete oriented finite volume hyperbolic 3-manifolds is an important topological invariant, also related to the Jones polynomial of knots. For infinite volume hyperbolic 3-manifolds, one should still expect some invariant derived from the volume form as well. Following ideas coming from the physics literature [START_REF] Henningson | The holographic Weyl anomaly[END_REF][START_REF] Skenderis | Quantum effective action from the AdS/CFT correspondence[END_REF][START_REF] Krasnov | Holography and Riemann surfaces[END_REF], Takhtajan-Teo [START_REF] Takhtajan | Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography[END_REF] and Krasnov-Schlenker [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF] defined a regularized (or renormalized) version of the volume in the case of convex co-compact hyperbolic quotients M = Γ\H 3 , and studied some of its properties. The renormalized volume is actually related to the uniformization theory of the boundary of the conformal compactification of M . Indeed, such hyperbolic manifolds can be compactified into smooth manifolds with boundary M by adding a compact surface N to M , and the metric on M is conformal to a smooth metric ḡ on M , inducing a conformal class [ḡ| T N ] on N . The renormalized volume plays the role of an action on the conformal class [h 0 ] with critical points at the constant curvature metrics, in a way similar to the determinant of the Laplacian. It turns out that this action has interesting properties when we deform the hyperbolic metric in the bulk, we refer to [START_REF] Takhtajan | Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography[END_REF][START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF][START_REF] Guillarmou | Chern-Simons line bundle on Teichmüller space[END_REF][START_REF] Schlenker | The renormalized volume and the volume of the convex core of quasifuchsian manifolds[END_REF] for results in that case.

In this paper, we study the higher dimensional analog of this invariant and compute its variation on the so-called quantum conformal superspace, the higher-dimensional analog of the Teichmüller space.

We are interested in the set T (N ) of conformal classes of metrics on a compact manifold N of even dimension, up to the group D 0 (N ) of diffeomorphisms isotopic to identity. This space can be defined as a quotient of the space of smooth metrics M(N ) by the action of the semi-direct product C ∞ (N ) D 0 (N ). We assume that (N, h 0 ) does not admit nonzero conformal Killing vector fields, so that a neighbourhood of the image of h 0 in the quotient is a Fréchet manifold. In dimension n = 2 this is simply the Teichmüller space with finite dimension dim T (N ) = -3χ(N ), while in higher dimension it is infinite dimensional. Following Fefferman-Graham [START_REF] Fefferman | The ambient metric[END_REF], we can view the conformal class (N, [h 0 ]) as the conformal boundary of a Poincaré-Einstein end, that is a cylinder (0, ε) x × N equipped with a metric

g = dx 2 + h x x 2 , h x ∼ x→0 ∞ =0 h x, (x n log x) (1) 
where h x, are one-parameter families of tensors on M depending smoothly on x, and satisfying the approximate Einstein equation as x → 0

Ric g = -ng + O(x ∞ ).
The tensor h x,0 has a Taylor expansion at x = 0 given by

h x,0 ∼ x→0 ∞ j=0 x 2j h 2j
where h 2j are formally determined by h 0 if j < n/2 and formally determined by the pair (h 0 , h n ) for j > n/2; for ≥ 1, the tensors h x, have a Taylor expansion at x = 0 formally determined by h 0 , h n . We have that h n is a formally undetermined tensor which satisfies some constraints equations: there exist a function T n and a 1-form D n , natural in terms of the tensor h 0 (see Definition 2.4), such that the trace and divergence of h n with respect to h 0 are given by

Tr h 0 (h n ) = T n , δ h 0 (h n ) = D n . (2) 
When n = 2, we have

T 2 = -1 2 Scal h 0 , D 2 = 1 2 d Scal h 0 . (3) 
For general n the formula for T n , D n is not known, although in principle it can be computed reccursively by a complicated algorithm. An Asymptotically Hyperbolic Einstein (AHE) manifold is an Einstein manifold (M, g) with Ric g = -ng which compactifies smoothly to some M so that there exists a smooth boundary defining function x with respect to which g has the form (1) (when n = 2, g has constant sectional curvatures -1). The conformal boundary N = ∂M inherits naturally a conformal class [x 2 g| T N ]. Each conformal representative h 0 ∈ [x 2 g| T N ] determines a unique geodesic boundary defining function x near N so that g has the form (1). The renormalized volume Vol R (M, g; h 0 ) was apparently introduced by physicists [START_REF] Henningson | The holographic Weyl anomaly[END_REF], and appeared in [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF] in the mathematics literature. We define it using a slightly different procedure from [START_REF] Henningson | The holographic Weyl anomaly[END_REF][START_REF] Graham | Extended obstruction tensors and renormalized volume coefficients[END_REF], by using the formula Vol R (M, g; h 0 ) := FP z=0 M x z dvol g ; [START_REF] Bär | Generalized cylinders in semi-Riemannian and Spin geometry[END_REF] the function F (z) = M x z dvol g has a pole at z = 0 with residue N v n dvol h 0 , where v n is the function appearing as the coefficient of x n in the expansion of the volume form near N :

dvol g = (v 0 + v 2 x 2 + • • • + v n x n + o(x n ))dx dvol h 0 , v 0 = 1. (5) 
This method for renormalizing the volume was used for AHE manifolds e.g. in the work of Albin [START_REF] Albin | Renormalizing curvature integrals on Poincaré-Einstein manifolds[END_REF]. The quantities v 2j for j ≤ n/2 are formally determined by h 0 (they are local expressions in terms of h 0 ), the term v n is called a conformal anomaly in the physics literature and its integral L := N v n dvol h 0 is a conformal invariant [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]. For instance

v 2 = - 1 4 Scal h 0 if n = 2, v 4 = 1 4 σ 2 (Sch h 0 ) if n = 4
where σ 2 (Sch h 0 ) is the symmetric function of order 2 in the eigenvalues of the Schouten tensor Sch h 0 = 1 2 (Ric g -1 6 Scal h 0 h 0 ), see Lemma 3.9. We first show Theorem 1.1. Let (M, g) be an odd dimensional AHE manifold with conformal boundary N equipped with the conformal class [h 0 ].

(1) Polyakov type formula: Under conformal change e 2ω 0 h 0 , the renormalized volume Vol R (M, g; h 0 ) satisfies

Vol R (M, g; e 2ω 0 h 0 ) = Vol R (M, g; h 0 ) + ∂M n/2 j=0 v 2j (h 0 )ω n-2j dvol h 0 where v 2i are the volume coefficients of [START_REF] Bers | Simultaneous uniformization[END_REF] and ω 2j are polynomial expressions in ω 0 and its derivatives of order at most j. (2) Critical points: The critical points of Vol R (M, g; •), among metrics of fixed volume in the conformal class [h 0 ] are those metrics h 0 satisfying v n (h 0 ) = constant. (3) Extrema: Assume that [h 0 ] contains an Einstein metric h 0 with non-zero Ricci curvature. Then h 0 is a local extremum for Vol R (M, g; •) in its conformal class with fixed volume: it is a maximum if Ric h 0 < 0 or n/2 is odd, it is a minimum if n/2 is even. Moreover if (N, [h 0 ]) is not the canonical conformal sphere, then for each conformal classes [h] close to [h 0 ], there is a metric h ∈ [h] solving v n (h) = constant and Vol R (M, g; h) is a local extremum in [h] with fixed volume.

These properties are proved in Section 3. Property (2) follows directly from the discussion after [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF]Th. 3.1] and is certainly known, but to be self-contained we give an elementary proof.

After choosing representatives in the conformal class satisfying the condition v n = constant, we show a correspondence between Poincaré-Einstein ends and cotangent vectors to the space T (N ) of conformal structures (i.e. conformal classes modulo D 0 (N )). A Poincaré-Einstein end is determined by the pair (h 0 , h n ). When T (N ) (or an open subset) has a Fréchet manifold structure, we can use a symplectic reduction of the cotangent space T * M(N ) of the space of metrics M(N ) by the semi-direct product C ∞ (N ) D 0 (N ), and we can identify T *

[h 0 ] T (N ) to the space of trace-free and divergence-free tensors on N (with respect to h 0 ). When n = 2, after choosing a metric h 0 with v n (h 0 ) = constant, the formally undetermined tensor h n is divergence-free trace-free by [START_REF] Anderson | L 2 curvature and renormalization of AHE metrics on 4-manifolds[END_REF]. For general n even, we show the following Theorem 1.2. There exists a symmetric tensor F n , formally determined by h 0 , such that

G n := -1 4 (h n + F n ) satisfies Tr h 0 (G n ) = 1 2 v n , δ h 0 (G n ) = 0. (6) 
(4) Cotangent vectors as ends: Assume that there exists an open set U ⊂ T (N ) and a smooth Fréchet submanifold S 0 ⊂ M(N ) of metrics h 0 solution to v n (h 0 ) = constant, Vol(N, h 0 ) = 1, so that the projection π : M(N ) → T (N ) is a homeomorphism from S to U. Then there is a bijection between the space of Poincaré-Einstein ends with h 0 ∈ S and the space T * U T (N ) given by (h 0 , h n ) → (h 0 , G • n ), where G • n is the trace-free part of G n .

The existence of a slice S 0 is proved for instance in Corollary 4.5 in a neighbourhood of a conformal class containing an Einstein metric which is not the sphere. We have learnt from Robin Graham that there is a result related to the first part of the Theorem about G n in the physics literature [START_REF] Haro | Holographic reconstruction of space time and renormalization in the AdS/CFT correspondence[END_REF], although the renormalization for the volume seems different from ours.

We define the Cauchy data for the Einstein equation to be (h 0 , G • n ), where h 0 solves v n (h 0 ) = constant, Vol(N, h 0 ) = 1.

Those Cauchy data which are ends of AHE manifolds span a Lagrangian submanifold of T * T (N ):

Theorem 1.3. Assume that there is a smooth submanifold S 0 ⊂ M(N ) of metrics h 0 solving v n (h 0 ) = constant, Vol(N, h 0 ) = 1, so that the projection π : M(N ) → T (N ) is a homeomorphism from S 0 to U. Let M be a smooth manifold with boundary N and assume that there is a smooth map Φ : S 0 → M(M ) such that Ric Φ(h 0 ) = -nΦ(h 0 ) and [x 2 Φ(h 0 )| N ] = [h 0 ] for some boundary defining function x.

(5) Lagrangian submanifold: The set L of Cauchy data (h 0 , G • n ) of the AHE metrics Φ(h 0 ) with h 0 ∈ S 0 is a Lagrangian submanifold in T * T (N ) with respect to the canonical symplectic structure. [START_REF] Besse | Einstein manifolds[END_REF] Generating function: L is the graph of the exact 1-form given by the differential of h 0 → Vol R (M, Φ(h 0 ); h 0 ) over S 0 . More precisely, if ḣ0 ∈ T h 0 S 0 is a first-order variation of h 0 ∈ S 0 among metrics satisfying v n (h 0 ) = constant, Vol(N, h 0 ) = 1, then dVol R (M, Φ(h 0 ), h 0 ). ḣ0 =

N G • n , ḣ0 dvol h 0 . (7) 
Here, what we mean by Lagrangian is an isotropic submanifold such that the projection on the base is a diffeomorphism. In Section 6, we show that the assumptions of Theorem 1.3 are satisfied for instance in a neighbourhood of what we call a Fuchsian-Einstein manifold, generalizing in any dimension the case of quasi-Fuchsian metrics near a Fuchsian metric when n = 2. A Fuchsian-Einstein metric is a product M = R t ×N with a metric g 0 := dt 2 +cosh 2 (t)γ where γ is a metric on N such that Ric γ = -(n-1)γ and the sectional curvatures of γ are nonpositive. By Corollary 4.5, near an Einstein metric γ on a compact manifold N with negative Ricci curvature, there is a smooth slice S 0 ⊂ M(N ) of metrics solution to v n (h 0 ) = constant, Vol(N, h 0 ) = 1, and so that the projection π : M(N ) → T (N ) is a homeomorphism from S 0 to a neighbourhood U of [h 0 ]. Using a result by Lee [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF], and possibly after taking an open subset of S 0 instead of S 0 , for each pair (h + 0 , h - 0 ) ∈ S 0 × S 0 there exists an AHE metric

g = Φ(h + 0 , h - 0 ) satisfying Ric g = -ng on M, Φ(γ, γ) = g 0 , [x 2 g| t=±∞ ] = [h ± 0 ] for x := e -|t| .
For each of the two ends (t → ±∞) we have a traceless symmetric 2-tensor G

•± n . We denote G •± n := G •± n ⊗ dvol h ± 0 , and consider G •± n as a vector in T * h ± 0 T (N ): if ḣ± 0 ∈ T h ± 0 T (N ) are symmetric 2-tensors on N , then G •+ n ( ḣ+ 0 ) = N G •+ n , ḣ+ 0 h + 0 := N G •+ n , ḣ+ 0 h + 0 dvol h + 0
and similarly for ḣ-0 . Theorem 1.4. Fix h + 0 , h - 0 ∈ S 0 and consider the linear maps

φ h + 0 : T h - 0 S 0 → T * h + 0 T (N ), φ h - 0 : T h + 0 S 0 → T * h - 0 T (N ) defined as φ h + 0 : ḣ- 0 → (dG •+ n ) (h - 0 ,h + 0 ) ( ḣ- 0 , 0) φ h - 0 : ḣ+ 0 → (dG •- n ) (h - 0 ,h + 0 ) (0, ḣ+ 0 ) where G •±
n and its variation are obtained using the AHE metrics g = Φ(h + 0 , h - 0 ). Then (7) Quasi-Fuchsian reciprocity: The linear maps φ h + 0 and φ h - 0 are adjoint. [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF] in dimension n = 2 contains also a result about complex structures, while here we are in the purely real case.

Note that McMullen's quasi-Fuchsian reciprocity

Finally, we study the second variation of

h 0 = (h + 0 , h - 0 ) → Vol R (M, Φ(h 0 ), h 0 )
at the Fuchsian-Einstein metric, i.e., when Φ(h 0 ) = g 0 . When n = 2, this corresponds to the Fuchsian locus inside the quasi-Fuchsian deformation space, and the computation of the Hessian of Vol R is rather easy and done in Proposition 7.1. The next result deals with the case n = 4.

Theorem 1.5. In the setting of Theorem 1.4, consider the function Vol R : S 0 × S 0 → R defined by Vol R (h 0 ) := Vol R (M, Φ(h 0 ), h 0 ) for h 0 = (h + 0 , h - 0 ) ∈ S 0 × S 0 , and set n = 4. Assume that 2Vol(N, γ) ≥ 1 and that L γ -2 > 0 where L γ := ∆ γ -2 Rγ ≥ 0 is the linearized Einstein operator at γ acting on divergence-free, trace-free tensors (see Section 7 for a precise definition).

(8) Hessian at the Fuchsian-Einstein locus: The point h 0 = (γ, γ) is a critical point for Vol R , i.e., dVol R (h 0 ) = 0 on T γ S 0 × T γ S 0 , the Hessian at (γ, γ) is positive in the sense that there exists c 0 > 0 such that for all ḣ0 = ( ḣ+

0 , ḣ- 0 ) ∈ T γ S 0 × T γ S 0 with δ γ ( ḣ± 0 ) = 0 Hess h 0 (Vol R )( ḣ0 , ḣ0 ) ≥ c 0 || ḣ0 || 2 H 2 (N )
where H 2 (N ) is the L 2 -based Sobolev space of order 2.

The lower bound L γ -2 > 0 is for instance satisfied if γ has constant sectional curvature. In Proposition 7.6, we compute the Hessian explicitly: the quadratic form acting on divergence-free tensors tangent to S 0 × S 0 is given by a self-adjoint linear elliptic pseudodifferential operator H, Hess (γ,γ) (Vol R )( ḣ0 , ḣ0 ) = H ḣ0 , ḣ0 L 2 , and H is in fact a function of L γ (the condition ḣ± 0 ∈ T γ S 0 and δ γ ( ḣ± 0 ) = 0 actually implies that Tr γ ( ḣ± 0 ) = 0). If L γ -2 has non-positive eigenvalues, the same result remains true along deformations orthogonal to (the finite dimensional) range of 1l R -(L γ -2).

To conclude, we discuss briefly the properties of the renormalized volume when n is odd, a case which has been more extensively studied. In that case Vol R has quite different properties: for instance it is related to the Gauss-Bonnet-Chern formula and does not depend on the choice of conformal representative h 0 (i.e., it is independent of the geodesic boundarydefining function x). Anderson [START_REF] Anderson | L 2 curvature and renormalization of AHE metrics on 4-manifolds[END_REF] gave a formula when n + 1 = 4 for Vol R (M, g) in terms of the L 2 norm of the Weyl tensor and the Euler characteristic χ(M ) if g is AHE. This was extended by Chang-Qing-Yang [START_REF] Chang | On the renormalized volumes for conformally compact Einstein manifolds[END_REF] in higher dimensions (see also Albin [2] for the Gauss-Bonnet-Chern formula), while Epstein [57, Appendix A] proved that for convex co-compact hyperbolic manifolds it equals a constant times χ(M ). When n = 4, Chang-Qing-Yang [START_REF] Chang | On the topology of conformally compact Einstein 4-manifolds, Noncompact Problems at the intersection of Geometry, Analysis and Topology[END_REF] also proved a rigidity theorem if the renormalized volume is pinched enough near that of hyperbolic space H 4 . As for variations, Anderson [START_REF] Anderson | L 2 curvature and renormalization of AHE metrics on 4-manifolds[END_REF] and Albin [START_REF] Albin | Renormalizing curvature integrals on Poincaré-Einstein manifolds[END_REF] proved that the derivative of the renormalized volume for AHE metrics is given by the formally undetermined tensor -1 4 h n , see Theorem 5.2. A byproduct of our computation in Section 7 is a formula for the Hessian of the renormalized volume when n + 1 is even, at a Fuchsian-Einstein metric, see expression (86) in Proposition 7.6.

Organisation of the paper. In Section 2, we first describe the manifold of conformal structures on a compact manifold (e.g. its Fréchet structure) and its cotangent bundle, then we recall the necessary material about Asymptotically Hyperbolic Einstein (AHE) manifolds, following mainly Fefferman-Graham [START_REF] Fefferman | The ambient metric[END_REF]. In Section 3, we define and study the properties of the renormalized volume of AHE manifolds as a functional on the conformal class at infinity. In Section 4, we study the equation v n = constant and show that in some case it produces a slice for the action of the conformal group: in particular, near Einstein metrics with nonzero Ricci curvature and different from the conformal sphere, this equation has solutions and produces a slice. In Section 5, we compute the variation of the renormalized volume in direction transverse to the conformal action and prove the first part of Theorem 1.2. In Section 6, we describe the cotangent space to the space of conformal structure as the set of Poincaré-Einstein ends (2nd part of Theorem 1.2) and prove that those ends admitting a global Einstein filling (i.e. corresponding to AHE manifolds) form a Lagrangian manifold with generating function Vol R , as described in Theorem 1.3; we also show Theorem 1.4 in that Section. The last Section is focused on computations of the Hessian of Vol R at the Fuchsian-Einstein manifold.
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Moduli space of conformal structures and AHE manifolds

2.1. Spaces of metrics and conformal structures. We use the notions of tame Fréchet manifold and Fréchet Lie groups as in Hamilton [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]. Let N be a compact smooth manifold of dimension n, and M(N ) the set of Riemannian metrics on N . This set is an open convex subset in the Fréchet space C ∞ (N, S 2 N ) of symmetric smooth 2-tensors on N . It has a tautological non-complete Riemannian metric given on

T h M(N ) = C ∞ (N, S 2 N ) by the L 2 product with respect to h ∈ M(N ): k 1 , k 2 := N k 1 , k 2 h dvol h , k 1 , k 2 ∈ T h M(N )
where

k 1 , k 2 h = Tr(h -1 k 1 h -1 k 2 )
is the scalar product on S 2 N induced naturally by h (here

K = h -1 k means the symmetric endomorphism defined by h(K•, •) = k).
Let D(N ) be the group of smooth diffeomorphisms of N and D 0 (N ) the connected component of the identity. The groups D 0 (N ) and C ∞ (N ) are Fréchet Lie groups, the latter being in fact a Fréchet vector space. Consider the map

Φ : C ∞ (N ) × D 0 (N ) × M(N ) → M(N ), (f, φ, h) → e 2f (φ -1 ) * h.
This map defines an action of the semi-direct product G := C ∞ (N ) D 0 (N ) on M(N ), and this action is smooth and proper if N is not the sphere S n (see Ebin [START_REF] Ebin | The space of Riemannian metrics[END_REF], Fischer-Moncrief [START_REF] Fischer | The structure of quantum conformal superspace, Global Structure and Evolution in General Relativity[END_REF]). The isotropy group at a metric h for the action Φ is the group of conformal diffeomorphism of (N, h) isotopic to the Identity; by Obata [START_REF] Obata | The conjectures on conformal transformations of Riemannian manifolds[END_REF] it is compact if N is not the sphere.

Definitions. The object studied in this paper is the moduli space of conformal structures on N (called quantum conformal superspace in physics), denoted by

T (N ) := G\M(N ). ( 8 
)
This space is the Teichmüller space when n = 2 and N has negative Euler characteristic.

In higher dimension, it is infinite dimensional and has a complicated structure near general metrics. In [START_REF] Fischer | The structure of quantum conformal superspace, Global Structure and Evolution in General Relativity[END_REF], Fischer-Moncrief describe the structure of T (N ): they show for instance that it is a smooth Inverse Limit Hilbert orbifold if the degree of symmetry of N is 0 (the isotropy group is then finite). Moreover, if the action is proper and the isotropy group at a metric h is trivial, then a neighbourhood of [h] in T (N ) is a Fréchet manifold. By a result of Frenkel [START_REF] Frankel | On theorems of Hurwitz and Bochner[END_REF], the isotropy group is trivial if h ∈ M(N ) is a metric of negative Ricci curvature and nonpositive sectional curvatures. An equivalent way to define T (N ) is to consider D 0 (N )\C(N ), where

C(N ) := C ∞ (N )\M(N ) (9) 
is the space of conformal classes of metrics on N .

Slices. Since we will use this later, let us describe the notion of slice introduced by Ebin [START_REF] Ebin | The space of Riemannian metrics[END_REF] in these settings. We will say that S ⊂ M(N ) is a slice at h 0 ∈ M(N ) for the conformal action of C ∞ (N ) if it is a tame Fréchet submanifold such that there is a neighbourhood U of 0 in C ∞ (N ) and a neighbourhood V ⊂ M(N ) of h 0 such that

Ψ : U × S → V, (f, h) → e 2f h (10) 
is a diffeomorphism of Fréchet manifolds. Since the action of C ∞ (N ) on M(N ) is free and proper, it is easy to see that Ψ extends to C ∞ (N ) × S → M(N ) and is injective. In other words, S defines a tame Fréchet structure on C(N ) near the conformal class [h 0 ]. Similarly, if S ⊂ M(N ) is a Fréchet submanifold containing h 0 , on which a neighbourhood U ⊂ D 0 (N ) of Id acts smoothly, then a Fréchet submanifold S 0 of S is a slice at h 0 for the action of D 0 (N ) if there exists a neighbourhood V ⊂ S of h 0 such that

Φ : U × S 0 → V, (φ, h) → (φ -1 ) * h (11) 
is a diffeomorphism of Fréchet manifolds. Extending Φ to D 0 (N )×S 0 → M(N ), and assuming that the action of D 0 (N ) on Φ(D 0 (N ) × S 0 ) is free and proper, the extension of Φ is injective in a small neighbourhood of h 0 in S 0 . If S was a slice for the conformal action, then S 0 is a slice at h 0 for the action of G on M(N ), thus giving a tame Fréchet structure on T (N ) near the class of h 0 in T (N ).

Cotangent bundles. The tangent bundle T M(N ) over M(N ) is the trivial Fréchet bundle M(N ) × C ∞ (N, S 2 N ). For each base point h, which by definition is a Riemannian metric on N , we can identify symmetric 2-vectors with symmetric bilinear forms, so that elements of the topological dual T * M h (N ) can be described as distributional sections of S 2 N ⊗ Ω n N . Such spaces of distributions are not Fréchet manifolds.

In this work, we are interested in C ∞ objects and Fréchet manifolds, we thus define the smooth cotangent space T * h M(N ) to be the vector space of continuous linear forms on T h M(N ) which are represented by smooth tensors through the h pairing followed by integration on N :

k * ∈ T * h M(N ) if ∃k ∈ C ∞ (N, S 2 N ⊗ Ω n N ), ∀v ∈ T h M(N ), k * (v) = N k, v h .
This identifies the smooth cotangent bundle

T * M(N ) with T M(N ) = M(N )×C ∞ (N, S 2 N ⊗ Ω n N ), making it a Fréchet bundle.
There exists a symplectic form Ω on T * M(N ), derived from the Liouville canonical 1-form:

Ω (h,k) (( ḣ1 , k1 ), ( ḣ2 , k2 )) = N k1 , ḣ2 h -k2 , ḣ1 h . ( 12 
)
The group G acts on T * M(N ), with a symplectic action induced from the base and using the Riemannian metric on M(N ):

(f, φ) : (h, k) → e 2f (φ -1 ) * h, e 2f (φ -1 ) * k . (13) 
We then define (locally) the cotangent bundle to T (N ). We will always assume that there is a slice S 0 at h 0 representing a neighbourhood U ⊂ T (N ) of the class [h 0 ], as we just explained. The tangent space T [h] T (N ) at a point [h] ∈ T (N ) near [h 0 ] is then identified with T h S 0 where h is the representative of [h] in S 0 , and T T (N ) is then locally represented near [h 0 ] as a Fréchet subbundle of T S 0 M(N ). We define the smooth cotangent space T *

[h] T (N ) to be the vector space of continuous linear forms on T h S 0 T [h] T (N ) which are represented by smooth sections of S 2 N ⊗ Ω n N through the L 2 pairing and vanish on the tangent space of the orbit G h of h by the group G:

k * ∈ T * [h] T (N ) if ∃k ∈ C ∞ (S 2 N ⊗ Ω n N ), ∀v ∈ T h S 0 , k * (v + T h G h ) = N k, v h . Since T h G h = {L X h + f h; X ∈ C ∞ (N, T N ), f ∈ C ∞ (N )} (where L X h is the Lie derivative), k must satisfy N k, L X h + f h h = 0, ∀X ∈ C ∞ (N, T N ), f ∈ C ∞ (N ),
which is equivalent to asking that k = k ⊗ dvol h , with δ h (k ) = 0 and Tr h (k ) = 0. The smooth cotangent bundle T * T (N ) over a neighbourhood U ⊂ T (N ) of [h 0 ] represented by a slice S 0 is then

T * U T (N ) = {(h, k ⊗ dvol h ) ∈ S 0 × C ∞ (N, S 2 N ⊗ Ω n N ); δ h (k) = 0, Tr h (k) = 0}. ( 14 
)
Lemma 2.1. Assume that h has no conformal Killing vector fields for all h ∈ S 0 . The space T * U T (N ) is a Fréchet subbundle of T S 0 M(N ), therefore a Fréchet bundle over S 0 .

Proof. We are going to exhibit a trivialisation of the fiber bundle defined by [START_REF] Chang | A note on renormalized volume functionals to appear in Diff[END_REF]. Define

Φ h : C ∞ (N, S 2 N ) → C ∞ (N, T N ⊕ R), Φ h (k) = (δ h k + 1 n d Tr h (k), Tr h (k)). Evidently, ker Φ h = T * h T (N ). The formal adjoint of the differential operator Φ h is Φ * h (σ, f ) = δ * h σ + ( 1 n d * σ + f )h.
Since h is a metric without conformal Killing vector fields, Φ * h is injective. The projector on the kernel of Φ h is

P h := 1 -Φ * h (Φ h Φ * h ) -1 Φ h . We claim that P h 0 : T * h T (N ) → T * h 0 T (N ) is a tame isomorphism.
Let us check that it is indeed a tame family of 0-th order pseudodifferential operators. In matrix form, the operator

Φ h Φ * h is Φ h Φ * h = δ h δ * h -1 n dd * 0 0 n
where n = Tr h (h) is the dimension of N . This operator acts on mixed Sobolev spaces as follows:

Φ h Φ * h : H s (N, T N ) × H s (N ) → H s-2 (N, T N ) × H s (N ) for every s ∈ R. The self- adjoint operator A h := δ h δ * h -1
n dd * is elliptic and invertible and thus has a tame family of pseudo-differential inverses of order -2 (see [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]Section II.3.3]). Then the inverse of Φ h Φ * h is also invertible and tame. In particular, we see that P h is smooth tame family of pseudodifferential operators of order 0. We have that P h P h 0 : T * h T (N ) → T * h T (N ) and

P h 0 P h : T * h 0 T (N ) → T * h 0 T (N )
are invertible for h close to h 0 in some Sobolev norm, since they are the Identity when h = h 0 and by the Calderón-Vaillancourt theorem; moreover the inverse are tame, by the results of [START_REF] Payne | Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators[END_REF]Th. 4.5]. This gives the desired trivialisation.

To obtain a local description of T * T (N ) which is independent of the choice of slice, it is necesary and sufficient that for another choice of metric ĥ = (f, φ).h in the orbit G h , the new representative for k becomes e (2-n)f (φ -1 ) * k, which is indeed a divergence-free/trace-free tensor with respect to ĥ (note that (h, k⊗dvol h ) transforms as e 2f ((φ -1 ) * h, (φ -1 ) * (k⊗dvol h )), but this means that k transforms as e (2-n)f (φ -1 ) * k). In a small neighbourhood of [h 0 ] ∈ T (N ), we can therefore identify T * T (N ) with the quotient

G\{(h, k) ∈ M(N ) × C ∞ (N, S 2 N ); Tr h (k) = 0, δ h (k) = 0} (15) 
where the group action of G is [START_REF] Chang | A class of variational functionals in conformal geometry[END_REF]. The action of G is Hamiltonian, and T * T (N ) is the symplectic reduction of T * M(N ), where the moment map is given at

(f, v) ∈ C ∞ (N ) × C ∞ (N, T N ) = lie(G)
in terms of the L 2 inner product with respect to h by

µ (f,v) (k) = -2tr h (k), f + δ h (k), v , k ∈ T * h M(N ).
Therefore the zero set of the moment map is exactly the space appearing in (15) before quotienting. Finally, the symplectic form Ω descends to T * T (N ).

2.2.

Asymptotically hyperbolic Einstein manifolds. The reader can find more details about the theory of this section in the books [START_REF] Djadli | Opérateurs géométriques, invariants conformes et variétés asymptotiquement hyperboliques[END_REF][START_REF] Juhl | Families of Conformally Covariant Differential Operators, Q-Curvature and Holography[END_REF][START_REF] Fefferman | The ambient metric[END_REF]. Definition 2.2. Let M n+1 be a compact smooth manifold with boundary, and M ⊂ M its interior. A metric g on M is called asymptotically hyperbolic Einstein (or AHE) if Ric g = -ng and if there exists a smooth boundary defining function x : M → [0, ∞) such that, in a collar neighbourhood of ∂M induced by x, g is of the form

g = x -2 (dx 2 + h x ) (16) 
where h x is a continuous family of smooth metrics on N := ∂M , depending smoothly on the variable x when n is odd, and on the variables x, x n log x when n is even. The conformal class [h 0 ] of h 0 on ∂M (which is independent of the choice of x) is called the conformal infinity of (M, g).

By a collar neighbourhood induced by x we mean a diffeomorphism Φ : [0, ε) t ×∂M → M onto its image, such that Φ * (x) = t, Φ(0, •) = Id ∂M and the meaning of ( 16) is Φ * g = (dt 2 + h t )/t 2 on (0, ε) t × ∂M .

In particular, AHE metrics are smooth on M and of class C n-1 on M . In even dimension, the definition with the regularity statement is justified by the result of Chrusciel-Delay-Lee-Skinner [START_REF] Chrusciel | Boundary regularity of conformally compact Einstein metrics[END_REF], which states that an Einstein metric on a conformally compact C 2 manifold with smooth conformal infinity admits an expansion at the boundary in integral powers of x and x n log x. We notice that the sectional curvatures of a AHE metric are -1 + O(x) and that the metric g is complete.

In this paper we will be essentially interested in the more complicated case where n is even (so that the dimension of M is odd) but at the moment we do not fix the parity of n.

We say that a function f is polyhomogeneous conormal (with integral index set) on M if it is smooth in M and for all J ∈ N, f has an expansion at ∂M of the form:

f = J j=0 j =0 x j log(x) f j, + o(x J )
where f j, ∈ C ∞ (∂M ) and x is a smooth boundary defining function. The same definition applies to tensors on M . There are natural topologies of Fréchet space for polyhomogeneous conormal functions or tensors; we refer to [START_REF] Melrose | Manifolds with corners, book in preparation[END_REF]Chap 4] and [START_REF] Melrose | Calculus of conormal distributions on manifolds with corners[END_REF] for details and properties of these conormal polyhomogeneous spaces.

Poincaré-Einstein ends.

There is a weaker notion of metric that will prove useful, that of Poincaré-Einstein metrics, introduced by Fefferman-Graham [START_REF] Fefferman | The ambient metric[END_REF]. Let (M, g) be an (n + 1)-dimensional asymptotically hyperbolic Einstein manifold. Since by [START_REF] Chrusciel | Boundary regularity of conformally compact Einstein metrics[END_REF], the metric g in a collar (0, ε) x × ∂M induced by x near ∂M has an expansion of the form

g = dx 2 + h x x 2 , h x ∼ x→0 ∞ =0 h x, (x n log x) (17) 
where h x, are one-parameter families of tensors on M depending smoothly on x, we want to define the asymptotic version of AHE manifolds:

Definition 2.
3. An Poincaré-Einstein end is a half-cylinder Z = [0, ε) × N equipped with a smooth metric g on (0, ε) × N with an expansion of the form (17) near x = 0, such that Ric g +ng = O(x ∞ ). If (Z, g) is Einstein, we call it an asymptotically hyperbolic Einstein end.

In [START_REF] Fefferman | The ambient metric[END_REF], Fefferman and Graham analyze the properties of Poincaré-Einstein ends. To explain their results we need the notion of formally determined tensors.

Formally determined tensors.

Definition 2.4. Let N be a compact manifold, and m, ∈ N 0 . A map F : M(N ) → C ∞ (M, (T * M ) ) from metrics on N to covariant -tensors is said to be natural of order m (and the tensor F (h 0 ) is said to be formally determined by h 0 of order m ∈ N) if there exists a tensor-valued polynomial P in the variables h 0 , h -1 0 , det(h 0 ), ∂ α h 0 with |α| ≤ m, so that in any local coordinates y

F (h 0 ) = P (h 0 , h -1 0 , det(h 0 ), ∂ α y h 0 ). Remark 2.5. A formally determined tensor F (h 0 ) is preserved by local isometries: if φ : U → U is a diffeomorphism where U, U
are open sets of Riemannian manifolds N, N and h 0 , h 0 are metrics on U, U then if h 0 = φ * h 0 on U , we get F (h 0 ) = φ * F (h 0 ) on U . As a consequence, a formally determined tensor is 0 if it vanishes for all metrics on the sphere S n . Lemma 2.6. Let h t 0 be a smooth one-parameter family of metrics on N with h t 0 = h 0 + t ḣ0 + O(t 2 ) at t = 0, and let P (h t 0 ), Q(h t 0 ) be tensors formally determined by h t 0 of respective order p, q. There exists a formally determined tensor R(h 0 ) in h 0 of order r = p + q such that

∂ t P (h t 0 )| t=0 , Q(h 0 ) L 2 (N,h 0 ) = ḣ0 , R(h 0 ) L 2 (N,h 0 ) . Proof.
By using a partition of unity we can assume that h t 0 has support in a coordinate domain. Then

∂ t P (h t 0 )| t=0 is a polynomial in the variables ∂ β y ḣ0 , h 0 , h -1 0 , det(h 0 ), ∂ α y h 0 , linear in ḣ0 .
Integrating by parts with respect to the coordinates y j it is clear that there exists a polynomial R such that

∂ t P (h t 0 )| t=0 , Q(h 0 ) L 2 (N,h 0 ) = ḣ0 , R(h 0 (y)) L 2 (N,h 0 ) . (18) 
The polynomial R is the same for different coordinate systems. To see that it defines a formally determined tensor, we need to prove that the 2-tensor R(h 0 (y)) is independent of the coordinate system y. This follows from the identity (18) since ḣ0 is arbitrary, and all the terms except R(h 0 (y)) are known to be intrinsically defined.

Proposition 2.7 (Fefferman-Graham [START_REF] Fefferman | The ambient metric[END_REF]). Let (Z, g) be a Poincaré-Einstein end. Using the expansion [START_REF] Chang | On the topology of conformally compact Einstein 4-manifolds, Noncompact Problems at the intersection of Geometry, Analysis and Topology[END_REF],

define h j = 1 j! ∂ j x h x,0 | x=0 and k := h x,1 | x=0 .
Then the following hold: (1) When n is odd, h x, = 0 when ≥ 1.

(2) The tensors h 2j+1 are 0 for 2j + 1 < n.

(3) The tensors h 2j for j < n/2 and k are formally determined by h 0 , of order 2j. (4) The tensors h 2j for j > n/2 are formally determined by h 0 and h n .

(5) The functional h 0 → T n (h 0 ) := Tr h 0 (h n ) is well-defined in the sense that T n (h 0 ) depends only on h 0 , it is natural of order n and vanishes for n odd.

(6) The functional h 0 → D n (h 0 ) := δ h 0 (h n ) is well-defined in the sense that D n (h 0 )
depends only on h 0 , it is natural of order n + 1 and vanishes for n odd. [START_REF] Biquard | Métriques d'Einstein asymptotiquement symétriques[END_REF] The tensor k, called obstruction tensor, is trace-and divergence-free with respect to h 0 . (8) All coefficients in the Taylor expansion at x = 0 of h x, for ≥ 1 are formally determined by h 0 and h n .

A consequence of this is the expansion for h x

h x = h 0 + h 2 x 2 + • • • + kx n log(x) + h n x n + o(x n ). ( 19 
)
This proposition follows (not directly though) from the decomposition of the Ricci tensor of g in terms of h x in the collar neighbourhood Z. Since we shall use it later, we recall some standard computations of Ricci curvatures on a generalized cylinder, see e.g. [START_REF] Bär | Generalized cylinders in semi-Riemannian and Spin geometry[END_REF]. On M := R × N consider a metric g = dt 2 + g t and let

II := -1 2 ∂ t g t = g t (W •, •), W := g -1 t II
be the second fundamental form, respectively the Weingarten operator. Set ν = ∂ t the unit normal vector field to the level hypersurfaces {t = constant}. Then, for U, V tangent vectors to N , the Ricci tensor of g is described by

Ric g (ν, ν) = tr(W 2 ) -1 2 tr(g -1 t ∂ 2 t g t ), Ric g (ν, V ) = V (tr(W )) + δ gt W, V Ric g (U, V ) = Ric gt (U, V ) + 2 W (U ), W (V ) -tr(W ) W (U ), V -1 2 ∂ 2 t g t (U, V ). ( 20 
)
Using these equations, the Einstein equation Ric g = -ng can be restated using the variable t = -log x in terms of the 1-parameter family of endomorphisms A x defined by

g = dt 2 + g t = x -2 (dx 2 + h x ), A x := h -1 x ∂ x h x = 2x -1 (1 + W ) (21) 
as follows:

∂ x Tr(A x ) + 1 2 |A x | 2 = x -1 Tr(A x ), (22) 
δ hx (∂ x h x ) = -d Tr(A x ), x∂ x A x + (1 -n + 1 2 x Tr(A x ))A x = 2xh -1 x Ric hx + Tr(A x )Id. The same equations are valid modulo x ∞ on Poincaré-Einstein ends, ie. if Ric g = -ng + O(x ∞ ).
The coefficients in the asymptotic expansion of h x in ( 19) near {x = 0} can be recursively computed from h 0 until the n th term, and the dependence is local: one has the following formulas

(1) In dimension n = 2, the obstruction tensor k is 0, and the coefficient h 2 can be any symmetric tensor satisfying (see [START_REF] Fefferman | The ambient metric[END_REF]Th 7.4])

Tr h 0 (h 2 ) = -1 2 Scal h 0 , δ h 0 (h 2 ) = 1 2 d Scal h 0 . (23) 
(2) In dimension n > 2, the tensors h 2 is minus the Schouten tensor of h 0 and in dimension n > 4, h 4 is expressed in terms of Schouten and Bach tensors of h 0 (see [START_REF] Fefferman | The ambient metric[END_REF]Eq (3.18)]):

-h 2 = Sch h 0 := 1 n-2 Ric h 0 -1 2(n-1) Scal h 0 h 0 h 4 = 1 4 h 2 2 -1 n-4 B h 0 ( 24 
)
where

B h 0 is the Bach tensor of h 0 if n > 4 and h 2 2 (•, •) := h 0 (H 2 2 •, •) if H 2 is the endomorphism of T N defined by h 2 = h 0 (H 2 •, •).
(3) In dimension n > 4, when h 0 is locally conformally flat, one has k = 0 and

-h 2 = Sch h 0 , h 4 = 1 4 h 2 2 , h 2j = 0 for 2 < j < n 2 . (25) 
See [START_REF] Fefferman | The ambient metric[END_REF]Th 7.4] or [START_REF] Skenderis | Quantum effective action from the AdS/CFT correspondence[END_REF] for a proof. When

h n = 0, the metric g = x -2 (dx 2 + h x ) has constant sectional curvature -1 in a small neighbourhood of x = 0 if h x = h 0 + x 2 h 2 + x 4 h 4 with h 2 , h 4 of (25). When n = 4, one still has h 2 = -Sch h 0 but h 4 is not necessarily 1 4 h 2 2 . (4) When h 0 is an Einstein metric with Ric h 0 = λ(n -1)h 0 , it is easily checked that k = 0 and h 2 = -λ 2 h 0 , h 4 := λ 2 16 h 0 , h 2j = 0 for 2 < j < n 2 . ( 26 
)
When h n = 0, the metric g = (dx 2 + h x )/x 2 with h x := (1 -λx 2 4 ) 2 h 0 is an asymptotically hyperbolic Einstein end in x < x 0 for some small x 0 > 0, see Section 6.2.

2.5.

The conformal class at infinity. By [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF][START_REF] Chrusciel | Boundary regularity of conformally compact Einstein metrics[END_REF], the whole conformal class [h 0 ] of the metric h 0 induced by g on the boundary at infinity (with respect to a given boundary defining function x) can be parametrized by a family of "geodesic" boundary defining functions: Lemma 2.8. Let (M, g) be an odd dimensional AHE manifold or AHE end, of the form (16) near ∂M for some x. Let h 0 be the induced metric at infinity. For any ĥ0 ∈ [h 0 ], there is a neighborhood V of ∂M and a unique boundary defining function x such that x2 g| T ∂M = ĥ0 and |dx| x2 g = 1 in V . The function x has a polyhomogeneous expansion with respect to x and the metric g is of the form (dx 2 + ĥx )/x 2 in a collar near ∂M , where ĥx is a one-parameter family of tensors on ∂M which is smooth in x, xn log(x).

Proof. The existence and polyhomogeneity of x is shown in [START_REF] Chrusciel | Boundary regularity of conformally compact Einstein metrics[END_REF]Lemma 6.1]. The form of the metric in the collar neighborhood induced by x follows for instance from Theorem A in [START_REF] Chrusciel | Boundary regularity of conformally compact Einstein metrics[END_REF]. Since it will be used later, we recall that the proof amounts to seting x = e ω x for some unknown function ω defined on M near N = ∂M which solves near the boundary the equation |dx| 2 x2 h = 1 with ĥ0 = e 2ω 0 h 0 . This leads to the following Hamilton-Jacobi equation in the collar neighbourhood [0, ε) × N of the boundary:

∂ x ω + x 2 (∂ x ω) 2 + |d N ω| 2 hx = 0, ω| N = ω 0 . ( 27 
)
where d N is the de Rham differential on N .

Geometrically, the function x corresponding to ĥ0 yields a particular foliation by hypersurfaces {x = const} diffeomorphic to N near infinity, induced by the choice of conformal representative at infinity. 2.6. Cauchy data for Einstein equation, non-linear Dirichlet-to-Neumann map. By Proposition 2.7, a Poincaré-Einstein end is uniquely determined modulo O(x ∞ ). There is in fact a stronger statement proved by Biquard [START_REF] Biquard | Continuation unique à partir de l'infini conforme pour les métriques d'Einstein[END_REF], based on unique continuation for elliptic equations: Proposition 2.9 (Biquard). An asymptotically hyperbolic Einstein end

([0, ε) x × N, g = dx 2 +hx x 2 ) is uniquely determined by the data (h 0 , h n ) where h x = n/2 j=0 x 2j h 2j +kx n log x+o(x n ).
On a manifold with boundary M , the unique continuation of [START_REF] Biquard | Continuation unique à partir de l'infini conforme pour les métriques d'Einstein[END_REF] also holds true: if two AHE metrics on M agree to infinite order at ∂M , then, near the boundary, one is the pull back of the other by a diffeomorphism of M which is the identity on ∂M .

We will then call (h 0 , h n ) the Cauchy data for the Einstein equation,

h 0 is the Dirichlet datum, h n is the Neumann datum. ( 28 
)
We emphasize that here the pair (h 0 , h n ) is associated to the geodesic boundary defining function of Lemma 2.8 determined by h 0 .

It is of interest to study those pairs (h 0 , h n ) for which there does exist an AHE manifold (M, g) which can be written in a collar neighbourhood [0, ε) x ×∂M under the form g = dx 2 +hx

x 2 with h x = n/2 j=0 x 2j h 2j + kx n log x + o(x n ).
We can define a Dirichlet-to-Neumann map under the assumption that a local existence result for the following Dirichlet problem on M holds: let g 0 be an AHE metric on M and h 0 = (x 2 g 0 ) |T N be a representative of the conformal infinity of g associated to a geodesic boundary defining function x, then there exists a smooth submanifold S ⊂ M(N ) containing h 0 (with N = ∂M ), transverse to the action of C ∞ (N ) on M(N ), such that for any h ∈ S, there is an AHE metric g near g 0 such that

Ric g = -ng, (x 2 g) |∂M = h (29) 
and g depends smoothly on h. The topology here can be chosen to be some C k,α (M ) norms for some k ∈ N and α > 0. Such an existence result has been proved by Graham-Lee [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF] when (M, g 0 ) = (H n+1 , g H n+1 ) where H n+1 is viewed as the unit ball in R n+1 , and has been extended by Lee [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF] to the case where g 0 is AHE with negative sectional curvatures. We can then define a (local) Dirichlet-to-Neumann map

1 near h 0 N : C ∞ (M, S 2 + T * ∂M ) → C ∞ (M, S 2 T * ∂M ), h → h n . ( 30 
)
where h n is the Neumann datum of the metric g satisfying [START_REF] Graham | Extended obstruction tensors and renormalized volume coefficients[END_REF]. Graham [START_REF] Graham | Dirichlet-to-Neumann map for Poincaré-Einstein metrics[END_REF] computes its linearization at the hyperbolic metric in the case n odd and when (M, g 0 ) = (H n+1 , g H n+1 ).

For n odd, this was also studied by Wang [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF] in a general setting: she proved that this linearized operator is a pseudo-differential operator on the boundary and she computed its principal symbol.

3. The renormalized volume in a fixed conformal class 3.1. The renormalized volume. All the results of this section will be stated for AHE manifolds, but it is direct to see that they hold more generally for any complete Riemanian manifold which outside a compact set is isometric to a Poincaré-Einstein end.

To define the renormalized volume, we follow the method introduced by Henningson-Skenderis [START_REF] Henningson | The holographic Weyl anomaly[END_REF], Graham [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF]. The volume form near the boundary is

dvol g = v(x)dvol h 0 dx x n+1 = det(h -1 0 h x ) 1 2 dvol h 0 dx x n+1 . Since Tr(k) = 0, the function v ∈ C ∞ ((0, ε), C ∞ (N )) has an asymptotic expansion of the form v(x) = 1 + v 2 x 2 + • • • + v n x n + o(x n ). ( 31 
)
Definition 3.1. The renormalized volume of and AHE manifold (M, g) with respect to a conformal representative

h 0 of [h 0 ] is the Hadamard regularized integral Vol R (M, g; h 0 ) = FP ε→0 x>ε dvol g . (32) 
where, near ∂M , x is the geodesic boundary defining function such that x 2 g| T ∂M = h 0 . When g is fixed, we consider Vol R (M, g; h 0 ) as a function of h 0 , we shall write it Vol R (M ; h 0 ).

An equivalent definition for Vol R was given by Albin [START_REF] Albin | Renormalizing curvature integrals on Poincaré-Einstein manifolds[END_REF] using Riesz regularization

Vol R (M, h 0 ) = FP z=0 M x z dvol g , z ∈ C ( 33 
)
where Proof. We set h s 0 := h 0 e 2sω 0 for s ≥ 0, then from Lemma 2.8 there exists a unique function ω s such that the geodesic boundary defining function x s associated to h s 0 is given by

x s = e ω s x, ω s = sω 0 + O(xs 2 ). (34) 
Indeed, for all s we have |d log(x s )| 2 g = 1, thus ω s must satisfy

2∂ x ω s = -x((∂ x ω s ) 2 + |d y ω s | 2 hx ), ω s | x=0 = sω 0 .
This is a non-characteristic Hamilton-Jacobi equation which has a unique solution depending smoothly in s on the initial data with ω 0 = 0. Then ω s , ∂ x ω s , ∂ y ω s are of order O(s) and thus ∂ x ω s = O(xs 2 ), which implies that (34) holds. Taking the derivative of ( 33) at s = 0, we obtain using the expansion ( 31)

∂ s Vol R (M, h s 0 )| s=0 = FP z=0 M zω 0 x z v(x)dvol h 0 dx x n+1 = ∂M ω 0 v n dvol h 0 . (35) 
We now make a variation within constant volume metrics in [h 0 ], thus ∂M ω 0 dvol h 0 = 0. We thus conclude that v n = constant (36) is the equation describing a critical point of the renormalized volume functional in the conformal class with constant total volume. Remark 3.3. From Graham-Zworski [START_REF] Graham | Scattering matrix in conformal geometry[END_REF], the following identity holds

∂M v n dvol h 0 = (-1) n 2 2 n-1 n 2 !( n 2 -1)! ∂M Q n dvol h 0 , (37) 
where Q n is Branson's Q-curvature. This integral depends only on the conformal class [h 0 ] and not on h 0 . For locally conformally flat metrics, this is a constant times the Euler characteristic, as proved by Graham-Juhl [START_REF] Graham | Holographic formula for Q-curvature[END_REF].

Remark 3.4. According to Graham-Hirachi [START_REF] Graham | The ambient obstruction tensor and Q-curvature, AdS/CFT correspondence: Einstein metrics and their conformal boundaries[END_REF], the infinitesimal variation of the integral of v n along a 1-parameter family of Poincaré-Einstein ends ([0, ε) × N, g s ) inducing h s 0 on N with ḣ0 := ∂ s (h s 0 ) |s=0 is determined by the obstruction tensor k of h 0 :

∂ s ∂M v n dvol h 0 |s=0 = 1 4 ∂M k, ḣ0 dvol h 0 . (38) 
In fact, we can give a formula for the renormalized volume Vol R (M, e 2ω 0 h 0 ) in terms of ω 0 . Lemma 3.5. Let (M, g) be AHE with conformal infinity

[h 0 ], let h 0 ∈ [h 0 ] be a fixed repre- sentative, let ω 0 ∈ C ∞ (∂M ) and let ω = n 2 j=0 ω 2j x 2j + O(x n+1 )
be the solution of the Hamilton-Jacobi equation |dx/x + dω| 2 g = 1 near ∂M with boundary condition ω| ∂M = ω 0 . The renormalized volume V n (ω 0 ) := Vol R (M, e 2ω 0 h 0 ) as a function of ω 0 is given by 

V n (ω 0 ) = V n (0) + ∂M n/2 i=0 v 2i (h 0 )ω n-2i dvol h 0 where v 2i (h 0 ) ∈ C ∞ (∂M )
+ O(z 2 ) near z = 0, we get Vol R (M, e 2ω 0 h 0 ) = FP z=0 M x z-n e zω v(x) dx x dvol h 0 = Vol R (M, h 0 ) + FP z=0 z M x z-n ω(x)v(x) dx x dvol h 0 = Vol R (M, h 0 ) + Res z=0 M x z-n ω(x)v(x) dx x dvol h 0 = Vol R (M, h 0 ) + ∂M n/2 i=0 v 2i ω n-2i dvol h 0
where in the last equality we have exhibited the residue as the coefficient of

x n in ω(x)v(x)
We mention a similar statement after Theorem 3.1 in [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF].

Let us now give some properties of the ω 2i in the expansion of ω(x) at x = 0:

Lemma 3.6. The function ω solving the equation |dx/x+dω| g = 1 near x = 0 and

ω| x=0 = ω 0 satisfies ω(x) = n/2 i=0 x 2i ω 2i + o(x n ) for some ω 2i ∈ C ∞ (M ) with ω 2 = -1 4 |∇ω 0 | 2 h 0 ω 4 = 1 8 - 1 4 |∇ω 0 | 4 + h 2 (∇ω 0 , ∇ω 0 ) -2h 0 (∇ω 0 , ∇ω 2 ) .
where ∇ denotes the gradient with respect to h 0 . If we replace ω 0 by sω 0 for s > 0 small, for all i > 0 one has as s → 0

ω 2i = - s 2 4i h (2i-2) (dω 0 , dω 0 ) + O(s 3 ). ( 39 
)
where

h -1 x = n/2 i=0 x 2i h (2i) + O(x n log x)
is the metric induced by h x on the cotangent bundle T * ∂M .

Proof. The computation for ω 2 and ω 4 is simply obtained by expanding in powers of x the equation 2∂

x ω = -x((∂ x ω) 2 + |d y ω| 2 h(x)
) and identifying the terms:

n/2 i=0 4ix 2i-1 ω 2i = -x n/2 i=0 2ix 2i-1 ω 2i 2 - n/2 i,j,k=0 x 2(i+j+k)+1 h (2i) (dω 2j , dω 2k ) + o(x n-1 )
where

h -1 x = n/2 i=0 x 2i h (2i) + O(x n log x) if h -1
x is the metric on the cotangent bundle. In particular, we have h (2) (dω 2k , dω 2j ) = -h 2 (∇ω 2k , ∇ω 2j ). Now for [START_REF] Gursky | Volume comparison and the k-Yamabe problem[END_REF], we observe that ω 2i = O(s 2 ) for each i = 0, and so by looking at the terms modulo s 3 in the equation above, only the terms with j = k = 0 appear and we get

n/2 i=0 4ix 2i-1 ω 2i = -s 2 n/2-1 i=0 x 2i+1 h (2i) (dω 0 , dω 0 ) + O(s 3 )
which implies the desired identity.

We notice that if we multiply h 0 by some λ > 0, we can deduce directly the ω 2j terms in the expansion of ω solving |dx/x + dω| 2 g = 1 with ω 0 = 2 log(λ): we get ω = 2 log(λ) and thus

Vol R (M, λ 2 h 0 ) = Vol R (M, h 0 ) + 2 log(λ) ∂M v n (h 0 )dvol h 0 . (40) 
We can now give an expression for the Hessian of ω 0 → Vol R (M, e 2ω 0 h 0 ) at a critical point h 0 , as a quadratic form of ω 0 . Corollary 3.7. Let (M, g) be an (n + 1)-dimensional AHE manifold with conformal infinity (∂M, [h 0 ]). Then for ω 0 ∈ C ∞ (M ) we have

Hess h 0 (V n )(ω 0 , ω 0 ) := ∂ 2 s Vol R (M, e 2sω 0 h 0 ) |s=0 = - n/2 j=1 ∂M v n-2j (h 0 ) 2j h (2j-2) (dω 0 , dω 0 )dvol h 0 where h -1 x = n/2 i=0 x 2j h (2j) + O(x n log x)
is the metric induced by h x on the cotangent bundle T * ∂M , and v 2j (h 0 ) ∈ C ∞ (∂M ) are the coefficients in the expansion (31) of the volume element at ∂M .

Remark that the Hessian of V n depends only on the conformal infinity (∂M, [h 0 ]) of M . Since the positive/negative definiteness of the Hessian of V n = Vol R is entirely characterized by the tensor - 2) we shall call this tensor the Hessian of V n at h 0 and denote it

n/2 j=1 ∂M v n-2j (h 0 ) 2j h (2j-
Hess h 0 (V n ) = - n/2 j=1 1 2j v n-2j (h 0 )h (2j-2) . ( 41 
)
Remark 3.8. We remark that the tensors h (2j-2) are symmetric tensors on T * ∂M and thus Hess h 0 (V n ) is also symmetric. While we were finishing this work, we learnt that this computation also appears in the work of Chang-Fang-Graham [14, eq. (3.6)].

3.2. Computations of v 2 , v 4 , v 6 . To express the renormalized volume functional in dimension 2, 4, 6, we need to compute the volume coefficients v 2 , v 4 , v 6 . This will serve also later for the variation formula for the renormalized volume of AHE metrics. The formulas are already known [START_REF] Graham | Extended obstruction tensors and renormalized volume coefficients[END_REF] (see also [START_REF] Juhl | Families of Conformally Covariant Differential Operators, Q-Curvature and Holography[END_REF]Th 6.10.2] for a proof) but to be self-contained we give a couple of details on how the computations go. We recall first that for a symmetric endomorphism A on an n-dimensional vector space equipped with a scalar product, the elementary symmetric function of order k of A is defined by

σ k (A) = i 1 <•••<i k λ i 1 . . . λ i k (42) 
where (λ 1 , . . . , λ n ) are the eigenvalues of A repeated with multiplicities.

Lemma 3.9. Let ((0, ε) x × N, g = dx 2 +hx x 2 ) be a Poincaré-Einstein end, and H 2j , K the endomorphisms of T N defined by

h x (•, •) = h 0 n j=0 H 2j x 2j + Kx n log(x) •, • + o(x n ).
If v 2j are the volume coefficients in [START_REF] Graham | Holographic formula for Q-curvature[END_REF], one has

v 2 = 1 2 σ 1 (H 2 ) = 1 2 Tr(H 2 ), v 4 = 1 4 σ 2 (H 2 ) = 1 8 (Tr(H 2 ) 2 -Tr(H 2 2 )) v 6 = 1 8 σ 3 (H 2 ) + 1 24(n-4) B h 0 , h 2 , where h 0 (H 2 •, •) = h 2 = -Sch h 0 . In addition, we have 4 Tr(H 4 ) -Tr(H 2 2 ) = 0, 6 Tr(H 6 ) -4 Tr(H 2 H 4 ) + Tr(H 3 2 ) = 0. ( 43 
)
Proof. From ( 21) we obtain modulo O(x 6 )

A x = 2xH 2 + x 3 (4H 4 -2H 2 2 ) + x 5 (6H 6 -6H 2 H 4 + 2H 3 
2 ) + x n-1 K(n log(x) + 1) Taking the trace and using that the obstruction tensor is trace-free (ie. Tr(K) = 0), we get modulo O(x 6 )

Tr(A x ) = 2x Tr(H 2 ) + x 3 (4 Tr(H 4 ) -2 Tr(H 2 2 )) + 6x 5 (Tr(H 6 ) -Tr(H 2 H 4 ) + 1 3 Tr(H 3 2 )) 1 2 x|A x | 2 = 1 2 x Tr(A 2 x ) = 2x 3 Tr(H 2 2 ) + 4x 5 (2 Tr(H 2 H 4 ) -Tr(H 3 2 )) + O(x 6
). Now from [START_REF] Ebin | The space of Riemannian metrics[END_REF], we obtain [START_REF] Juhl | Families of Conformally Covariant Differential Operators, Q-Curvature and Holography[END_REF]. We can expand the volume form (using the expansion of determinant in traces) modulo O(x 7 ) and use ( 43)

det(h -1 0 h x ) = 1 + x 2 Tr(H 2 ) + x 4 -1 4 Tr(H 2 2 ) + 1 2 (Tr(H 2 )) 2 + x 6 1 6 Tr(H 3 2 ) -1 3 Tr(H 2 H 4 ) + 1 6 (Tr(H 2 )) 3 -1 4 Tr(H 2 ) Tr(H 2 
2 ) thus taking the square root and using the expression of H 4 given by [START_REF] Fefferman | The ambient metric[END_REF], we obtain the desired formula for v 2 , v 4 , v 6 . Remark 3.10. If h 0 is a locally conformally flat metric on N , the expression of v 2j (h 0 ) has been computed by Graham-Juhl [START_REF] Graham | Holographic formula for Q-curvature[END_REF]: they obtain

v 2j (h 0 ) = 2 -j σ j (H 2 ), h 2 (•, •) = h 0 (H 2 •, •) = -Sch h 0 (•, •). (44) 
3.3. The renormalized volume in dimension n = 2. Combining Lemma 3.5 with Lemma 3.6 and Lemma 3.9, we obtain:

Proposition 3.11. The renormalized volume functional V 2 (ω 0 ) = Vol R (M, e 2ω 0 h 0 ) on the conformal class [h 0 ] in dimension 2 is given by the expression V 2 (ω 0 ) = V 2 (0) -1 4 ∂M (|∇ω 0 | 2 h 0 + Scal h 0 ω 0 )dvol h 0 . Its Hessian at h 0 is Hess h 0 (V 2 ) = -1 2 h -1 0 .
The critical points of the functional V 2 restricted to the set

{ω 0 ∈ C ∞ (∂M ); ∂M e 2ω 0 dvol h 0 = 1}
are the solutions of the equation Scal e 2ω 0 h 0 = 4πχ(∂M ). We notice that this is the usual functional for uniformizing surfaces, that is, of finding the constant curvature metrics in the conformal class as critical points. When χ(∂M ) < 0, there is existence and uniqueness of critical points by strict convexity of the functional (see e.g [START_REF] Taylor | Partial Differential Equations III[END_REF]). The renormalized volume is maximized at the hyperbolic metric in the conformal class.

It is instructive to recall here the Polyakov formula for the regularized determinant of the Laplacian (see e.g. [56, Eq (1.13)])

3π log(det ∆ e 2ω 0 h 0 ) -3π log(det ∆ h 0 ) = -1 4 ∂M (|∇ω 0 | 2 h 0 + Scal h 0 ω 0 )dvol h 0 .
As a consequence, we deduce Lemma 3.12. Let (N, [h 0 ]) be a closed compact Riemann surface, and let M be a AHE manifold with conformal infinity (N, [h 0 ]). Then the functional

F M : [h 0 ] → R, h → det (∆ h ) exp - Vol R (M, h) 3π is constant.
The constant F M ([h 0 ]), which depends on M and [h 0 ], is computed by Zograf [START_REF] Zograf | Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces[END_REF] for the case where M is a Schottky 3-manifold: M is a handlebody, its interior is equipped with a complete hyperbolic metric and the space of conformal classes [h 0 ] on the conformal infinity ∂M is identified to the Teichmüller space T ∂M of ∂M . The function F M : T ∂M → R + can be expressed in terms of a period matrix determinant on ∂M and the modulus of a holomorphic function on T ∂M .

3.4.

The renormalized volume in dimension n = 4. Combining Lemma 3.5, Lemma 3.6 and Lemma 3.9, we obtain an explicit formula for the functional

V 4 : C ∞ (∂M ) → R, V 4 (ω 0 ) := Vol R (M, h 0 e 2ω 0 ).
Proposition 3.13. The renormalized volume functional V 4 on the conformal class [h 0 ] in dimension 4 is given by the expression

V 4 (ω 0 ) = V 4 (0) + ∂M [ 1 4 σ 2 (Sch h 0 )ω 0 -1 8 (Sch h 0 -Tr h 0 (Sch h 0 )h 0 )(∇ω 0 , ∇ω 0 ) + 1 16 ∆ h 0 ω 0 .|∇ω 0 | 2 h 0 -1 32 |∇ω 0 | 4 h 0 ]dvol h 0 Its Hessian at h 0 is given by Hess h 0 (V 4 )(ω 0 ) = -1 4 ∂M (Sch h 0 (∇ω 0 , ∇ω 0 ) -Tr h 0 (Sch h 0 )|∇ω 0 | 2 h 0 )dvol h 0 = -1 8 ∂M (Ric h 0 -1 2 Scal h 0 h 0 )(∇ω 0 , ∇ω 0 )dvol h 0 .
The critical points of the functional V 4 restricted to the set

ω 0 ∈ C ∞ (∂M ); ∂M e 4ω 0 dvol h 0 = 1
are, as we have seen, the solutions of the equation

σ 2 (Sch e 2ω 0 h 0 ) = ∂M σ 2 (Sch e 2ω 0 h 0 ) dvol e 2ω 0 h 0 = 2π 2 χ(∂M ) -1 16 ∂M |W | 2 h 0 dvol h 0
with χ(M ) the Euler characteristic, W the Weyl tensor of h 0 , and Sch h 0 the Schouten tensor (the last identity coming from Gauss-Bonnet formula).

Metrics with v n constant

Equations of the type v 2k = constant appeared first in the work of Chang-Fang [START_REF] Chang | A class of variational functionals in conformal geometry[END_REF], who proved that for k < n/2, these equations are variational. We will exhibit some cases where the equation v n = constant has solutions. We shall consider either n ≤ 4 or perturbations of computable cases, typically conformal classes containing Einstein manifolds or locally conformally flat manifolds.

First let us give an expression for the linearisation of v n in the conformal class.

Lemma 4.1. Let h 0 be a smooth metric, then for any

ω 0 ∈ C ∞ (M ) ∂ s (e nsω 0 v n (e 2sω 0 h 0 ))| s=0 = d * h 0 (H h 0 (dω 0 )) where H h 0 ∈ C ∞ (N, End(T * N )) is defined by h -1 0 (H h 0 •, •) = Hess h 0 (V n )(•,
•), using the notation [START_REF] Henningson | The holographic Weyl anomaly[END_REF].

Proof. Let (M, g) is a AHE manifold with conformal infinity [h 0 ], then we have seen from [START_REF] Guillarmou | Chern-Simons line bundle on Teichmüller space[END_REF] 

that ∂ s (Vol R (M, e 2sω 0 h 0 )) = N v n (e 2sω 0 h 0 )ω 0 dvol e 2sω 0 h 0 thus ∂ 2 s (Vol R (M, e 2sω 0 h 0 ))| s=0 = N ∂ s (v n (e 2sω 0 h 0 ))| s=0 ω 0 dvol e 2ω 0 h 0 + n N v n (h 0 )ω 2 0 dvol h 0 .
We therefore have

N ∂ s (v n (e 2sω 0 h 0 ))| s=0 ω 0 dvol h 0 = N Hess h 0 (V n )(dω 0 , dω 0 ) -nv n (h 0 )ω 2 0 dvol h 0 . ( 45 
)
Using the symmetry of the tensor Hess h 0 (V n ) as mentionned in Remark 3.8, this quadratic form can be polarized and this provides the desired expression for the linearisation of v n .

This Lemma suggests that v n (e ω 0 h 0 ) depends only on derivatives of order 2 of ω 0 . In fact Graham [29,Th. 1.4] proved a stronger statement, namely that v n (h 0 ) depends only on two derivatives of h 0 .

Using the Nash-Moser implicit function theorem we can deal with perturbations of model cases for which we know that v n is constant. Proposition 4.2. Let N be an n-dimensional compact manifold with a conformal class [h 0 ] admitting a representative h 0 with v n (h 0 ) = N v n (h 0 )dvol h 0 . Assume that Hess(V n ) is a positive (resp. negative) definite tensor at h 0 and that the quadratic form

f → N Hess h 0 (V n )(df, df ) -nv n (h 0 )f 2 dvol h 0 ( 46 
)
is non-degenerate on C ∞ (N ). Then there is a neighbourhood U h 0 ⊂ M(N ) of h 0 such that

S := {h ∈ U h 0 ; v n (h) = N v n (h)dvol h }
is a slice at h 0 for the conformal action of C ∞ (N ) as defined in [START_REF] Bochner | Vector fields and Ricci curvature[END_REF].

Proof. We shall use the Nash-Moser implicit function theorem. We first take a slice S h 0 at h 0 for the conformal action, in order to view a neighbourhood U [h 0 ] ⊂ C(N ) of [h 0 ] as a Fréchet submanifold of M(N ) and a neighbourhood U h 0 in M(N ) as a product space S h 0 × C ∞ (N ): for instance, take the open subset of Fréchet space

B h 0 = {r ∈ C ∞ (N, S 2 N ); Tr h 0 (r) = 0, sup m∈N |r(m)| h 0 < 1};
then the map

Ψ : B h 0 × C ∞ (N ) → M(N ), Ψ(r, ω 0 ) = e 2ω 0 (h 0 + r)
is a tame Fréchet diffeomorphism onto its image and S h 0 := Ψ(B h 0 × {0}) is a slice. Let Φ be the smooth map of Fréchet manifolds

Φ : B h 0 × C ∞ (N ) → C ∞ (N ), Φ(r, ω 0 ) := v n (Ψ(r, ω 0 )) - N v n (Ψ(r, ω 0 ))dvol Ψ(r,ω 0 ) .
where we recall from Remark 3.3 that N v n (h)dvol h is a conformal invariant. The map Φ is a non-linear differential operator and thus is tame in the sense of [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]. Notice that Φ(0, 0) = 0. We compute its differential with respect to the coordinate ω 0 :

DΦ (r,ω 0 ) (0, f ) = ∂ s (v n (e 2sf Ψ(r, ω 0 )))| s=0 .
Using Lemma 4.1 and writing h = Ψ(r, ω 0 ), we therefore have

DΦ (r,ω 0 ) (0, f ) = d * h (H h df ) -nv n (h)f where d * h is the adjoint of d with respect to h. If H h (or equivalently Hess h (V n ))
is positive definite or negative definite, then f → DΦ (r,ω 0 ) (0, f ) is an elliptic self-adjoint differential operator of order 2 acting on C ∞ (N ). If in addition the quadratic form ( 46) is non-degenerate, then by continuity of h → H h and h → v n (h) in C ∞ (N, S 2 N ) and the theory of elliptic differential operators, we deduce that f → DΦ (r,ω 0 ) (0, f ) is an isomorphism on C ∞ (N ) for (r, ω 0 ) in a small neighbourhood of (0, 0) in B h 0 × C ∞ (N ). Moreover the inverse is a pseudodifferential operator of order -2, depending continuously on (r, ω 0 ), which is automatically tame (see for instance [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]Chap II.3]). Therefore we can apply the Nash-Moser theorem and we obtain that there exists a smooth tame map r → ω 0 (r) [START_REF] Marden | The geometry of finitely generated kleinian groups[END_REF] of Fréchet spaces such that Φ(r, ω 0 (r)) = 0, if r is in a small open subset of B h 0 . The slice S is simply the image of r → Ψ(r, ω 0 (r)) for r near 0.

Remark 4.3. Notice that, if we were not interested in the Fréchet structure of the slice, we could instead apply the implicit function theorem in some Hölder C j,α (N ) space with j large enough by using [29, Th. 1.4] which says that ω 0 → v n (e 2ω 0 h 0 ) maps C j,α (N ) to C j-2,α (N ), and then use uniqueness of the solution near the model cases to show that the solution e 2ω 0 h 0 is indeed C ∞ (N ) if h 0 is smooth. The proof amounts essentially to the same argument as Proposition 4.2 except that only the isomorphism of the map f → DΦ (0,0) (0, f ) is needed.

We now apply the existence result of Proposition 4.2 to a couple of cases.

4.1. Einstein manifolds. We now consider the behavior of the renormalized volume in AHE manifolds with a conformal infinity containing an Einstein metric. A prime example is given by the "Fuchsian-Einstein" manifolds defined in the previous section.

Lemma 4.4. Let N be an n-dimensional manifold with a conformal class [h 0 ] that contains an Einstein metric. Then the Einstein representative h 0 ∈ [h 0 ] with Ric h 0 = λ(n -1)h 0 , satisfies

v n (h 0 ) = n! (n/2)! 2 (-λ 4 ) n 2 .
The Hessian of the renormalized volume V n at h 0 , viewed as a symmetric tensor on T * N , is given by

Hess(V n ) = -1 4 -λ 4 n 2 -1 n! (n/2)! 2 h -1 0 . ( 48 
)
The Einstein metric h 0 is a local maximum for Vol R in {h 0 ∈ [h 0 ]; N dvol h 0 = 1} if either λ < 0 or if λ > 0 and n 2 is odd. If λ > 0 and n 2 is even, it is a local minimum. Proof. In all these cases, one has from the expression ( 26)

h 2 = -λ 2 h 0 , h 4 = λ 2 16 h 0 , h 2j = 0 for j > 2, v 2j = C n j (-1) j ( λ 4 ) j , h -1 x = h -1 0 ∞ j=0 (j + 1)( λ 4 ) j x 2j , h (2j) = (j + 1)( λ 4 ) j h -1 0 . (49) 
In particular the Einstein metric

h 0 satisfies v n (h 0 ) = C n n/2 (-1 2 ) n 2 λ n 2
, which is constant. Now Corollary 3.7 gives the expression for the Hessian of Vol R (M, e 2ω 0 h 0 ):

Hess h 0 (V n )(ω 0 ) = -1 2 ( λ 4 ) n 2 -1 n 2 -1 k=0 C n k (-1) k ∂M |∇ω 0 | 2 h 0 dvol h 0 .
Using the binomial formula we get 2

n 2 -1 k=0 C n k (-1) k = -C n n/2 (-1) n 2
, which achieves the computation.

Let us check this is a local maximum in the λ < 0 case, the other cases are similar. One has

V n (ω 0 ) -V n (0) = 1 0 (1 -s)∂ 2 s (Vol R (M, e 2sω 0 h 0 ))ds = 1 0 (1 -s)Hess e 2sω 0 h 0 (V n )(ω 0 )ds.
Now from the formula giving the hessian in Corollary 3.7 and the negativity of (48), we have by continuity that there exists ε > 0 small, k n large and c 0 > 0 such that for all

||ω 0 || C k (N ) ≤ ε and all s ∈ [0, 1] Hess e 2sω 0 h 0 (V n )(ω 0 ) ≤ -c 0 ||dω 0 || 2 L 2 .
This implies that V n (ω 0 ) ≤ V n (0) with equality if and only if ω 0 is constant, but since we restrict to N e nω 0 dvol h 0 = N dvol h 0 = 1, the equality happens only if ω 0 = 0.

The extremals of v n in conformal classes containing Einstein metrics are also considered independently by Chang-Fang-Graham [START_REF] Chang | A note on renormalized volume functionals to appear in Diff[END_REF].

Using this computation and applying Proposition 4.2, we obtain that in a neighbourhood of a conformal class admitting an Einstein metric, the equation v n = constant can be solved except for the case of the canonical sphere. Corollary 4.5. Let [h 0 ] be a conformal class on N admitting a metric h 0 with Ric h 0 = λ(n-1)h 0 = 0, which is not conformal to the canonical sphere. Then, there is a neighbourhood

U h 0 ⊂ M(N ) of h 0 such that S := {h ∈ U h 0 ; v n (h) = N v n (h)dvol h } is a slice at h 0 for the conformal action of C ∞ (N ).
Proof. The quadratic form ( 46) is a non-zero constant times (∆ h 0 -nλ)ω 0 , ω 0 L 2 and using the Lichnerowicz-Obata theorem [START_REF] Obata | Certain conditions for a Riemannian manifold to be isometric with a sphere[END_REF], then ∆ h 0 -nλ has trivial kernel except for the case of the sphere. The result follows from Proposition 4.2.

4.2.

Locally conformally flat metrics. In this case, we can take the AHE metric to be of the form [START_REF] Fischer | The structure of quantum conformal superspace, Global Structure and Evolution in General Relativity[END_REF], which can be rewritten

g = dx 2 + h x x 2 , h x (•, •) = h 0 ((1 + 1 2 x 2 H 2 ) 2 •, •) with H 2 some endomorphism of T N (representing -Sch h 0 ). The metric h -1
x dual to h x has expansion near x = 0 given by

h -1 x = h -1 0 ( n 2 j=0 H 2j •, •) + O(x n+2 ), H 2j = 2 -j (j + 1)(-H * 2 ) j
where H * 2 here denotes the endomorphism of T * N dual of H 2 . Recall by ( 44) that v n (h 0 ) = 2 -n 2 σ n 2 (H 2 ). Lemma 4.6. The Hessian of V n at a locally conformally flat metric h 0 is given by

Hess h 0 (V n ) = 2 -n 2 h -1 0 n 2 -1 j=0 σ j (H * 2 )(-H * 2 ) n 2 -j-1 •, • .
where H * 2 is the dual endomorphism to H 2 defined by h 2 (•, •) = h 0 (H 2 •, •) and σ j (H * 2 ) is the elementary symmetric function of order j of H * 2 , as defined in [START_REF] Hopf | Über Flächen mit einer Relation zwischen den Hauptkrümmungen[END_REF]. If e 1 , . . . , e n is an orthogonal basis of eigenvectors of H * 2 , then

Hess h 0 (V n )| Re j = 2 -n 2 σ n 2 -1 (H * 2 | (Re j ) ⊥ )h -1 0 . (50) 
Proof. The first formula for the Hessian is a direct application of ( 41) and [START_REF] Krasnov | Holography and Riemann surfaces[END_REF], it remains to prove [START_REF] Mazzeo | Elliptic theory of differential edge operators. I[END_REF]. Let λ be the eigenvalue of H * 2 corresponding to e . Then, denoting by F (t) [j] the coefficient of t j in a power series F (t), we compute

n 2 -1 j=0 (-λ ) n 2 -j-1 σ j (H * 2 ) = n 2 -1 j=0 (-λ ) n 2 -j-1 det(1 + tH * 2 ) [j] = n 2 -1 j=0 [(-tλ ) n 2 -j-1 det(1 + tH * 2 )] [ n 2 -1] = [(1 + tλ ) -1 det(1 + tH * 2 ) [ n 2 -1]] = i 1 <•••<i n 2 -1 i• = λ i 1 . . . λ i n 2 -1
which is the claimed formula.

We remark that

n 2 -1 j=0 σ j (H * 2 )(-H * 2 ) n 2 -j-1 is the so called ( n 2 -1)-Newton transform T n 2 -1 (H * 2 ) associated with H * 2 . The fact that ∂ t σ n 2 (A(t)) = T n 2 -1 (A(t)).∂ t A(t)
for a family of symmetric matrices is well-known, see [START_REF] Reilly | On the Hessian of a function and the curvatures of its graph[END_REF]. When the eigenvalues of H * 2 are in the connected component containing (R + ) n inside the positive cone

Γ + n 2 := {λ = (λ 1 , . . . , λ n ) ∈ R n ; σ j (λ) > 0, ∀j = 1, . . . , n 2 } then T n 2 -1 (H * 2
) is positive definite, while when they are in -Γ + n 2

, it is negative definite, see e.g. [START_REF] Caffarelli | The Dirichlet problem for nonlinear second-order el liptic equations. III. Functions of the eigenvalues of the Hessian[END_REF]. In the first case, it is proved in [START_REF] Guan | Some properties of the Schouten tensor and applications to conformal geometry[END_REF] that if σ n 2 (H 2 ) > 0 in the locally conformally flat case, then the manifold has to be of constant positive sectional curvature. On the other hand, when the eigenvalues of H 2 are in -Γ + , there seem to be no existence result for the equation σ n 2 (H 2 ) = const (although there are interesting partial results in Gursky-Viaclovsky [START_REF] Gursky | Fully nonlinear equations on Riemannian manifolds with negative curvature[END_REF]). 4.3. Dimension 4. By Lemma 3.9,the equation v 4 (e 2ω 0 h 0 ) = const is the σ 2 -Yamabe equation, as introduced in the work of Viaclovsky [START_REF] Viaclosvky | Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds[END_REF]. It has solutions in dimension n = 4 under certain ellipticity condition: when the eigenvalues of the Schouten tensor (viewed as an endomorphism via h 0 ) are in the connected component containing (R [START_REF] Chang | An equation of Monge-Ampre type in conformal geometry, and four-manifolds of positive Ricci curvature[END_REF][START_REF] Chang | An a priori estimate for a fully nonlinear equation on fourmanifolds. Dedicated to the memory of Thomas H. Wolff[END_REF] proved that there is a solution ω 0 of v 4 (e 2ω 0 h 0 ) = const. Another proof appears in the work of Gursky-Viaclovsky [39, Cor. 1.2] and in Sheng-Trudinger-Wang [START_REF] Sheng | The Yamabe problem for higher order curvature[END_REF].

+ ) 4 inside Γ + 2 := {λ = (λ 1 , . . . , λ 4 ) ∈ R 4 ; σ 2 (λ) > 0, σ 1 (λ) > 0}, then Chang-Gursky-Yang
We now give a uniqueness result using maximum principle. Proof. Assume there are two solutions. Changing h 0 by a conformal factor we can assume that 0 is a solution and let ω 0 be the other solution, we then have v 4 (h 0 ) = v 4 (e 2ω 0 h 0 ) as N v 4 is a conformal invariant. At the minimum p ∈ N of ω 0 , one has ∇ω 0 (p) = 0. Since Sch e 2ω 0 h 0 = Sch h 0 -2∇ 2 ω 0 + 2dω 0 ⊗ dω 0 -|dω 0 | 2 h 0 h 0 where ∇ 2 ω 0 is the Hessian with respect to h 0 , we deduce by using the expresion of v 4 in Lemma 3.9 that

v 4 (h 0 ) = v 4 (e 2ω 0 h 0 ) = e -4ω 0 v 4 (h 0 ) + σ 2 (B ω 0 ) + 1 2 Sch h 0 -Tr h 0 (Sch h 0 ), ∇ 2 ω 0 h 0 .
where σ 2 (B ω 0 ) is the symmetric function of order 2 in the eigenvalues of the symmetric endomorphism B ω 0 defined by ∇ 2 ω 0 = h 0 (B•, •). At p, the eigenvalues of B ω 0 are non negative, thus σ 2 (B ω 0 ) ≥ 0 there. Moreover, if v 4 (h 0 ) = 0, N (e 4ω 0 -1)dvol h 0 = 0 and thus ω 0 (p) < 0 if ω 0 = 0, which gives 1 -e -4ω 0 (p) < 0. We then obtain, if v 4 (h 0 ) > 0, Sch h 0 -Tr h 0 (Sch h 0 ), ∇ 2 ω 0 h 0 (p) < 0 thus if Sch h 0 -Tr h 0 (Sch h 0 ) is positive definite, we obtain a contradiction with the maximum principle.

General variations of the renormalized volume

We shall now compute the variation of Vol R for a family of Einstein metrics.

5.1. The Schläfli formula. We recall the Schläfli formula proved in [START_REF] Rivin | The Schläfli formula in Einstein manifolds with boundary[END_REF] for Einstein manifolds with boundary and non-zero Einstein constant. For completeness, we give a short proof of this formula arising from the variation formula for scalar curvature, this is similar to [3, Lemma 2.1].

Lemma 5.1 (see [START_REF] Rivin | The Schläfli formula in Einstein manifolds with boundary[END_REF]). Let M be an n+1-dimensional manifold with boundary and g t a family of Einstein metrics on M with H t the mean curvature at ∂M , and II t the second fundamental form at ∂M , computed with respect to the inward-pointing unit normal vector field to ∂M . Let Ric g t = nλ t g t and assume that λ 0 = 0. Then

∂ t Vol(M, g t )| t=0 = - (n + 1) λ 2λ 0 Vol(M, g) - 1 nλ 0 ∂M ( Ḣ + 1 2 ġ, II g )dvol ∂M ( 51 
)
where dot denotes the time derivative at t = 0 and dvol ∂M is the volume form induced by the restriction of g 0 on ∂M , and g = g 0 .

Proof. We use the variation formula of the scalar curvature of a 1-parameter family of Riemannian metrics [6, Theorem 1.174]: Let ν be the inward-pointing unit vector field on ∂M . Integrating (52) times dvol g over M and using Stokes we get

∂ t Scal g t | t=0 = ∆ g Tr g ( ġ) + d * δ g ġ -Ric g , ġ . (52) 
2nλ 0 ∂ t Vol(M, g t )| t=0 = M (∆ g Tr g ( ġ) + d * δ g ġ -n(n + 1) λ)dvol g = -n(n + 1) λVol(M, g) + ∂M (ν(Tr g ( ġ)) + δ g ( ġ)(ν))dvol ∂M .
To compute the right-hand side we reduce to the case where the metric is of the form g t = dx 2 + h t x near the boundary where x, the distance function to the boundary for g t , is independent of t, and h t x are metrics on ∂M depending smoothly on x, t. One way to do that is to pull-back g t by a diffeomorphism ψ t which is the identity on ∂M and constructed as follows: let

φ t : ∂M × [0, ε) → M,
φ t (p, s) := exp g t p (sν t ) be the normal geodesic flow where ν t is the inward-pointing unit normal to ∂M with respect to g t , and then set ψ t to be any diffeomorphism of M extending φ 0 • (φ t ) -1 defined near ∂M . We replace g t by (ψ t ) * g t and remark that all the terms in (51) are invariant by this operation.

We have II

t = -1 2 ∂ x h t x | x=0 and H t = Tr h t 0 (II t ) = -1 2 Tr((h t 0 ) -1 ∂ x h t x )| x=0 .

Since for any family

A = A(x, t) of invertible matrices ∂ x Tr(A -1 ∂ t A) = ∂ t Tr(A -1 ∂ x A), we deduce ν(Tr g ( ġ)) = ∂ x Tr hx ( ḣx )| x=0 = ∂ x Tr(h -1 x ∂ t h t x )| t=0,x=0 = ∂ t Tr((h t 0 ) -1 ∂ x h t x )| t=0,x=0 = -2 Ḣ.
Using that ġ = ḣx , it is easy to see that δ g ( ġ)(ν) = -ġ, II , which concludes the proof. 5.2. Variation of the renormalized volume in arbitrary dimensions. Let g t be a family of asymptotically hyperbolic Einstein metrics on M , and choose a family of boundary defining functions x t . We can pull back g t by a diffeomorphism ψ t so that x t = (ψ t ) * x is a fixed function on M and consider (ψ t ) * g t instead of g t . Clearly Vol R (M, g t ; x t ) = Vol R (M, (ψ t ) * g t ; x) therefore we can assume that x t is independent of t and to simplify notation we will write Vol t R (M ) for Vol R (M, g t ; x). We write g t = (dx 2 + h t x )/x 2 and use the dot notation for ∂ t | t=0 and h x := h 0 x . Regularity Assumption: we assume in this section that g t is a C 1 function of t, near t = 0, with values in the space of smooth metrics on M , and that h t

x is a C 1 function of t with values in the space of conormal polyhomogeneous tensors equipped with the natural topology (i.e., the asymptotic expansions of h t

x at x = 0 are C 1 in t). In dimension n + 1 even, Albin [2, Th. 1.3] and Anderson [3, Th. 0.2] proved Theorem 5.2 (Albin, Anderson). Let g t be a family of AHE metrics on M with n odd and let h t 0 = h 0 + t ḣ0 + o(t) be a C 1 family of representatives of the conformal infinity (∂M, [h t 0 ]) of (M, g t ). Let h n be the Neumann datum of g 0 in the sense of [START_REF] Graham | Dirichlet-to-Neumann map for Poincaré-Einstein metrics[END_REF]. Then

∂ t Vol t R (M )| t=0 = -1 4 ∂M h n , ḣ0 dvol h 0
Here, we study the more complicated case when n even and obtain:

Theorem 5.3. Let g t be a family of AHE metrics on M with n even, satisfying the regularity assumption described above when written under the form g t = (dx 2 + h t x )/x 2 for some fixed x near ∂M . We write h t 0 = h 0 + t ḣ0 + o(t) and let h n be the Neumann datum of g 0 . There exists a symmetric covariant 2-tensor F n formally determined by h 0 , of order n, such that

∂ t Vol t R (M )| t=0 = ∂M G n , ḣ0 dvol h 0 ( 53 
)
where

G n := -1 4 (h n + F n ) satisfies δ h 0 (G n ) = 0 and Tr h 0 (G n ) = 1 2 v n .
Proof. We will use the Schläfli formula for the compact manifold with boundary {x ≤ ε}. The second fundamental form, mean curvature and their variation on the hypersurface {x = ε} are given by the value at x = ε of

II = -1 2 x∂ x (h x /x 2 ) = -x -2 ( 1 2 x∂ x h x -h x ), H = Tr hx (II) = -1 2 Tr hx (x∂ x h x ) -n, Ḣ = 1 2 ḣx , x∂ x h x hx -1 2 Tr hx (x∂ x ḣx ). Let us denote V ol R = ∂ t Vol t R (M )| t=0 . We are interested in computing -n V ol R = 1 2 FP ε→0 x=ε (Tr hx ((x∂ x -1) ḣx ) -1 2 ḣx , x∂ x h x hx ) v x x n dvol h 0 ( 54 
)
where v x dvol h 0 = dvol hx . Viewing symmetric tensors as matrices in local coordinates, we write modulo o(x n )

v x = 2q≤n x 2q v 2q , v 0 = 1 h x = h 0 2j≤n x 2j H 2j + x n log(x)K , H 0 = 1 h -1 x = 2j≤n x 2j H 2j -x n log(x)K h -1 0 , H 0 = 1 ḣx = ḣ0 2j≤n x 2j H 2j + x n log(x)K + h 0 2j≤n x 2j Ḣ2j + x n log(x) K x∂ x h x = h 0 2j≤n 2jx 2j H 2j + nx n log(x)K + x n K (x∂ x -1) ḣx = ḣ0 2j≤n (2j -1)x 2j H 2j + (n -1)x n log(x)K + x n K + h 0 2j≤n (2j -1)x 2j Ḣ2j + (n -1)x n log(x) K + x n K .
Taking the term of degree x n and using Tr(K) = Tr( K) = 0, we get

[v x Tr hx ((x∂ x -1) ḣx )] n = ḣ0 , k + i+j+q= n 2 (2j -1)[Tr(H 2i Ḣ2j ) + Tr(h -1 0 ḣ0 H 2j H 2i )]v 2q (55) [v x ḣx , x∂ x h x ] n = ḣ0 , k + i+j+m+ +q= n 2 2 (Tr(H 2i Ḣ2j H 2m H 2 ) + Tr(h -1 0 ḣ0 H 2j H 2m H 2 H 2i ))v 2q = ḣ0 , k + i+j+m+ +q= n 2 2 (Tr(H 2i Ḣ2j H 2m H 2 )v 2q + i+ +q= n 2 2 Tr(h -1 0 ḣ0 H 2 H 2i ))v 2q (56) 
where in the last line we used j+m=u H 2j H 2m = 0 for all u > 0 . Let us single out the terms in -n V ol R which do not depend formally on h 0 . Since the H 2j , H 2j , v 2j are formally determined by h 0 of order 2j when j < n/2, by Lemma 2.6 we know that there exist R n formally determined by h 0 of order n such that

-n V ol R = 1 2 (n -1)(Tr( Ḣn ) + ḣ0 , h n ) -Tr(h -1 0 ḣ0 H n ) -n 4 ḣ0 , h n + ḣ0 , R n .
But since H n + H n depends formally on h 0 , this reduces to considering terms containing H n , Ḣn and we get that there exists R n formally determined by h 0 of order n such that

-n V ol R = n-1 2 ∂ t Tr h t 0 (h t n )| t=0 + n 4 ḣ0 , h n + ḣ0 , R n . Now we know that Tr h t 0 (h t n
) is formally determined with respect to h t 0 of order n for each t, therefore we have established [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF] with G n = -1 4 (h n + F n ) for some F n formally determined by h 0 of order n.

Let us now show that Tr h 0 (G n ) = 1 2 v n and δ h 0 (G n ) = 0. Let h t 0 = e 2tω 0 h 0 for some function ω 0 ∈ C ∞ (∂M ). We have ḣ0 = 2ω 0 h 0 , and combining [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF] with Lemma (3.5) and (3.6) we get

V ol R = ∂M v n ω 0 dvol h 0 = 2 Tr h 0 (G n )ω 0 dvol h 0
for all ω 0 , and so 2 Tr h 0 (G n ) = v n . It remains to compute the divergence of G n . Let φ t = exp(tV ) be a one-parameter family of diffeomorphisms of M generated by a vector field V such that dx(V ) = 0 near ∂M . Then Vol R (M, (φ t ) * g; x) is independent of t because φ t preserves the regions {x > ε} for any small ε > 0. Therefore from [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF] 

applied to ḣ0 = L V h 0 = 2δ * h 0 V we get 0 = Vol R = ḣ0 , G n = 2 V, δ h 0 (G n ) . Since V | ∂M can be chosen arbitrarily, we conclude that δ h 0 (G n ) = 0.
Although F n has been defined as a function of h 0 when h 0 is the conformal infinity of an Einstein metric, the fact that it is formally determined implies that we can consider F n (h 0 ) for any metric h 0 .

Corollary 5.4. Let (N, h 0 ) be a Riemannian manifold. There exists a tensor F n = F n (h 0 ) formally determined by h 0 , of order n, such that

Tr h 0 (F n ) = -T n -2v n , δ h 0 (F n ) = -D n ( 57 
)
where D n , T n are the formally determined tensors of Proposition 2.7 and v n is the formally determined function defined by the volume expansion in [START_REF] Graham | Holographic formula for Q-curvature[END_REF].

If (h 0 , h n ) is a Poincaré- Einstein end, then δ h 0 (h n + F n ) = 0 and Tr h 0 (h n + F n ) = -2v n .
Proof. Since F n (h 0 ) is formally determined by h 0 , we see by Remark 2.5 that it suffices to prove the result on metrics on the sphere S n . For the round metric h S n on S n , or any other metrics which is the conformal infinity of an AHE metric on the unit ball B n+1 , the conclusion (57) follows directly from Theorem 5.3, more precisely from the last part of its proof. If now h 0 is any metric on S n , we define the metrics h t 0 := th 0 + (1 -t)h S n for t ∈ [0, 1]. By Graham-Lee [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF], for small t ∈ [0, ε], the metric h t 0 is the conformal infinity of some AHE metric g t on B n+1 and we have seen that this implies [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF] 

for h t 0 with t ∈ [0, ε]. But F n (h t 0 ), T n (h t 0
) and v n (h t 0 ) are real analytic in t, therefore by unique continuation we deduce that (57) holds for h 0 = h 1 0 . 5.3. Case n = 2. We do not give full details of the computation, since this case has been analyzed in [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF][START_REF] Guillarmou | Chern-Simons line bundle on Teichmüller space[END_REF]. With the notation of the proof of Theorem 5.3) we have

k = 0, v 2 = 1 2 Tr h 0 (h 2 ) = 1 2 Tr(H 2 ), H 2 = -H 2 , (58) 
Proof. First, notice that T n = 0 if n > 4 and T 4 = λ 2 /4 since T n = Tr h 0 (h n ) depends only on h 0 given a Poincaré-Einstein end with metric at infinity h 0 , and the metric g := x -2 (dx 2 +(1-λx 2 /4) 2 h 0 ) is Poincaré-Einstein end (see Section 6.2 below). Therefore it suffices to prove that F n is proportional to h 0 and the multiplicative constant is deduced directly from (57) and the formula

v n = C n n/2 (-λ 4 ) n 2 of Lemma 4.4. Let A x = h -1 x ∂ x h x = -λx (1-λx 2 /4) Id if h x = (1-λx 2 /4) 2 h 0 . If ([0, ε) x ×N, g t = (dx 2 +h t x )/x 2
) is a one-parameter family of Poincaré-Einstein ends with g 0 = g, then differentiating the first constraint equation in [START_REF] Ebin | The space of Riemannian metrics[END_REF] at t = 0 gives

∂ x F (x) - λx 1 -λx 2 /4 F (x) = 0, F (x) := x -1 Tr( Ȧx ) ∈ C ∞ ([0, ε))
and Ȧx = ∂ t A x | t=0 . In particular

Tr( Ȧx ) = a 0 x exp x 0 λt 1-λt 2 /4 dt (62) 
is determined by a constant a 0 ∈ R.

Using the notations in the proof of Theorem 5.3, we claim that there exists c j , d j ∈ R such that for all j ≤ n/2,

a 0 = 2 Tr( Ḣ2 ), Tr( Ḣ2j ) = c j Tr( Ḣ2 ), Tr( Ḣ2j ) = d j Tr( Ḣ2 ). ( 63 
)
Since for some α k , β j ∈ R such that β 0 = 1, thus an easy induction and (62) prove [START_REF] Skenderis | Quantum effective action from the AdS/CFT correspondence[END_REF].

n/2 j,k=0 x 2(j+k) H 2j H 2k = Id + O(x n+1
Inserting [START_REF] Skenderis | Quantum effective action from the AdS/CFT correspondence[END_REF] in ( 55) and ( 56), and using that v 2q are constant if h 0 is Einstein for q ≤ n/2 by (49), we deduce directly that there exists C ∈ R such that

V ol R = -1 4 h n , ḣ0 + C ∂M Tr( Ḣ2 )dvol h 0 . Since Tr( Ḣ2 ) = ∂ t (Tr h t 0 (h t 2 
))| t=0 and Tr h t 0 (h t 2 ) = C Scal h t 0 , we can use the variation formula (52) for the scalar curvature, integration by parts and the fact that Ric h t 0 = λ(n -1)h t 0 when t = 0 to conclude that ∂M Tr( Ḣ2 )dvol h 0 = C h 0 , ḣ0 for some C ∈ R. If (M, g) is an AHE manifold with conformal infinity containing an Einstein representative h 0 , then the traceless part of G n is the traceless part of the formally undetermined term h n (for the choice of x associated to the metric h 0 ). This achieves the proof.

Cotangent space of conformal structures and quasifuchsian reciprocity in higher dimension

We can now explain how the results of the previous section for hyperbolic manifolds in three dimensions can be used to identify Poincaré-Einstein ends modulo gauge with cotangent bundles to the space of conformal structures. This allows to extend McMullen's quasifuchsian reciprocity, or more generally Kleinian reciprocity [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF], in dimension n + 1. We will work in both even and odd dimensions, but for n even we shall need more hypotheses.

6.1. Assumptions and the slice v n = constant. To get a satisfactory picture where the analogs of the 3-dimensional phenomena can be stated and proved, two technical hypothesis will be necessary. We show below that those hypothesis are satisfied in non-trivial situations.

Like in Section 2.1, we denote by M(N ) the space of smooth metrics on N and by M(M ) the space of polyhomogeneous metrics on M in the sense of Section 2.2 together with its natural Fréchet structure.

We will consider in this section the situation where (some of) the following hypotheses hold. Let h 0 ∈ M(N ) be a fixed metric. Hypothesis 6.1. Fréchet structure: The metric h 0 has no conformal Killing fields and the quotient space T (N ) = G\M(N ) has a Fréchet manifold structure near [h 0 ] ∈ T (N ). Hypothesis 6.2. Slice v n = const: There is a slice S 0 at h 0 for the action of G = D 0 (N ) C ∞ (N ) on M(N ) as defined in [START_REF] Brock | The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores[END_REF], and S 0 is included in the subset of metrics {h ∈ M(N ); v n (h) = N v n (h)dvol h }. Hypothesis 6.3. Einstein filling: If S 0 is a slice at h 0 for the action of G = D 0 (N ) C ∞ (N ) on M(N ), then there is a C 1 map of Fréchet manifolds Ξ : S 0 → M(M ) such that Ξ(h) is asymptotically hyperbolic Einstein with conformal boundary (N, [h]).

Using the existence results for Einstein equation obtained by Biquard or Lee [START_REF] Biquard | Métriques d'Einstein asymptotiquement symétriques[END_REF][START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF] and the result of Corollary 4.5, we obtain Proposition 6.4. Let h 0 ∈ M(N ) be an Einstein metric with negative sectional curvatures and let g 0 ∈ M(M ) be an AHE metric with non-positive sectional curvatures on a manifold M with conformal boundary (N, [h 0 ]). Then Hypothesis 6.1, 6.2 and 6.3 are satisfied if n is even, while Hypothesis 6.1 and 6.3 are satisfied if n is odd. Moreover S 0 can be chosen so that T h 0 S 0 = {r 0 ∈ C ∞ (N, S 2 N ); Tr h 0 (r 0 ) = 0, δ h 0 (r 0 ) = 0}.

Proof. Hypothesis 6.1 comes from the fact that G acts properly since N is not the sphere and there is no conformal Killing field for h 0 since the Ricci curvature is negative (by Yano [START_REF] Yano | On Harmonic and Killing Vector Fields[END_REF]), ie. the isotropy group at h 0 is finite and in fact it is trivial, by a result of Frenkel [START_REF] Frankel | On theorems of Hurwitz and Bochner[END_REF], since we assumed the sectional curvatures to be non-positive.

If S 0 is any given slice at h 0 for the action of G and if g 0 ∈ M(M ) is an AHE metric with non-positive sectional curvatures on M and with conformal boundary [h 0 ], then Hypothesis 6.3 holds, after intersecting S 0 with a small enough neighbourhood of h 0 ; this is proved by Biquard [START_REF] Biquard | Métriques d'Einstein asymptotiquement symétriques[END_REF] and Lee [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF]Theorem A]. In fact, technically speaking, [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF] does not prove it with the topology we need, (i.e. that for which the whole expansion of the metric at the boundary depends in a C 1 fashion on h 0 ), but the arguments used by Biquard in the Kähler-Einstein setting [START_REF] Biquard | Autodual Einstein versus Kähler-Einstein[END_REF] give the right property, in fact it is even simpler in our case. If n is even, we know by Corollary 4.5 that there is a slice S ⊂ M(N ) at h 0 for the conformal action with

S = {h ∈ U h 0 ; v n (h) = N v n (h)dvol h } for some neighbourhood U h 0 ⊂ M(N ) of h 0 .
There is an action by pull-back

Θ : D 0 (N ) × S → {h ∈ M(N ); v n (h) = N v n (h)dvol h }, Θ(φ, h) = φ * h.
The set on the right is a Fréchet submanifold when intersected with a small neighbourhood of h 0 in M(N ). Let us first define a slice S 0 ⊂ S at h 0 for the action Θ in the sense of [START_REF] Brock | The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores[END_REF].

To that aim, we return to the proof of Proposition 4.2 and use the notations there. We define the smooth tame map

Π : B h 0 → S, r → e 2ω 0 (r) (h 0 + r) (64) 
where ω 0 (r) is obtained from (47) by solving Φ(r, ω 0 (r)) = 0. This is a Fréchet chart for S.

The derivative is the tame family of isomorphisms defined on

{ ṙ ∈ C ∞ (N, S 2 N ); Tr h 0 ( ṙ) = 0} DΠ r ( ṙ) = e 2ω 0 (r) ṙ + 2(Dω 0 ) r ( ṙ)Π(r) (65) 
where, from the proof of Proposition 4.2 using the Nash-Moser implicit function theorem, we have that r → (Dω 0 ) r is a tame map into pseudo-differential operator on N of order 0. We take the open neighbourhood B h 0 := {r ∈ B h 0 ; δ h 0 (r) = 0} of the Fréchet space of trace-free/divergence-free tensors with respect to h 0 . We will call S 0 the image by Π of a neighbourhood of h 0 contained in B h 0 ; this is a Fréchet submanifold of S and we are now going to show that it is a slice for the action of D 0 (N ). In that aim, we apply the Nash-Moser inverse function theorem to the restriction Θ 0 :

D 0 (N ) × S 0 → Θ(D 0 (N ) × S 0 ) of Θ to D 0 (N ) × S 0 . The derivative at (φ, h) is (DΘ 0 ) (φ,h) (X, ḣ) = φ * (L X h + ḣ) ∈ T φ * h S
where X ∈ lie(D 0 (N )) is a smooth vector field and ḣ ∈ T h S 0 . Here (φ, h) are in a small neighbourhood of (Id, h 0 ) so that φ * h ∈ S. Now T φ * h S = Im(DΠ Π -1 (φ * h) ). Then we want to find a smooth tame map

((φ, h), ṙ) → (X, ḣ) ∈ lie(D 0 (N )) × T h S 0 so that φ * (L X h + ḣ) = DΠ r ( ṙ)
where Tr h 0 ( ṙ) = 0 and r = Π -1 (φ * h) ∈ B h 0 . Using the chart Π, we translate this into the problem of solving for (X, ṙ0 ) in

DΠ -1 r (L X h) + ṙ0 = DΠ -1 r (φ -1 ) * DΠ r ( ṙ) (66) 
with h = Π(r) and Tr h 0 ( ṙ0 ) = 0, δ h 0 ( ṙ0 ) = 0. Applying δ h 0 , this leads to

δ h 0 DΠ -1 r (L X h) = δ h 0 DΠ -1 r (φ -1 ) * DΠ r ( ṙ) (67) 
First, observe that the map F h : X → δ h 0 DΠ -1 r (L X h) is a pseudo-differential operator on N of order 2 acting on vector fields, depending smoothly in a tame way on h. We now state the following Lemma, the proof of which is defered below the proof of this Proposition. Lemma 6.5. Let h s 0 ⊂ S be a one-parameter smooth family of metrics on N , i.e. with v n (h s 0 ) = N v n (h s 0 )dvol h s 0 , such that h 0 0 = h 0 is Einstein with negative sectional curvatures. Let ḣ0 := ∂ s h s 0 | s=0 and assume that δ h 0 ( ḣ0 ) = 0, then Tr h 0 ( ḣ0 ) = 0. Moreover we have DΠ 0 = Id. We denote by Ψ m (N ) the class of classical pseudo-differential operator of order m on N (acting on vector fields). The operator F h 0 being equal to the elliptic differential operator F h 0 (X) = δ h 0 L X h 0 of order 2, we deduce by smoothness of F h with respect to h that F h ∈ Ψ 2 (N ) is elliptic when ||h -h 0 || H L is small enough (for some L). The operator F h 0 is elliptic self-adjoint and invertible from H 2 to L 2 since there is no Killing field on (N, h 0 ) by [START_REF] Bochner | Vector fields and Ricci curvature[END_REF], therefore F h is also invertible from H 2 to L 2 with inverse an operator

F -1 h ∈ Ψ -2 (N ) and (h, X) → F -1
h (X) is a tame map (by [START_REF] Payne | Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators[END_REF]Th 4.5]). This allows to solve for X in [START_REF] Viaclosvky | Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds[END_REF]. Note that X is uniquely determined, according to the argument we used. Then ṙ0 is obtained by [START_REF] Taylor | Partial Differential Equations III[END_REF], it has Tr h 0 ( ṙ0 ) = 0 by the property of DΠ -1 and it satisfies δ h 0 ( ṙ0 ) = 0 by construction of X solving [START_REF] Viaclosvky | Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds[END_REF]. We can therefore apply the Nash-Moser inverse function theorem to deduce that S 0 is a slice for the D 0 (N ) action on S.

Proof of Lemma 6.5. Here we take a family of Poincaré-Einstein ends g s = (dx 2 + h s x )/x 2 . We use the notation in the proof of Theorem 5.3 and remove the superscript s when s is set to be 0. We are going to show that vn = c n v2 for some c n = 0. To prove that, for the moment we do not assume that v n (h s 0 ) is constant and we simply assume that ([0, ε] × N, g s ) is a Poincaré-Einstein end for s = 0 with g 0 = g.

Using

∂ x v s x = 1 2 v s x Tr h s x (∂ x h s x )
, differentiating this identity with respect to s at s = 0, one has modulo o(x n )

j,k≤ n 2 v2k jγ j x 2k+2j-1 + i,j,k≤n/2 x 2i+2j+2k-1 v 2k j(α j Tr( Ḣ2i ) + β i Tr( Ḣ2j )) = j≤ n 2 2j v2j x 2j-1 ;
notice that we have used that H 2j = α 2j Id, H 2j = β 2j Id for some α 2j , β 2j ∈ R, and γ i are some constants. Then by a straightforward induction and using [START_REF] Skenderis | Quantum effective action from the AdS/CFT correspondence[END_REF], we deduce that v2j = c 2j v2 for some

c 2j ∈ R if 1 ≤ j ≤ n 2 .
To compute c n , we notice that the obstruction tensor k vanishes for an Einstein metric, so

∂ s N v s n dvol h s 0 | s=0 = 1 4 k, ḣ0 = 0 = N vn dvol h 0 + N v n 2 Tr h 0 ( ḣ0 )dvol h 0 and thus c n N v2 = -1 2 v n N Tr h 0 ( ḣ0 ); but since v s 2 = -1 4(n-1) Scal h s 0 , we can use (52) to deduce that N v2 = -1
4 N Tr h 0 ( ḣ0 ), and since Tr h 0 ( ḣ0 ) can be chosen so that its integral is not 0, we obtain that c n = 2v n . Now we come back to our setting where g s is AHE with δ h 0 ( ḣ0 ) = 0. Since vn = 2v n v2 and v n = 0 (by Lemma 4.4), we deduce from [START_REF] Melrose | Manifolds with corners, book in preparation[END_REF] vn = 0 ⇐⇒ (∆ -λ(n -1)) Tr h 0 ( ḣ0 ) = 0 ⇐⇒ Tr h 0 ( ḣ0 ) = 0 if Ric h 0 = λ(n -1)h 0 . This concludes the first part of the proof since vn = 1 4 k, ḣ0 = 0 if v n (h s 0 ) = N v n (h s 0 )dvol h s 0 . Let us finally show that DΠ 0 = Id where Π is defined in [START_REF] Takhtajan | Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography[END_REF]. Let ṙ0 be divergence-free and trace free with respect to h 0 , then by the discussion above, we have (Dv n ) h 0 (DΠ 0 ( ṙ0 )) = 0 = (Dv 2 ) h 0 (DΠ 0 ( ṙ0 )) and by [START_REF] Takhtadzhyan | On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces[END_REF], we have also have DΠ 0 ( ṙ0 ) = ṙ0 + 2(Dω 0 ) 0 ( ṙ0 )h 0 . By [START_REF] Melrose | Manifolds with corners, book in preparation[END_REF] we deduce that (∆ h 0 -λn)(Dω 0 ) 0 ( ṙ0 ) = 0 and thus DΠ 0 ( ṙ0 ) = ṙ0 . If now X is a vector field so that Tr h 0 (L X h 0 ) = 0, we set φ t = e tX and write φ * t h 0 = Π(r t ) for some r t with Tr h 0 (r t ) = 0. Then, differentiation gives L X h 0 = DΠ 0 ( ṙ) and since Π(r t ) = e 2ω 0 (rt) (h 0 + r t ), we also deduce L X h 0 = DΠ 0 ( ṙ) = 2(Dω 0 ) 0 ( ṙ)h 0 + ṙ. Taking the trace with respect to h 0 , we obtain 2(Dω 0 ) 0 ( ṙ) = 0 and ṙ = L X h 0 = DΠ 0 (L X h 0 ). Since any trace free tensor ṙ can be decomposed as a sum L X h 0 + ṙ0 , this achieves the proof that DΠ 0 = Id. 6.2. Examples. We give two examples where these hypotheses are satisfied.

The case n = 2. This is our archetypal motivation. We consider here a 3-manifold M which admits a convex co-compact hyperbolic metric -this is the same, in dimension 3, as an AHE metric. Then N = ∂M is the disjoint union of a finite set of closed surfaces of genus at least 2. The classical Ahlfors-Bers theorem [1, 5], extended by Marden [START_REF] Marden | The geometry of finitely generated kleinian groups[END_REF][START_REF] Marden | Deformation of Kleinian groups, Chap. 9, Handbook of Teichmüller theory[END_REF], gives the map Φ of Hypothesis 6.3, for any choice of slice S 0 (in fact the map Φ is well defined on Teichmüller space in this case). Moreover, we have seen that v 2 = -1 4 Scal h 0 , so given a metric h 0 on N = ∂M , it has v 2 = -πχ(N ) if and only it has constant curvature. Since there is a unique constant curvature metric with volume 1 on each connected component of ∂M , Hypothesis 6.2 is also satisfied.

Fuchsian-Einstein manifolds. We now recall a particularly simple type of AHE manifolds. Let (N, h 0 ) be a closed Einstein manifold with Ric h 0 = -(n -1)h 0 . Its conformal class will be denoted [h 0 ] as before.

We consider the product M = R × N , with the warped product metric:

g := dt 2 + cosh 2 (t)h 0 . (68) 
We will call Fuchsian a Riemannian manifold of this type, the reason being that, for n = 2, we find precisely the Fuchsian hyperbolic 3-manifolds, that is, quotients of H 3 by co-compact Fuchsian groups Γ ⊂ PSL 2 (R) → PSL 2 (C), or equivalently hyperbolic 3-manifolds which are topologically the product of a surface of genus at least 2 by an interval, and which contain a closed totally geodesic surface.

It follows directly from [START_REF] Haro | Holographic reconstruction of space time and renormalization in the AdS/CFT correspondence[END_REF] that Ric g = -ng. To prove that (M, g) is actually AHE, set x = 2e -|t| away from t = 0. In this new variable,

g = dx 2 x 2 + 1 + 1 4 x 2 x 2 h 0 ,
so g is AHE. The subset corresponding to t = 0 is a closed totally geodesic hypersurface since the warping function is even. Write g = dt 2 +f 2 (t)h 0 with f (t) = cosh(t). Let v, w be some (t-independent) vector fields on N and let V := f -1 v, W := f -1 w and T = ∂/∂t, then one has by a direct computation

∇ T T = 0, ∇ V T = f -1 f V, ∇ T V = 0, ∇ V W = f -2 ∇ N v w -f -1 f v, w h 0 T. (69) This implies for X, Y tangent to N R X,T T = -X , R X,Y T = 0. ( 70 
)
Moreover, for X, Y, Z, W tangent to N ,

R(X, Y )Z, W g = R h 0 (X, Y )Z, W g - (f ) 2 f 2 ( Y, Z g X, W g -X, Z g Y, W, g ) (71) 
where R h 0 is the Riemann tensor on (N, h 0 ), showing in particular that if h 0 has non-positive sectional curvature, then g also has non-positive sectional curvature. The conformal boundary of M is the disjoint union of two copies of (N, [h 0 ]), one corresponding to t = -∞ and the other to t = ∞. We call these two components of the conformal boundary (N ± , [h 0 ]).

We summarize the discussion in the Lemma 6.6. Let (N, h 0 ) be a closed Einstein manifold with non-positive sectional curvatures and negative Ricci curvature, and let M = N × R be endowed with the warped product metric g = dt 2 + cosh 2 (t)h 0 . Then g satisfies the assumptions of Proposition 6.4.

6.3.

Poincaré-Einstein ends as cotangent vectors to conformal structures. We then use the description in Section 2.1: T (N ) correspond to the quotient of the space of metrics M(N ) by the group C ∞ (N ) D 0 (N ) which is the semi-direct product of the group of conformal transformations by the group of diffeomorphisms of N isotopic to the Identity, or equivalently it is the space of conformal classes up to diffeomorphisms isotopic to the Identity. We will work near a metric h 0 ∈ M(N ) where T (N ) can be locally represented by a slice.

By the discussion of Section 2.1, T * [h] T (N ) can be identified with the space of trace-free and divergence-free (for h) symmetric 2-tensors on ∂M .

Let E be the space of Poincaré-Einstein ends (with conformal boundary N ), i.e. the set of products N ×(0, ε) x equipped with a metric g = (dx 2 +h x )/x 2 satisfying Ric g = -ng+O(x ∞ ). The group D 0 (N ) acts naturally on E by φ.g = (dx 2 + (φ -1 ) * h x )/x 2 where (φ -1 ) * h x is just the pull-back of h x by φ -1 , viewed as a metric on N . The group C ∞ (N ) also acts on E as follows: ω 0 .g := (dx 2 + ĥx )/x 2 where x is the geodesic boundary defining function associated to the conformal representative e 2ω 0 h 0 , in the sense of Lemma 2.8. This induces an action of C ∞ (N ) D 0 (N ) by (ω 0 , φ).g := ω 0 .(φ.g). This group action corresponds to the action of the of those diffeomorphisms which map a Poincaré-Einstein end to another one: this is the natural gauge group of E.

Case n odd. We observe that the action of an element (f, φ) ∈ C ∞ (N ) D 0 (N ) on a Poincaré-Einstein end g transforms the pair (h 0 , h n ) in the expansion of g into the pair (e 2ω 0 (φ -1 ) * h 0 , e (2-n)ω 0 (φ -1 ) * h n ) in the expansion of (ω 0 , φ).g. This is easy to show: the D 0 (N ) action is clear, as for the conformal action, it comes from the fact that h n is the coefficient of the first odd power of x in the expansion of g and that the geodesic boundary defining function x associated to e 2ω 0 h is of the form x = xe ωx with ω x an even function of x up to O(x n+2 ) (see for e.g. Lemma 2.1 in [START_REF] Guillarmou | Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds[END_REF] and its proof). Notice that the action (f, φ).g corresponds exactly to the action ( 13) of (ω 0 , φ) on T * M(N ) if we view (h 0 , h n ⊗ dvol h 0 ) as an element in T * T (N ) (here h n is a divergence-free trace-free tensor). We therefore deduce Proposition 6.7. Let n be odd and T (N ) be the space of conformal structures on N , as defined by [START_REF] Biquard | Autodual Einstein versus Kähler-Einstein[END_REF]. Let [h 0 ] ∈ T (N ) be such that T (N ) has a Fréchet manifold structure near [h 0 ], then the space G\E of Poincaré-Einstein ends, up to the gauge group G = C ∞ (N ) D 0 (N ), identifies naturally to the cotangent space T * T (N ) of the set of conformal structures.

Case n even. In even dimension, the pairs (h 0 , h n ) representing a Poincaré-Einstein ends are not identified directly to an element in T * [h 0 ] T (N ) as for n odd. Indeed, it is easy to verify that for a change of conformal representative ĥ0 = e 2ω 0 h 0 ∈ [h 0 ], the formally undetermined term ĥn in the end is of the form ĥn = e (2-n)ω 0 h n +P (ω 0 , h 0 ) where P is some non-linear differential operator. Moreover h n is neither trace-free nor divergence-free with respect to h 0 . However, Theorem 5.3 and Corollary 5.4 tell us that if h 0 satisfies v n (h 0 ) = N v n (h 0 )dvol h 0 then there is a formally determined tensor F n = F n (h 0 ) such that the trace-free part G

• n = G n -vn 2n h 0 of G n = -1 4 (h n + F n ) is divergence-free.
By the description ( 14) of T * T (N ) in Section 2.1, we can thus see G • n = G • n ⊗ dvol h 0 as a cotangent vector at h 0 . We then obtain Proposition 6.8. Let n be even and let [h 0 ] ∈ T (N ) so that T (N ) has a Fréchet structure near [h 0 ] and h 0 satisfies Hypothesis 6.3. Then we can identify the cotangent space T * T (N ) of the set of conformal structures to the space G\E of Poincaré-Einstein ends as follows: if h ∈ S 0 and r ∈ C ∞ (N, S 2 N ) with Tr h (r) = 0, δ h (r) = 0, we assign to the cotangent data (h, r ⊗ dvol h ) ∈ T *

[h] T (N ) the Poincaré-Einstein end (h, -4r -F n (h) -2vn(h) n h). We recall the example of dimension n = 2. In this case, N is a closed surface of genus at least 2, and E is the space of hyperbolic ends on N × (0, ∞). Hyperbolic ends on N × (0, ∞) are in one-to-one correspondence to complex projective structures on N . Let CP the space of complex projective structures on N . Given σ ∈ CP, one can consider the underlying complex structure c, and the Fuchsian complex projective structure σ 0 obtained by applying Riemann components, N + and N -. We denote by M(N ± ) and T (N ± ) the space of Riemannian metrics and the space of conformal structures on N ± , and we assume that Hypothesis 6.1, 6.3 apply and Hypothesis 6.2 applies on N + , N -separately with v n = 0, i.e. S 0 = S - 0 × S + 0 . Given h = (h -, h + ) ∈ S 0 , let N + Ξ (h) ∈ T * h + T (N + ) and N - Ξ ∈ T * h -T (N -) be N ± component of N Ξ (h). For fixed h -we have a section N + Ξ (h -, •) of T * T (N + ), while for fixed h + we have a section N Ξ (•, h + ) of T * T (N -).

For fixed h = (h -, h + ), we now consider the linear maps

φ h + : T h -S - 0 → T * h + T (N + ), v -→ (dN + Ξ ) h (v -, 0), φ h -: T h + S + 0 → T * h -T (N -), v + → (dN - Ξ ) h (0, v + ). Proposition 6.13. φ h -and φ h + are adjoint.
Proof. This is simply a particular case of Corollary 6.12.

7. The Dirichlet-to-Neumann map for the Fuchsian-Einstein case and Hessian of the renormalized volume

In this last section we compute the Hessian of the renormalized volume at a Fuchsian-Einstein metric (M = R × N, g), when n is odd, and when n = 2, 4. In the latter case we will consider the renormalized volume as a function on the slice S ⊂ M(N ) of metrics satisfying v n = constant, Vol(N ) = 1 near h 0 Einstein with negative Ricci curvature.

7.1. Hessian of Vol R at the Fuchsian locus when n = 2. It is instructive to do first the computation for n = 2. Let g = dt 2 + cosh(t) 2 h 0 be a Fuchsian metric on M = N × R t for a hyperbolic surface (N, h 0 ). The conformal boundary consists of (M, g) is ∂M = N + N - (corresponding to t → ±∞) where each N ± is N equipped with the conformal class of h 0 . The geodesic boundary defining function associated to h 0 is x := 2e -|t| near t = ±∞; the metric g takes the form near ∂M g = x -2 (dx 2 + h 0 + 1 2 x 2 h 0 + 1 16 x 4 h 0 ) as x → 0. We have the following result (cf. [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF]): Proposition 7.1. Let h 0 be a hyperbolic metric on a Riemann surface N with genus ≥ 2. We identify Teichmüller space T (N ) of N with a slice of hyperbolic metrics, with tangent spaces at each point the space of divergence-free/trace-free tensors. Let Φ : h -→ Φ(h -) be the Bers map sending a hyperbolic metric h -∈ T (N ) on N to the quasifuchsian hyperbolic metric on N × R t with conformal boundary h

0 at N + , h -at N -. Then the map V h 0 : h -→ Vol R (M, Φ(h -); (h 0 , h -)
) has a unique critical point at h -= h 0 on T (N ) and the Hessian there is

Hess h 0 (V h 0 )(k) = 1 8 N |k| 2 h 0 dvol h 0 , k ∈ T h 0 T (N ).
Proof. The fact that the Fuchsian metric g is a critical point is a consequence of the fact that the trace-free part G • 2 of G 2 is 0 by [START_REF] Reilly | On the Hessian of a function and the curvatures of its graph[END_REF]. To see that it is the unique critical point, we claim that for a critical quasifuchsian metric g = Φ(h -), the trace-free part G • 2 of G 2 at both conformal boundaries is 0, which means that the 2 hyperbolic ends are of the form x -2 (dx 2 + (1 + x 2 4 ) 2 h ± ) for h + = h 0 and h -some hyperbolic metric; thus the quasifuchsian metric g would have two different embedded totally geodesic surfaces corresponding to x = 2 if h + = h 0 , and this is not possible since it would mean that the fundamental group π 1 (N ) ⊂ PSL 2 (C) preserves two different hyperbolic planes in H 3 .

Next we compute the Hessian. We deform g by a 1-parameter family of quasifuchsian metrics g s by means of a divergence-free/trace-free tensor k as follows:

g s := dt 2 + e 2t h 0 + h s 2 + 1 4 e -2t (h s 2 ) 2 , h s 2 = 1 2 h 0 + sk.
This amounts to changing the conformal class on N -only. We denote conformal representatives in the conformal boundary by pairs (h s + , h s -) corresponding to the components N ± . For small s, the expression for g s makes sense for all t ∈ R; at N + , x induces the conformal representative h s + = h 0 and at N -one has h

s -= 4(h s 2 ) 2 since the metric near t = -∞ is g s = x -2 (dx 2 + h s -+ x 2 h s 2 + x 4 h s 4 
). Notice that h 0 -= h 0 is hyperbolic, but for other values of s it is not. The variation formula from Section 5.3 gives for s near 0 (with ḣs

-= ∂ s h s -) -4∂ s Vol R (M, g s ; (h 0 , h s -)) = N ḣs -, h s 2 -tr h s -(h s 2 )h s -) h s -dvol h s -. We have h -:= h 0 -= h 0 , ḣ-:= ḣ0 -= 4k, ∂ 2 s h s -| s=0 = 8k 2 , tr h s -(h s 2 ) = 1 + O(s 2
), and we compute (with the dot notation for 

∂ s | s=0 ) -4∂ 2 s Vol R (M, g s ; (h 0 , h s -))| s=0 = ḣ-, ḣ2 -1 2 ∂ 2 s h s -| s=0 , h 0 = 0. We
ωs 0 dvol h s -= 4s N |k| 2 h 0 dvol h 0 + O(s 2 ). Since Scal h s -= -2tr h s -(h s 2 ) = -2 + O(s 2 ), it follows that ω s 0 = 1 2 s 2 α + o(s 2 ) for some α with N α = 4 N |k| 2 h 0 dvol h 0 . Proposition 3.11 shows that Vol R (M, g s ; (h 0 , ĥs -)) = -1 4 M (|∇ω s 0 | + Scal h s -ω s 0 )dvol h s -. The only term of order 2 which survives is Vol R (M, g s ; (h 0 , ĥs -)) = s 2 N |k| 2 h 0 dvol h 0 + o(s 3 ).
This computes the Hessian of the renormalized volume at (h 0 , h 0 ) in the direction (0, 4k).

7.2. Higher dimensions. In this Section we compute the Hessian of Vol R at the Fuchsian-Einstein metric for n = 4 and for n odd.

Organisation of the computation. We divide the computation of the Hessian in 6 parts. In Part 0), we start by computing the second variation of Vol R at the Fuchsian-Einstein metric in terms of variation of the h n and F n terms. We then need to compute ḣn and Ḟn in order to compute the Hessian. The local term Ḟn is not known for general n even, but it can be computed explicitly for n = 4, we will start by this computation in Part 1). The non-local term ḣn can be computed by considering the asymptotics of solutions of the linearization of Einstein equation: indeed, the variation ġ = ∂ s g s | s=0 of Einstein metrics lives in the kernel of the linearized Einstein operator at s = 0 if g s is a smooth family of Einstein metrics. We use Bianchi gauge in order to get an elliptic problem and Part 2) describes this Bianchi gauge condition. In Part 3), we describe the Einstein linearized equation in Bianchi gauge and give the expression of the linearized operator for a warped product metric (including the Fuchsian-Einstein setting). In Part 4), we use the spectral decomposition of the linearized Einstein operator on (N, h 0 ) (the compact basis of the warped product M = R t × N ) to compute the solutions of the linearized Einstein equation in Bianchi gauge. This is done in Proposition 7.6 and allows to give an expression of ḣn in dimension n odd or n = 4. In Part 5) we conclude by a computation of the variation of the obstruction tensor for all n even and by the properties of the Hessian of Vol R when n is odd and when n = 4. 0) Second variation of the volume. Let us consider a family of AHE metrics g s (for s near 0) on M = R t × N with N compact and g 0 = g with g = dt 2 + cosh 2 (t)h 0 where Ric h 0 = -(n -1)h 0 . The conformal infinity of (M, g) is ∂M = N + N -where each N ± is N equipped with the conformal class of h 0 . Notice that x := 2e -|t| , defined outside t = 0, is the geodesic boundary defining function associated to the conformal representative h 0 on ∂M . When n is even, we choose (for s near 0) the smooth family h s 0 of metrics on ∂M so that v n (h s 0 ) = 0 is constant, Vol(∂M, h s 0 ) = Vol(∂M, h 0 ) and [h s 0 ] is the conformal infinity of (M, g s ); this is possible by Proposition 6.4, moreover we can choose the variation h s 0 so that Tr h 0 ( ḣ0 ) = 0 and δ h 0 ( ḣ0 ) = 0. Notice that a priori the volume of (∂M, h 0 ) is not equal to 1.

When n is odd, Theorem 5.2 gives

∂ s Vol R (M, g s ; h s 0 ) = -1 4 h s n , ∂ s h s 0 L 2 and since h n = 0 at s = 0, ∂ 2 s Vol R (M, g s )| s=0 = -1 4 ḣn , ḣ0 L 2 . ( 73 
) For n even, by Theorem 5.3 we have ∂ s Vol R (M, g s ; h s 0 ) = G s n , ∂ s h s 0 L 2 and Tr h s 0 (G s n ) = 1 2 v n (h s 0 ) is constant, it follows that ∂ s Vol R (M, g s ; h s 0 ) = (G s n ) • , ∂ s h s 0 where (G s n ) • is the trace-free part of G s n , which vanishes at s = 0 by Lemma 5.5. Hence ∂ 2 s Vol R (M, g s ; h s 0 )| s=0 = Ġ• n , ḣ0 L 2 where Ġ• n := ∂ s [(G s n ) • ]| s=0 . Moreover since Tr h s 0 (G s n ) = 1 2 v n (h s 0 ), ∂ 2 s Vol R (M, g s ; h s 0 )| s=0 = Ġn , ḣ0 L 2 -1 2n v n | ḣ0 | 2 L 2 -1 2n N vn Tr h 0 ( ḣ0 )dvol h 0 = Ġn , ḣ0 L 2 -1 2n v n | ḣ0 | 2 L 2 . (74) 
Now, if we want to use the normalization of Vol R with the conformal representatives to be of volume 1, we let λ = (Vol(∂M, h 0 )) -1/n and consider λ 2 h s 0 which indeed satisfies Vol(∂M, λ 2 h s 0 ) = 1. By [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF], we obtain

∂ s Vol R (M, g s ; λ 2 h s 0 ) = ∂ s Vol R (M, g s ; λ 2 h s 0 ) + 2 log(λ) ∂M v n (h s 0 )dvol h s 0 .
Using the variation formula [START_REF] Gursky | Fully nonlinear equations on Riemannian manifolds with negative curvature[END_REF] for ∂M v n (h s 0 ) and the fact that the obstruction tensor k h s 0 of h s 0 vanishes at s = 0, we deduce using (74)

∂ 2 s Vol R (M, g s ; λ 2 h s 0 )| s=0 =∂ 2 s Vol R (M, g s ; λ 2 h s 0 )| s=0 + 1 2 log(λ) ∂M dk h 0 . ḣ0 , ḣ0 dvol h 0 = Ġn , ḣ0 L 2 -1 2n v n | ḣ0 | 2 L 2 + 1 2 log(λ) ∂M dk h 0 . ḣ0 , ḣ0 dvol h 0 (75)
1) Variation of the local term F n when n = 4. Since -4G n = h n + F n where F n is local in terms of h 0 , we have to compute the variation Ḟn . In general even dimension n, we do not have a formula for F n , thus we will restrict to n = 4. Recall that from Proposition 6.4 we have assumed

Tr h 0 ( ḣ0 ) = 0, δ h 0 ( ḣ0 ) = 0. ( 76 
)
Using this, we compute Ḟn , ḣ0 for n = 4.

Lemma 7.2. In dimension n = 4, assuming (76), we have

Ḟ4 , ḣ0 L 2 = ( 1 8 -v 4 )| ḣ0 | 2 L 2 + 1 2 k, ḣ0 L 2 , Tr h 0 ( Ḟ4 ) = 0.
Proof. We recall that

F s 4 = -1 2 (h s 2 ) 2 + 1 4 Tr h s 0 (h s 2 )h s 2 -v s 4 h s 0 + 1 2 k s . Using that h 2 = 1 2 h 0 and Scal h 0 = -12, we obtain Ḟ4 , ḣ0 = -1 48 Ṡcal, ḣ0 + ( 1 8 -v 4 )| ḣ0 | 2 + 1 2 k, ḣ0
. Moreover by [START_REF] Melrose | Manifolds with corners, book in preparation[END_REF] and the fact that Tr h 0 ( ḣ0 ) = 0 and δ h 0 ( ḣ0 ) = 0, we have Ṡcal = 0. Similarly, using v4 = 0, Tr h 0 ( k) = 0, and that Tr h 0 ( ḣ2 ) = 2 v2 is a multiple of Ṡcal = 0, we easily see that the trace of Ḟ4 is 0.

2) Bianchi gauge condition. Let us define ġ := ∂ s g s | s=0 , which solves the linearized Einstein equation. Since this equation is not elliptic due to gauge invariance (by diffeomorphism actions) we have to fix a gauge, as is well known in the study of the Einstein equation. We shall use Bianchi gauge: using for instance Proposition 4.5 in [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF], there exists a smooth vector field X on M so that q := ġ + L X g solves δ g (q) + 1 2 d Tr g (q) = 0 (77) and q has an asymptotic expansion q = x -2 (q 0 + j≤n q j x j + x n log(x)q n,1 ) + o(x n ) as x → 0 for some x-independent tensors q j , q n,1 on [0, ε) x × N and q 0 = ḣ0 , q n = ḣn + T n-1 ḣ0 (78) with T n-1 a differential operator of order n -1. We notice from [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF] that X is the vector field dual to the form ω solving

(∆ g + n)ω = -2δ g ( ġ) -d Tr g ( ġ). ( 79 
)
where ∆ g = ∇ * ∇. In dimension n = 4, we compute q 4 : Lemma 7.3. Let n = 4, then assuming (76), we have for q defined by (77)

q = ġ + o(x 4 ),
where the error o(x 4 ) is with respect to the norm induced by g.

Proof. In this proof, all error terms are measured with respect to the metric g. First, since Tr h 0 ( ḣ0 ) = 0, Tr h 0 ( ḣ2 ) = Ṡcal = 0 and Tr h 0 ( k) = 0 (since k = 0 for Einstein manifold and Tr h s 0 (k s ) = 0 for all s), we have modulo o(x 4 ) Tr g ( ġ) = x 4 Tr h 0 ( ḣ4 ), d Tr g ( ġ) = 4x 4 Tr h 0 ( ḣ4 ) dx x . For the divergence, we use formula (83) and δ h 0 ( ḣ0 ) = 0, we get modulo o(x 4 ) (we use x = 2e -|t| ) δ g ( ġ) = x 4 Tr h 0 ( ḣ4 ) dx x + x 2 δ h 0 ( ḣ2 ). But since Ṡcal = 0, δ h s 0 (h s 0 ) = 0 and δ h s 0 (Ric h s 0 -1 2 Scal h s 0 ) = 0 we have δ h 0 ( ḣ2 ) = 1 2 δ(Ric h 0 -1 2 Scal h 0 ) = 3 2 δ(h 0 ) = -3 2 δ( ḣ0 ) = 0. where δ = ∂ s δ h s 0 | s=0 . Therefore modulo o(x 4 ) -2δ g ( ġ) -d Tr g ( ġ) = -6x 4 Tr h 0 ( ḣ4 ) dx x . Now by Theorem 5.3, Tr h 0 ( ḣ4 ) + Tr h 0 ( Ḟ4 ) = -2 v4 = -1 2 k, ḣ0 = 0 thus Tr h 0 ( ḣ4 ) = 0 by Lemma 7.2. We now use Section 4 in [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF] and refer the reader to that paper for details: the construction of [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF] (based on an approximate solution using indicial equations and the correction using the Green's function of ∆ g + 4 on 1-forms on M ) yields that there is a polyhomogeneous form ω = o(x 4 ), satisfying (∆ g + 4)ω = -2δ g ( ġ) -d Tr g ( ġ). A straightforward computation gives that if X is the dual vector field defined by g(X, •) = ω, then L X g = o(x 4 ).

3) Linearized Einstein operator for warped products. We do not put restriction on n in this Part. Now that q is in the kernel of the Bianchi operator δ g + 1 2 d Tr g , we see by linearizing the Einstein equation that q solves L g q := (∇ * ∇ -2 R)q = 0 (80

)
where R is the operator acting on symmetric 2 tensors defined by

( Rq)(Y, Z) = - i,j R Y,E i Z, E j q(E i , E j )
if (E j ) j is an orthonormal basis for g and R the Riemann tensor of g. Notice that if u is a function, then L g (ug) = ((∆ g + 2n)u)g. Since moreover L g maps trace-free tensors to tracefree tensors, we deduce that (∆ g +2n) Tr g (q) = 0. From the work of Mazzeo [START_REF] Mazzeo | Elliptic theory of differential edge operators. I[END_REF], the solutions of this equation are polyhomogeneous, they are combinations of functions in x n 2 ±s C ∞ (M ), where s = 1 2 n(n + 8), and thus since Tr g (q) ∈ C ∞ (M ) + x n log(x)C ∞ (M ), then Tr g (q) = 0, and thus δ g (q) = 0, Tr g (q) = 0.

(81)

We want to express the operator L g in the decomposition R t × N acting on a divergence-free, trace-free tensor q. We will decompose such a tensor into

q = udt 2 + ξ s ⊗ dt + r
where u is a function, ξ ∈ Λ 1 (N ) is a 1-form on N , and r ∈ S 2 (N ) is a symmetric tensor on N . Here s ⊗ denote the symmetric tensor product. The following Lemma is proved by Delay [21] 2 , we give a couple of details of the computations for the reader's convenience. Lemma 7.4. Let g := dt 2 + f 2 h 0 on M = R t × N for some compact manifold (N, h 0 ) and f ∈ C 2 (R) some positive function. Then, if q = udt 2 + ξ s ⊗ dt + r with Tr g (q) = 0 and δ g (q) = 0, we have

L g q = -u + f -2 ∆ h 0 u -(n + 4) f f u -2[(n + 1) (f ) 2 f 2 + f f )]u dt 2 + -ξ -(n + 2) f f ξ -[(n -1) (f ) 2 f 2 + 2 f f )]ξ + f -2 ∆ h 0 ξ -2 f f d N u s ⊗ dt + 2(f f -(f ) 2 )uh 0 -4 f f δ * h 0 ξ -r -n f f r + 2 (f ) 2 f 2
Tr h 0 (r)h 0 + f -2 L h 0 r where ξ := ∇ ∂t ξ, ξ = ∇ ∂t ∇ ∂t ξ with the same notation for r , r . Here L h 0 is the linearized Einstein operator defined like (80) but on N with the metric h 0 .

Proof. First, since Tr g (q) = 0, we have u = -f -2 Tr h 0 (r).

(82)

Let T := ∂ t , let v be some (t-independent) vector field on N , and set V := f -1 v. From [START_REF] Yano | On Harmonic and Killing Vector Fields[END_REF] we deduce that if A = f a with a ∈ Λ 1 (N ) independent of t,

∇dt = f f h 0 , ∇ T A = 0, ∇ V A = ∇ N V A -f -1 f A(V )
dt. We also have that for any q ∈ S 2 (M ) ∇ * (dt ⊗ q) = -n f f q -∇ T q.

By direct computation we also obtain the formula for the divergence

δ g (q) = -u -n f f u + f -2 δ h 0 (ξ) + f f 3 Tr h 0 (r) dt -(∇ T ξ + (n + 1) f f ξ) + f -2 δ h 0 (r). (83) 
From ( 82) and (83), since q is divergence-free we obtain

u = -(n + 1) f f u + f -2 δ h 0 (ξ), ∇ T ξ + (n + 1) f f ξ = f -2 δ h 0 (r). ( 84 
)
Let y j be Riemannian normal coordinates at p ∈ N . Then e j := ∂ y j are parallel and orthonormal at p: ∇ N e i e j = 0 and h 0 (e i , e j ) = δ ij . Set E i = f -1 e i . At the point (t, p) for all t ∈ R we have

∇ * ∇q = -∇ T ∇ T q -n f f ∇ T q - n j=1 ∇ E i ∇ E i q.
2 The t-derivative denoted by prime in our setting is with respect to the connection of g and is not exactly the same as Delay, which is why the coefficients are slightly different.

Using this we compute for q 1 = u dt 2

∇ * ∇(udt 2 ) = -u + f -2 ∆ N u -n f f u + 2n (f ) 2 f 2 u dt 2 -2 f f (d N u s ⊗ dt) -2(f ) 2 uh 0 .
For q 2 = ξ s ⊗ dt, we get

∇ * ∇(ξ s ⊗ dt) = -ξ -n f f ξ + (n + 3) (f ) 2 f 2 ξ + f -2 ∆ h 0 ξ s ⊗ dt -4 f f 3 δ h 0 (ξ)dt 2 -4 f f δ * h 0 ξ.
Finally for the tangential part r, we get

∇ * ∇r = -2f -2 tr h 0 (r) (f ) 2 f 2 dt 2 -2 f f 3 δ h 0 r s ⊗ dt -r -n f f r + 2 (f ) 2 f 2 r + f -2 ∆ h 0 r.
In conclusion, using (82) and (84) to substitute for tr h 0 (r), δ h 0 ξ and δ h 0 r we get ⊗ dt components of q vanish identically. Lemma 7.5. Let n ≥ 3 (n can be either odd or even). Assume that f (t) = cosh(t). Let q = ġ + L X g = udt 2 + ξ s ⊗ dt + r be the trace-free and divergence-free tensor in ker L g defined in (77). Then u = 0 and ξ = 0.

∇ * ∇q = -u + f -2 ∆ N u -(n + 4) f f u -2(n + 1) (f ) 2 f 2 u dt 2 + -ξ -(n + 2) f f ξ -(n -1) (f ) 2 f 2 ξ + f -2 ∆ h 0 ξ -2 f f d N u s ⊗ dt -2(f ) 2 uh 0 -4 f f δ * h 0 ξ -r -n f f r + 2 (f ) 2 f 2 r + f -2 ∆ h 0 r
Proof. Let (ϕ j ) j∈N be an orthonormal basis of eigenvectors for the Laplacian ∆ h 0 acting on functions on N , with eigenvalues λ j . From Lemma 7.4, we see after writing u = j∈N u j = j∈N ϕ j u, ϕ j ϕ j that u j satisfies the ODE -u j -(n + 4) tanh(t)u j -2(n + 1) tanh(t) 2 + 2 -λ j cosh(t) 2 u j = 0.

Setting u j = f -n 2 -2 v j , this equation can be rewritten

-v j + n(n-2)
4 tanh(t) 2 + λ j cosh(t) 2 + n 2 v j = 0 and since λ j ≥ 0, this equation has no solution in L 2 (R, dt) because the corresponding operator is strictly positive. By standard ODE theory (e.g. this equation is also a hypergeometric equation after setting sinh(t) 2 = z), the solutions are linear combinations of two independent functions F 1 , F 2 such that F 1 (t) ∼ t→+∞ e α + t and F 2 (t) ∼ t→+∞ e α -t with α ± = ± n 2 the roots 

For a ∈ R let P a (x) := ax(x+2)+x 2 +2. Since a(u) is increasing, we have H 0 (u) = P a(u) (x) ≥ P a(u 0 ) (x) for all u ≥ u 0 . We use a bootstrap argument: by (103), a(0) > -3.468 =: a 0 and so P a 0 (x) > 0 for x < x 1 with some explicitly computable x 1 . This means that H 0 (u) > 0 for u < (x 1 -0.25) 1/2 =: u 1 . Using (102), we have a lower bound a(u 1 ) > a 1 . The binomial P a 1 (x) is positive for x < x 2 , etc. This tedious algorithm stops after a finite number of steps. Hence H 0 (u) > 0 for all u > 0.

We now show that the function H 0 (-iu) from (100) is positive for 0 ≤ u < 1/2. We introduce the notation u := 1 2 -v, a(v) := c 0 + 1 -π(tan( π 2 v)) + 2Ψ(v + 2) and we compute H 0 (-iu) = v(2 -v)[a(v)(v 2 -1) + v 2 -4v -1]. Therefore for 0 < v ≤ 1/2, H 0 (-iu) > 0 if and only if -(a(v) + 1) < 4v 1-v 2 . At v = 0 this is verified since c 0 > -4. It is thus enough to show that for 0 < v ≤ 1/2 we have

-a (v) < 2 1 (1 -v) 2 + 1 (1 + v) 2 .
Using (101), we have

-a (v) = π 2 2 cos 2 (πv/2) -2Ψ (2 + v) = 2 k∈Z 1 (v + 2k + 1) 2 -2 k≥0 1 (v + k + 2) 2 = 2 1 (1 -v) 2 + 1 (1 + v) 2 + 2 ∞ k=1 (2v -1)(4k + 1) (v -2k -1) 2 (v + 2k) 2
and this finishes the proof since 2v -1 < 0.

[1] L. Ahlfors, L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. ( 2) 72 (1960), 385-404.

  are the terms in the expansion of the volume element (31) at ∂M . Proof. From the expansion e zω = 1 + zω

n 2

 2 

Lemma 4 . 7 .

 47 Let (N, h 0 ) be a compact manifold. Assume that N v 4 (h 0 )dvol h 0 > 0 and that Sch h 0 -Tr h 0 (Sch h 0 ) is positive definite. (These conditions are satisfied in a neighbourhood of an Einstein metric h 0 with negative Ricci curvature.) Then the equation v 4 (e 2ω 0 h 0 ) = N v 4 (e 2ω 0 h 0 )dvol e 2ω 0 h 0 has at most one solution ω 0 ∈ C ∞ (N ).

  ) andH 2j | t=0 , H 2k | t=0 are multiples of Id, then Tr( Ḣ2j ) = -Tr( Ḣ2j ) + j-1 k=0 b k Tr( Ḣ2k ) for some constants b k ∈ R. But modulo o(x n ),we havex -1 Tr( Ȧx ) = k Tr( Ḣ2j ) + β j Tr( Ḣ2k ))x2(j+k-1) 

  On the other hand, from (71) and (82) we get( Rq) = f f (u dt 2 + ξ s ⊗ dt) + f -2 ( Rh 0 r) -f f uh 0 + (f ) 2 f 2 (r -Tr h 0 (r)h 0 ). Combining this with the formula for ∇ * ∇, the Lemma is proved. 4) Analysis of solutions of linearized Einstein equation. We start by showing that the dt 2 and ξ s

Figure 1 .

 1 Figure 1. Left: the graph of the function H(u) bounding H 0 (u) from below, where H(u) := c 0 + 1 -π cosh(πu) + 2Ψ(52 ) (u 2 + 1 4 )(u 2 + 9 4 ) + (u 2 + 1 4 ) 2 + 2. Right: the graph of the function H 0 (-iu) for u ∈ [0, 1/2].

  x is any positive function equal to the geodesic boundary-defining function associated to h 0 near ∂M . With this definition we can easily compute the variation of Vol R inside the conformal class [h 0 ]. Proposition 3.2. Let (M, g) be an odd dimensional AHE manifold with conformal infinity [h 0 ]. The renormalized volume Vol R (M, •) of M , as a functional on M [h 0 ] := {h 0 ∈ [h 0 ]; ∂M dvol h 0 = 1}, admits a critical point at h 0 if and only if v n (h 0 ) is constant.

  are interested in the renormalized volume where the boundary families are uniformized to have scalar curvature -2. This means, we must consider Vol R (M, g s ; (h 0 , ĥs

-)) where ĥs -:= e 2ω s 0 h s -is the unique hyperbolic metric in the conformal class of h s -. Then ∂ s ĥs is the sum of a Lie derivative of ĥs and a divergence free/trace free tensor, in particular N tr ĥs -(∂ s ĥs -)dvol ĥs -= 0. From this we can derive the identity N

In even dimension n, we will see later that it is more natural to modify hn with a certain formally determined tensor in the definition of N .

December 1, 2015. C. G. was partially supported by the A.N.R. project ACG ANR-10-BLAN-0105. S. M. was partially supported by the CNCS project PN-II-RU-TE-2011-3-0053; he thanks the Fondation des Sciences Mathématiques de Paris and the École Normale Supérieure for additional support. J.-M. S. was partially supported by the A.N.R. through projects ETTT, ANR-09-BLAN-0116-01, and ACG, ANR-10-BLAN-0105.

and from [START_REF] Obata | Certain conditions for a Riemannian manifold to be isometric with a sphere[END_REF], [START_REF] Obata | The conjectures on conformal transformations of Riemannian manifolds[END_REF], [START_REF] Osgood | Extremals for determinants of Laplacians[END_REF], we obtain

By [START_REF] Fefferman | The ambient metric[END_REF]Prop 7.2], Tr h 0 (h 2 ) = -1 2 Scal h 0 , and thus, using the Gauss-Bonnet formula, we easily get ∂M Ṡcal h 0 dvol h 0 = -1 2 ḣ0 , Scal h 0 h 0 . We conclude

5.4. Case n = 4. First, we have the relations (with the notation of the proof of Theorem 5.

3)

From ( 54), ( 55) and ( 56) we obtain

where h 2 2 := h -1 0 (H 2 ) 2 is the tensor obtained by composing the endomorphism H 2 with itself. Now, recall Lemma 3.9 obtained from the constraint equation on the trace of the shape operator, which gives

But we also have from [START_REF] Gursky | Fully nonlinear equations on Riemannian manifolds with negative curvature[END_REF] ∂M v4 dvol h 0 + 1 2 ḣ0 , v 4 h 0 = 1 4 ḣ0 , k

and by combining with [START_REF] Rivin | The Schläfli formula in Einstein manifolds with boundary[END_REF] and [START_REF] Schlenker | The renormalized volume and the volume of the convex core of quasifuchsian manifolds[END_REF], we obtain Vol R = ḣ0 , G 4 , -4G 4 := h 4 -1 2 h 2 2 + 1 2 v 2 h 2 -v 4 h 0 + 1 2 k and by Lemma 3.9 this can be rewritten as

, where h 2 = -Sch h 0 = -1 2 (Ric h 0 -1 6 Scal h 0 h 0 ). 5.5. Einstein metric in the conformal infinity. If Ric h 0 = λ(n -1)h 0 for some λ ∈ R, one can prove that the tensor F n is a constant times h 0 : Lemma 5.5. Let h 0 be Einstein,

) and Vol(N, h s 0 ) = 1, and if the trace-free part of the tensor h n in the expansion of g is 0.

uniformization to c. Let φ be the holomorphic map isotopic to the identity between (N, σ 0 ) to (N, σ), and let q = S(φ) be the Schwarzian derivative of φ. Lemma 6.9. Let n = 2 and let h be the hyperbolic metric in the conformal class c on N , then, for all g ∈ E, (h, 1 2 Re(q)) is the associated cotangent data to c. Proof. It is proved in [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF]Lemma 8.3] that II * 0 = -Re(q), where II * is the "second fundamental form at infinity" considered in [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF] and II * 0 is its traceless part. However comparing the expressions of the hyperbolic metric at infinity in terms of h 2 used here, and in terms of II * as in [START_REF] Krasnov | On the renormalized volume of hyperbolic 3-manifolds[END_REF], shows that h 2 = 2II * . Finally we have seen in Section 5.

The result follows.

6.4. Lagrangian submanifold in T * T (N ). We now come back to the situation where Hypotheses 6.1, 6.2 and 6.3 apply (we use the same notations as there) and the dimension n is even. Using again that T * T (N ) near [h 0 ] is represented by [START_REF] Chang | A note on renormalized volume functionals to appear in Diff[END_REF], we define the modified Dirichlet-to-Neumann map

where

the divergence-free/trace-free tensor G • n associated to the Poincaré-Einstein end of the AHE metric Ξ(h). Proposition 6.10. Let N have dimension n even and let h 0 ∈ M(N ) so that Hypotheses 6.1, 6.2 and 6.3 hold. Then the section N Ξ defined in (72) is an exact 1-form on the slice S 0 .

Proof. By linearizing the identity v n (h) = N v n (h)dvol h valid for every h ∈ S 0 , we get

n , ḣ . By Theorem 5.3 we deduce that N Ξ is the differential of the map h → Vol R (M, Ξ(h); h). Corollary 6.11. With the same assumptions as in Proposition 6.10, the image of N Ξ is a Lagrangian Fréchet submanifold in T * T (N ).

Proof. The image is a submanifold since it is the image of a smooth section. It is isotropic for the symplectic form Ω of (12) since the section is an exact form and Ω is the exterior derivative of the Liouville 1-form. Moreover, it is maximal isotropic since it is diffeomorphic to the base by the projection.

The following corollary is the analog in our higher-dimensional setting of McMullen's Kleinian reciprocity, see [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF]Theorem 9.1]. Corollary 6.12. Under the same assumptions as in Proposition 6.10, let h ∈ S 0 , and let u, v ∈ T h S 0 . Let u * , v * be the corresponding first-order variations of G • n , so that u * , v * ∈ T *

[h] T (N ). Then v, u * = u, v * where , is the bilinear pairing with respect to h followed by integration on N . Equivalently, the linearization dN Ξ of N Ξ is such that (dN Ξ ) h is self-adjoint.

Proof. This is a direct translation of Corollary 6.11 using the definition of the cotangent symplectic structure induced by [START_REF] Caffarelli | The Dirichlet problem for nonlinear second-order el liptic equations. III. Functions of the eigenvalues of the Hessian[END_REF] on T * T (N ).

Quasifuchsian reciprocity for AHE manifolds. We now consider a more specific setting, analogous to the situation occuring for the quasifuchsian reciprocity for 3-dimensional hyperbolic manifolds, see [START_REF] Mcmullen | The moduli space of Riemann surfaces is Kähler hyperbolic[END_REF]. We consider a manifold M such that ∂M has two connected of the polynomial -α 2 + n 2 4 . Note that since F 2 / ∈ L 2 (R, dt), it has asymptotic Ce n 2 |t| as t → -∞ for some C = 0. Since δ h 0 ( ḣ0 ) = 0, we have |δ h 0 (r)| g = O(1) and thus by the second equation of (84), we deduce that |ξ| g = O(x 2 ), which implies that δ h 0 (ξ) = O(x) and by the first equation of (84) we get u = O(x 3 ) = O(e -3|t| ) (here recall that x = 2e -|t| for large |t|). Therefore, by considering the asymptotics as t → +∞ we deduce that v j is a constant times F 2 and by considering the asymptotic as t → -∞ we see that the constant must be 0, thus v j = 0 and u = 0.

Writing the mixed component of L g (q) to be 0, using u = 0 and decomposing ξ = j ξ j f ψ j where (ψ j ) j is an L 2 (N, dvol h 0 ) orthonormal basis of eigenvectors of ∆ h 0 on 1forms with eigenvalues α j , we get from Lemma 7.4 and

Setting

One one hand, again by positivity, this equation has no solutions in L 2 (R, dt). On the other hand, we have seen above that

Since the indicial roots in the above equation are ±2, ζ j must be of order O(e -2|t| ) which is clearly in L 2 (R, dt), so actually we deduce ξ j = 0.

We are going now to compute the coefficient of x n-2 in the expansion of r. Recall that we chose x = 2e -|t| for t = 0. Proposition 7.6. Let r = q be the TT tensor in ker L g defined in (77) under the assumption (76). Let r ± 0 , r ± n , r ± n,1 be the tensors on N so that as t → ±∞

Let L h 0 = ∆ h 0 -2 Rh 0 be the linearized Einstein operator on (N, h 0 ). For every j denote by r 0 j , r 1 j the even, respectively the odd component of the pair r j = (r + j , r - j ) with respect to t → -t.

(1) When n is even, r ± n,1 is given by a differential (hence, local) operator of order n in terms of r 0 :

(2) If n is odd, then r ± n,1 = 0, and for ε ∈ {0, 1}, r ε n are given by

where N is the pseudodifferential operator of order n

for √ • : R → R + ∪ iR -being the square root function, and F ε defined by

(3) For n = 4 and ε ∈ {0, 1}, r ε 4 are given by

and s = j∈N s j φ j where φ j is an L 2 (N, dvol h 0 ) orthonormal basis of eigenvectors for L h 0 with eigenvalues γ j , then since

We then have from Lemma 7.4 and Lemma 7.5 that s j satisfies the equation

with ν j ∈ (-

4

-γ j , and z = n 2 . Let us consider more generally this equation for z ∈ R near n/2. From [START_REF] Guillopé | Upper bounds on the number of resonances for non-compact Riemann surfaces[END_REF]Appendix], it has two independent solutions on R, one odd and one even in t:

, 1 2 ; -sinh(t) 2 ) where F 1 (a, b, c; τ ) is the hypergeometric function. The solution E 1 corresponds to taking r - 0 = -r + 0 while E 0 corresponds to r + 0 = r - 0 . Using the identity

and F 1 (a, b, c; 0) = 1, we see that, for x = 2e -|t| , there exist meromorphic coefficients a 2k (z) such that

)Γ(

)Γ(

We shall use the same type of arguments as in the work of Graham-Zworski [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]; the coefficients a k (z, ν j ) are regular near z = n/2 except for a n (z, ν j ) when n is even, which has a first order pole at z = n/2. The coefficient

)Γ(

)Γ(

)

.

(89) of x z in (88) also has a pole in that case, and its residue is -Res n 2 a n (z, ν j ). Notice that S 1 j is the action of the scattering operator of L h 0 at z ∈ C on the odd pair of tensors (φ j , -φ j ).

Using the formula Γ(s)Γ(1 -s) = π/ sin(πs) and Γ(s)Γ(s + 1 2 ) = 2 1-2s √ πΓ(2s) we rewrite

When n is even, the right-hand side of (88) at z = n/2 has the asymptotic expansion as

where FP denotes finite part. From (90), we deduce the formula (85) by taking the residue at z = n/2 and the fact that L h 0 φ j = ( n(n-2)

4

-ν j (ν j + 1))φ j . If now n is odd, we can take the limit z → n 2 in (88) and each coefficient is smooth at z = n/2 (a n does not exist in this parity) writing ν j = -1 2 + iα j with α j = γ j -(n-1) 2

4

(the

), we obtain directly that the coefficient of

which implies formula (86) for the odd component r 1 n . Now we can do the same analysis with the even solution E 0 (t); we do not give details of the calculations which are very similar to the above, notice however that by locality, the formula (92) for the logarithmic term cannot change at all. We eventually obtain in this case

which implies

Let us now consider the case n = 4. Let us first compute a 4 (z, ν j ) in (88). We rewrite equation (87) in terms of x = 2e -|t| for |t| > 1:

Solving this equation as a series in x, the coefficients a 2k (z, ν j ) are uniquely determined and we obtain for t → ∞ the asymptotic expansion for the even, respectively odd solution

and thus a 4 (z,

). By (91),

We now compute FP 2 S 1 j (z). We assume that L h 0 ≥ 2 so that we can write ν j = -1 2 + iα j with α j = γ j - 9 4 ≥ 0 if γ j ≥ 9 4 and iα j ∈ [0, 1 2 ] if γ j ≤ 9/4. We use formula (90) for S 1 j (z), then for ν j ∈ R we see that S 1 j (z) ∈ R, but we also notice that (89) implies that

Let γ = -Γ (1) be the Euler constant, then for z close to 2

We write

and consider its Taylor expansion at z = 2:

where

Using (95) and combining (96), (97), (98) we get when

This gives the desired result when r + 0 = -r - 0 by using (95). When r + 0 = r - 0 , we consider the expansion of the even solution E 0 (t), this is a similar computation to what we did for E 1 , but using formula (93) instead of (89)), and

instead of (98). We find for α j ≥ 0 r 0 4 , φ j = -

and for λ j = iα j ∈ R + r 0 4 , φ j = -

2 ) + (-λ 2 j + 1 4 ) 2 . This finishes the proof. 5) Variation of the obstruction tensor and Hessian of Vol R . As a first corollary, we recover a formula proved recently by Matsumoto [START_REF] Matsumoto | A GJMS construction for 2-tensors and the second variation of the total Q-curvature[END_REF] for the Hessian of the functional h 0 → N v n (h 0 )dvol h 0 defined on the space C(N ) of conformal structures.

Corollary 7.7. Let n ≥ 4 be even, let h 0 satisfies Ric h 0 = -(n -1)h 0 on N , and let L h 0 = ∇ * ∇ -2 Rh 0 be the linearized Einstein operator at h 0 . Then the obstruction tensor k linearized at h 0 and acting on divergence-free/trace free tensors ḣ0 is given by

Proof. If g s is a deformation of Einstein metrics as before and ġ = ∂ s g s | s=0 , then the first log term in the expansion of ġ is kx n-1 log(x) where k is the variation of the obstruction tensor k s of g s . We modify ġ by L X g as in (77), and we apply [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF]Prop. 4.5] 3 to deduce that L X g has no log term before x n log(x), thus q = L X g + ġ has first log term given by kx n-1 log(x) in its expansion. Now it remains to use formula (85) and this gives k in terms of ḣ0 .

Our second corollary is Corollary 7.8. Let g s be a family of AHE metrics such that g 0 = g is the Fuchsian-Einstein metric, and

(1) If n is odd, there exists C > 0, C > 0 such that for all ḣ0 satisfying δ h 0 ( ḣ0 ) = 0, Tr h 0 ( ḣ0 ) = 0 (-1)

. 3 The proof in [START_REF] Wang | Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimension[END_REF] is technically for n odd, but the same arguments apply, once we have noticed that δg( ġ) + 1 2 d Tr( ġ) has no log coefficient before x n+1 log(x) when measured with respect to g, this is easy to check.

(2) Assume n = 4 and let h s 0 be a smooth family of conformal representatives of the conformal infinity satisfying v n = constant, Vol(N, h s 0 ) = Vol(N, h 0 ). Assume that 2Vol(N, h 0 ) ≥ 1 and let 0 < λ < 1 such that the metric λ 2 h 0 on ∂M = N + N -has volume 1, thus 2Vol(N, λ 2 h s 0 ) = 1 for all s. If L h 0 -2 > 0 on the subspace of trace-free/divergence free tensors, there exists C > 0 such that for all ḣ0 satisfying δ h 0 ( ḣ0 ) = 0 and Tr h 0 ( ḣ0 ) = 0

. Remark. By using a Weitzenböck type formula, one obtains that the assumption L h 0 -2 ≥ 0 for metrics h 0 with constant sectional curvature -1 and the strict inequality L h 0 -2 > 0 holds if ker d ∇ = ker d ∇ * = 0, where d ∇ is the exterior derivative twisted with the Levi-Civita connection on T * N -valued 1-forms, and d ∇ * its adjoint; see for example the proof of [START_REF] Besse | Einstein manifolds[END_REF]Th 12.67]. By Gauss-Bonnet theorem, we have Vol(N, h 0 ) = 4π 2 3 χ(N ) ≥ 1 if χ(N ) is the Euler characteristic. Then the conditions are satisfied.

Proof. The case n odd is a direct consequence of Proposition 7.6 and (78). For the case n = 4, we use (75), Lemma 6.5, Lemma 7.2, Lemma 7.5 and Corollary 7.7 to deduce that for u ≥ 0, and to H ε (-iu) := c 0 + 1 -(-1) ε π(tan( π 2 ( 1 2 -u))) (-1) ε + 2Ψ( 5 2 -u) (-u 2 + 1 4 )(-u 2 + 9 4 ) + 2u(2u 2 -5

2 ) + (-u 2 + 1 4 ) 2 + 2 (100)

for u ≥ 0. Let us show that the functions in (99) are positive for u ≥ 0 (numerically this follows from Figure 1 but we give a formal proof).

Since H 1 (u) ≥ H 0 (u) for u ≥ 0, it suffices to show that H 0 (u) > 0. We write H 0 (u) = a(u)x(x + 2) + x 2 + 2, x := u 2 + 1 4 , a(u) := c 0 + 1 -π cosh(πu) + 2Re(Ψ( 5 2 -iu)).

The real part of the digamma function (Ψ( 5 2 + it)) is increasing as a function of |t|:

thus Re(Ψ( 5 2 -i u 2 )) ≥ Ψ( 52 ) = -γ -2 ln 2 + 8 3 ,