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Abstract

The paper is devoted to the modeling and identification of uncertainties in computational struc-
tural dynamics for low- and medium-frequency ranges. A complete methodology is presented
for the identification procedure. The first eigenfrequencies are used to quantify the uncertain-
ties in the low-frequency band while the frequency response functions are used to quantify the
uncertainties in the medium-frequency band. The system-parameter uncertainties are taken into
account with the parametric probabilistic approach. The model uncertainties are taken in to ac-
count with the nonparametric probabilistic approach. The posterior stochastic model of system-
parameter uncertainties is identified using the Bayes method.

Keywords: uncertainty quantification, computational dynamics, medium frequency,
identification, statistical inverse methods, prior stochastic model, posterior stochastic model,
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1. Introduction

This paper deals with the development of a methodology devoted to the identification of stochas-
tic models of uncertainties in linear computational structural dynamics for the low- and medium-
frequency ranges. The computational model is a second-order linear differential equation in the
time domain, constructed by using the finite element method and which is analyzed in the fre-
quency domain taking the Fourier transform. The system-parameter uncertainties are taken into
account with the parametric probabilistic approach while the modeling errors are taken into ac-
count with the nonparametric probabilistic approach. A methodology which is based on the
use of the maximum likelihood method is then presented for the identification of the optimal
prior stochastic models of both the system-parameter uncertainties and the model uncertainties
induced by modeling errors. The available experimental Frequency Response Functions (FRF)
are used in the medium-frequency band while the first experimental eigenfrequencies are used
in the low-frequency band. It is assumed that the experimental FRF are estimated with the usual
spectral analysis for stationary stochastic processes of the experimental data, in presence of ex-
traneous input and output noise. This type of estimation, based on the use of the cross-spectral
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density functions of the input and the output stationary stochastic processes, allows the effects of
the extraneous noises to be removed and consequently, the experimental FRF which are estimated
in presence of measurement errors, do not depend of these noises [13, 14]. The first experimen-
tal eigenfrequencies are deduced from the experimental FRF over all the frequency band. The
posterior stochastic model of system-parameter uncertainties, in presence of modeling errors,
is constructed using the first experimental eigenfrequencies in the low-frequency band and the
Bayes method. The methodology proposed is validated with a numerical application. It should be
noted that the novel methodology proposed uses classical tools and is the result of a compromise
between the speed of convergence of the statistical estimators and all the others considerations re-
lated to the ease of implementation in commercial software devoted to computational mechanics
(intrusive or non intrusive methods), ease of development in software, numerical cost in taking
into account increasing trend of computer power and ease of parallelization of the algorithms.

2. Short overview on stochastic modeling of uncertainties whose stochastic models have to
be identified and related topics

2.1. Uncertainty and variability

The designed system is used to manufacture the real system and to construct the nominal com-
putational model (also called the mean computational model or sometimes, the mean model)
using a mathematical-mechanical modeling process for which the main objective is the predic-
tion of the responses of the real system in its environment. The real system, submitted to a given
environment, can exhibit a variability in its responses due to fluctuations in the manufacturing
process and due to small variations of the configuration around a nominal configuration associ-
ated with the designed system. The mean (or nominal) computational model which results from a
mathematical-mechanical modeling process of the design system, exhibits parameters which can
be uncertain. In this case, there are uncertainties on the computational model parameters (also
called below, system-parameter uncertainties). On the other hand, the modeling process induces
some modeling errors defined as the model uncertainties. It is important to take into account both
the uncertainties on the system parameters and the modeling errors in order to improve the pre-
dictions of the computational model which allows robust optimization, robust design and robust
updating with respect to uncertainties to be carried out.

2.2. Types of approaches for constructing prior stochastic models of uncertainties

Several approaches can be used to take into account uncertainties in computational models. The
main approaches are based on the intervals method, the fuzzy logic and the probability theory.
For a recent overview concerning these approaches, we refer the reader to [34]. In this paper,
only the probability theory will be considered.

The parametric probabilistic approach consists in modeling the uncertain parameters of the com-
putational model by random variables and then in constructing the stochastic model of these
random variables. Many works have been published and a state-of-the-art can be found, for
instance, in [30, 37, 46, 62, 63, 64, 66, 67, 79]. Concerning model uncertainties induced by
modeling errors, it is today well understood that the stochastic models of the uncertain parame-
ters of the computational model are not sufficient and have not the capability to take into account
model uncertainties [9, 70]. Two main methods can be used to take into account modeling errors.
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(i) The first one consists in introducing a stochastic model of the output-prediction-error method,
considered as a noise, which is the difference between the real system output and the computa-
tional model output [9]. It should be noted that this method has been extended [12] to cover both
the uncertainties on the system parameters of the computational model using the usual paramet-
ric probabilistic approach and the modeling errors using the output-prediction-error approach.
The output-prediction-error method is certainly efficient to take into account modeling errors if
a lot of experimental data is available. In contrast, if no experimental data are available, then
this ”global” method cannot be used to construct a family of prior stochastic models of mod-
eling errors in structural dynamics because, generally, there are no significant information for
constructing such a family for the output-prediction errors (the noise). In addition, the output-
prediction-error method, considered as a stochastic modeling of modeling errors, does not allow
the different sources of modeling errors and the measurements errors to be separately identified
in the sense explained hereinafter. For complex dynamical systems, the complex structure must
often be considered as an assemblage of substructures for which the level of modeling errors is
different from a substructure to another one (nonhomogeneous modeling errors in the complex
structure) and can also have different levels of modeling errors for the boundary conditions and
for the coupling between the substructures. The output-prediction-error method is not adapted
for constructing a family of prior stochastic models of modeling errors for such complex dynam-
ical systems for which we are interested in constructing a family of prior stochastic models of
modeling errors for each operator of the dynamical system: mass, damping and stiffness opera-
tors for each substructure, boundary operators, coupling operators between substructures, each
operator having its own algebraic properties and its own level of modeling errors. It should
be noted that the parametric probabilistic approach of system-parameter uncertainties cannot be
used to represent such modeling errors on these operators as previously explained. If there is
no available experimental data, an adapted family of prior stochastic models of modeling errors
must be constructed and used to perform a robust analysis with respect to the level of modeling
errors for the different parts of the complex dynamical systems. For limited experimental data,
the quality and the capability of such prior stochastic models of modeling errors plays a very
important role. In this framework of uncertain complex dynamical systems and if only limited
experimental data are available, the output-prediction-error method is not really adapted.

(ii) The second one is based on the nonparametric probabilistic approach of model uncertainties
induced by modeling errors, which has been proposed in [70, 71] as an alternative method to the
output-prediction-errors method in order to take into account modeling errors at the operators
level by introducing random operators and not at the computational model output level by intro-
ducing an additive noise. With such an approach, the stochastic model of the modeling errors and
the stochastic model of the measurement errors can separately be identified [79]. As used in this
paper, uncertainties on the system parameters and the modeling errors can be taken into account
using simultaneously the parametric probabilistic approach of system-parameter uncertainties
and the nonparametric probabilistic approach of modeling errors [78]. The fundamental differ-
ence between the output-prediction-error method and the nonparametric probabilistic method,
to take into account modeling errors in computational structural dynamics, is the choice of the
parametrization of modeling errors. For the output-prediction-error method, an additive noise
is added in the output. For the nonparametric probabilistic approach, the different sources of
modeling errors are taken into account at the levels of the operators of the dynamical system.
If no experimental data are available, the first method is not appropriate to construct a family
of prior stochastic models of modeling errors while the second one is appropriate. The non-
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parametric probabilistic approach is based on the use of a reduced-order model and the random
matrix theory. It consists in directly constructing the stochastic model of the operators of the
mean (or nominal) computational model. In addition, the nonparametric probabilistic approach
of modeling errors is adapted and has been validated to take into account

• nonhomogeneous modeling errors in the complex structure described as an assemblage of
substructures with different levels of modeling errors [23, 32, 36];

• modeling errors in the boundary conditions and in the coupling between the substructures,
independently from the other sources of modeling errors [51, 52];

• modeling errors for nonlinear dynamical systems with geometrical nonlinearity in three-
dimensional elasticity [53, 21] and with nonlinear constitutive equation [61].

Since the paper [70], many works have been published, in particular concerning extension of the
theory and its experimental validations [5, 7, 8, 17, 18, 23, 24, 29, 31, 32, 33, 36, 42, 50, 60, 61,
72, 73, 74, 76, 78, 79].

2.3. Uncertainty quantification and identification of the stochastic models of uncertainties

The main statistical tools which are useful to identify the stochastic model of uncertainties using
experimental data are mainly the least-square method, the maximum likelihood method [68,
81, 86] and the Bayes method [15, 22, 28, 41, 47, 81, 84]. Many works have been published
in the field of statistical inverse methods and their applications. In the context of uncertain
mechanical and dynamical systems, we refer the reader, for instance, to [9, 11, 12, 25, 26, 27, 39,
43, 83, 84]. Among all these works, it should be noted that a Bayesian computational method
is presented in [11] for calculating a stochastic prediction, based on the use of Markov Chain
Monte Carlo (MCMC) methods for computing integrals in high dimension. Such MCMC method
can be developed in introducing a stochastic dissipative Hamiltonian system such as introduced
in [75] and in [25, 26]. Concerning the experimental identification of the parameters of the
prior probability distributions of random matrices introduced by the nonparametric probabilistic
approach of uncertainties in computational mechanics, we refer the reader to [5, 6, 7, 8, 23, 24,
32, 33, 36, 74, 76, 78]. The statistical inverse methods and the Bayesian inference approach to
inverse problems have received a particular attention [9, 11, 12, 25, 26, 27, 35, 45, 48, 79, 87,
88, 90].

2.4. Comments concerning robust updating and robust design

Robust updating or robust design optimization consists in updating a computational model or in
optimizing the design of a mechanical system with a computational model, in taking into account
both the system-parameter uncertainties and the modeling errors. When experimental data are
available, the identification of the stochastic models of uncertainties in the computational model
plays an important role for getting the necessary robustness. An overview on computational
methods in optimization considering uncertainties can be found in [65]. Robust updating and
robust design developments with uncertain system parameters can be found in [10, 38, 57, 58,
59, 82] while robust updating or robust design optimization with modeling errors taken into
account with nonparametric probabilistic approach can be found in [19, 20, 61, 77].
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3. Short overview on parametric and nonparametric stochastic models in computational
structural dynamics for low- and medium-frequency ranges

3.1. Introduction of the mean computational model in linear structural dynamics

The dynamical system is a damped fixed structure around a static equilibrium configuration con-
sidered as a natural state without prestresses and subjected to an external load. The dynamical
system is analyzed in the frequency band B =]0 , ωmax] and the generic point in B is denoted
by ω in rad/s. It is assumed that a set of system parameters has been identified as the uncertain
system parameters which are the components of a vector x = (x 1, . . . , xnp ) belonging to an ad-
missible set Cpar which is a subset of Rnp . Using the finite element method to construct a finite
approximation of the boundary value problem yields the dynamical equation of the mean (or
nominal) computational model, which is written in the frequency domain, for all ω in B, as

(−ω2[M(x)] + iω [D(x)] + [K(x)]) y(ω) = f(ω; x), (1)

in which i =
√
−1, where y(ω) is the complex frequency response vector of the m degrees of

freedom (DOF) (displacements and/or rotations), where f(ω; x) is the external load vector of
the m inputs (forces and/or moments) and finally, where [M(x)], [D(x)] and [K(x)] are the
mass, damping and stiffness matrices of the mean computational model, which belong to the set
M+m(R) of all the positive-definite symmetric (m × m) real matrices. In order to not increase the
complexity of notations, the dependency in x of the response is removed. In this paper which is
devoted to the Bayesian posteriors of uncertainty quantification, it is assumed that the damping
and stiffness matrices are independent of ω. Nevertheless, in the medium-frequency range, these
matrices can depend on the frequency and it can be necessary to take into account the viscoelastic
behavior of the structure (see for instance [55]). In such a case, the nonparametric probabilistic
approach of uncertainties can also be used as explained in [74, 79] or in using the new extension
for viscoelastic structure as recently proposed in [56, 80].

3.2. Construction of the reduced-order mean computational model

(i) - Remarks on two approaches for constructing the reduced-order model. In the context of
linear structural dynamics, two main approaches can be used.

(i-1) The first one consists in calculating the elastic modes for x fixed to its nominal value
x = (x1, . . . , xnp

). We then obtain the elastic modes of the nominal mean computational model
which are independent of x and which depend only on x. In this case, when x runs through C par,
matrices [M(x)] and [K(x)] have to be projected on the subspace spanned by the elastic modes
of the nominal mean computational model. This approach does not require reanalyzes but the
projection of the matrices depending on x is intrusive with respect to the usual commercial soft-
wares which often are black boxes.

(i-2) The second one consists in calculating the elastic modes for each required x belonging to
Cpar. In this case, the elastic modes of the mean computational model depend on x. In the context
of the parametric probabilistic approach of system-parameter uncertainties, we then have to solve
a random generalized eigenvalue problem and such an approach is better adapted to usual com-
mercial softwares and allows a fast convergence to be obtained with respect to the dimension of
the reduced-order model. This approach is not intrusive but in counter part requires reanalyzes.
Nevertheless, these reanalyzes can easily be parallelized without any software development and
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in addition, we will see how the numerical cost can be decreased at the end of the following
paragraph (ii).

(ii) - Reduced-order model constructed with the second approach. Below, for sake of brevity,
we limit the developments to the first apprach, but clearly the second one could be used. For all
x fixed in Cpar, let {φ1(x), . . . ,φm(x)} be the algebraic basis of Rm constructed with the elastic
modes. For each selected x in Cpar, these elastic modes are solution of the generalized eigenvalue
problem

[K(x)]φα(x) = λα(x) [M(x)]φα(x) , (2)

for which the eigenfrequencies

0 < ω1(x) ≤ ω2(x) ≤ . . . ≤ ωm(x) , (3)

with ωα(x) =
√
λα(x) and the associated elastic modes {φ1(x),φ2(x), . . .} are such that

< [M(x)]φα(x) ,φβ(x)>= μα(x) δαβ , (4)

< [K(x)]φα(x) ,φβ(x)>= μα(x)ωα(x)2 δαβ , (5)

in which the brackets denote the Euclidean inner product. For each value of x given in C par, the
reduced-order mean computational model of the dynamical system is obtained in constructing
the projection of the mean computational model on the subspace spanned by {φ 1(x), . . . ,φn(x)}
with n � m. Let [ φ(x)] be the (m × n) real matrix whose columns are vectors {φ 1(x), . . . ,φn(x)}.
The generalized force f(ω; x) is a Cn-vector such that f(ω; x) = [ φ(x)]T f(ω; x). For all x in Cpar,
the generalized mass, damping and stiffness matrices [M(x)], [D(x)] and [K(x)] belong to M +

n (R)
and are defined by

[M(x)]αβ = μα(x) δαβ , (6)

[K(x)]αβ = μα(x)ωα(x)2 δαβ , (7)

[D(x)]αβ =< [D(x)]φβ(x) ,φα(x)> , (8)

in which, generally, [D(x)] is a full matrix. Consequently, for all x in C par and for all fixed ω, the
reduced-order mean computational model of the dynamical system is written as the projection
yn(ω) of y(ω) such that yn(ω) = [ φ(x)] q(ω) in which q(ω) is the Cn-vector of the generalized
coordinates. The reduced-order mean computational model is then written, for all ω in B, as

yn(ω) = [ φ(x)] q(ω) , (9)

(−ω2[M(x)] + iω [D(x)] + [K(x)])q(ω) = f(ω; x) . (10)

Below, we will denote by n0 the value of n for which the response yn is converged to y, with a
given accuracy, for all ω in B and for all the values of x in C par. As we will see, for the iden-
tification procedure of the prior and the posterior stochastic models, the methodology proposed
is based on the use of a sampling technique of random quantities. It should be noted that such
a choice is independent of the method used for solving the stochastic linear equation associated
with Eq. (1) or solving the stochastic reduced-order model associated with Eqs. (9)-(10). The
stochastic solver can either be based on a sampling technique (Monte Carlo method), or be based
on a spectral method (Galerkin approach for the probability space) using, for instance, the poly-
nomial chaos expansion [37, 44, 54]. In such a case, the independent realizations (sampling tech-
nique) of the random quantities can easily be generated from the polynomial chaos expansion.
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Therefore, as soon as the sampling technique is used for the random quantities, in particular,
for the prior stochastic model of x, a finite family of sampling points x(θ 1), . . . , x(θνP

) can be
calculated and thus, the generalized eigenvalue problem is solved for these sampling points. If
the dimension np of the uncertain vector x is sufficiently small, the computational cost can be re-
duced for constructing the following ν P quintuplets {[M(x(θ j))], [D(x(θ j))], [K(x(θ j))], [ φ(x(θ j))],
[ Z(x(θ j))]} with [ Z(x(θ j))] = [M(x(θ j))][ φ(x(θ j))] in using the interpolating method on mani-
folds proposed in [1, 2, 3].

3.3. Construction of the prior stochastic model of system-parameter uncertainties

The parametric probabilistic approach of system-parameter uncertainties consists in modeling
the uncertain system parameter x (whose nominal value is x) by a random variable X defined
on a probability space (Θ,T ,P), with values in Rnp . The prior probability distribution of X is
assumed to be defined by a probability density function (pdf) p prior

X on Rnp . The prior model
can be constructed using the maximum entropy principle [40, 69, 75] for which the available
information is defined as follows. Since x belongs to Cpar, the support of pprior

X must be Cpar and
the normalization condition must be verified. Since the nominal value of x is x ∈ C par, we have
E{X} = x. In general, an additional available information can be deduced from the analysis of
the mathematical properties of the solution of the stochastic reduced-order computational model
under construction which yields an additional vector-valued constraint defined by a vectorial
equation of dimension μX . The solution pprior

X of the maximum entropy principle then depends on
the free RμX -valued parameter related to the additional vector-valued constraint which is written
as a function of aRμX -valued parameter δX which corresponds to a well defined statistical quantity
for random variable X, such as the coefficients of variation of its components. In general, δX

does not run through RμX but must belong to an admissible set CX which is a subset of RμX .
Consequently, pprior

X depends on x and δX and we will write this prior pdf as

x �→ pprior
X (x; x, δX) with (x, δX) ∈ Cpar × CX . (11)

3.4. Construction of the prior stochastic model of model uncertainties induced by modeling er-
rors

The nonparametric probabilistic approach [70, 71, 74] is used to take into account the model
uncertainties induced by modeling errors. Let (Θ ′,T ′,P′) be another probability space. For
n fixed to the value n0 and for all x fixed in Cpar, the nonparametric probabilistic approach of
modeling errors consists in replacing, in Eq. (10), the matrices [M(x)], [D(x)] and [K(x)] by the
random matrices

[M(x)] = {θ′ �→ [M(θ′; x)]} ,
[D(x)] = {θ′ �→ [D(θ′; x)]} , (12)

[K(x)] = {θ′ �→ [K(θ′; x)]} ,

defined on probability space (Θ ′,T ′,P′), depending on parameter x and such that E{[M(x)]}=
[M(x)], E{[D(x)]}= [D(x)] and E{[K(x)]}= [K(x)]. These random matrices are written as

[M(x)] = [LM(x)]T [GM] [LM(x)] ,

[D(x)] = [LD(x)]T [GD] [LD(x)] , (13)

[K(x)] = [LK(x)]T [GK] [LK(x)] ,
7



in which [LM(x)], [LD(x)] and [LK(x)] are the upper triangular matrices such that

[M(x)] = [LM(x)]T [LM(x)] ,

[D(x)] = [LD(x)]T [LD(x)] , (14)

[K(x)] = [LK(x)]T [LK(x)] ,

and where [GM], [GD] and [GK] are statistically independent random matrices, defined on prob-
ability space (Θ′,T ′,P′), with values in M+n (R), and which belong to SG+ε defined in Appendix
A.2. These three random matrices depend on the dispersion parameter δG = (δM, δD, δK) which
allows the level of model uncertainties to be controlled and which belongs to an admissible set
CG ⊂ R3. Consequently, the prior joint pdf of random matrices [G M], [GD] and [GK] is written,
for δG in CG ⊂ R3, as

([GM],[GD],[GK]) �→ pprior
G ([GM],[GD],[GK];δG), (15)

and which is the product of p [GM ]([GM]; δM), p[GD]([GD]; δD) and p[GK ]([GK]; δK), each one of
these pdf being deduced from Eq. (??). The algebraic representations of random matrices [G M],
[GD] and [GK], which are useful for generating independent realizations [G M(θ′)], [GD(θ′)]
and [GK(θ′)], are explicitly defined, using Eq. (A.2) and the algebraic representation of random
matrix [G0] defined in Appendix A.1.

3.5. Construction of the stochastic reduced-order computational model with the prior stochastic
models of uncertainties

Dimension n is fixed to the value n0. The reduced-order mean computational model, defined
by Eqs. (9) and (10), is then replaced by the following stochastic reduced-order computational
model,

Y(t) = [ φ(X)] Q(t) , (16)

(−ω2[M(X)]+iω[D(X)]+[K(X)])Q(ω)= f(ω; X), (17)

in which for all fixed ω, Y(ω) = {(θ, θ′) �→ Y(θ, θ′;ω)} and Q(ω) = {(θ, θ′) �→ Q(θ, θ′;ω)} are
Cm- and Cn-valued random vectors defined on Θ × Θ ′. It is assumed that the prior stochastic
modeling is such that, for all ω in B, Eq. (17) admits a second-order random solution Q(ω).

Below, the following notations are used. Any realization of random variable X is denoted by
X(θ�) for θ� in Θ. For all x in Cpar, any realizations of random matrices [M(x)], [D(x)], [K(x)]
are denoted by [M(θ′�′ ; x)], [D(θ′�′ ; x)] and [K(θ′�′ ; x)] for θ′�′ in Θ′.

(i) Realization of the first random eigenfrequencies. A realization

0 < Ω1(θ�, θ′�′ ) ≤ . . . ≤ ΩNeig (θ�, θ′�′ ) (18)

of the first Neig random eigenfrequencies of the associated stochastic conservative system are
such that, for α = 1, . . . ,Neig,

[K(θ′�′ ; X(θ�))] Qα(θ�, θ
′
�′ ) =

Ωα(θ�, θ′�′ )
2 [M(θ′�′ ; X(θ�))] Qα(θ�, θ′�′ ) . (19)
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(ii) - Realization of the stochastic reduced-order system for both the system-parameter uncer-
tainties and the model uncertainties. The realizations

y�,�′(ω) = Y(θ�, θ
′
�′ ;ω) , q�,�′(ω) = Q(θ�, θ

′
�′ ;ω) (20)

of random variables Y(ω) and Q(ω) verify the following deterministic equations

y�,�′(ω) = [ φ(X(θ�))] q�,�′(ω) , (21)

(−ω2[M(θ′�′ ; X(θ�))] + iω [D(θ′�′ ; X(θ�))]

+[K(θ′�′ ; X(θ�))]) q�,�′ (ω) = f(ω; X(θ�)) . (22)

(iii) - Realization of the stochastic reduced-order system for deterministic system parameter and
model uncertainties. For this case, the system parameter is equal to the deterministic nominal
vector X = x and δX = 0. Let [M(θ′�′ ; x)], [D(θ′�′ ; x)] and [K(θ′�′ ; x)] be any realizations of random
matrices [M(x)], [D(x)], [K(x)] for θ ′�′ in Θ′. The realizations

y�′(ω) = Y(θ′�′ ;ω) , q�′ (ω) = Q(θ′�′ ;ω) (23)

of random variables Y(ω) and Q(ω) verify the following deterministic equations

y�′ (ω) = [ φ(x)] q�′ (ω) , (24)

(−ω2[M(θ′�′ ; x)] + iω [D(θ′�′ ; x)]

+[K(θ′�′ ; x)]) q�′ (ω) = f(ω; x) . (25)

3.6. Stochastic solver

As we have explained above, the stochastic solver of Eqs. (16) and (17) can be based either on a
sampling technique (Monte Carlo method), or on a spectral method (Galerkin approach for the
probability space) using, for instance, the polynomial chaos expansion.

(1) We begin explaining the latter case and we assume that the spectral approach is based on the
use of the polynomial chaos expansion. Since random matrices [G M], [GD] and [GK] introduce
a large number of random variables, it seems difficult to perform a polynomial chaos expansion
with respect to [GM], [GD] and [GK]. In contrast, it is assumed that a polynomial chaos expan-
sion can be carried out with respect to random vector X. Consequently, the polynomial chaos
expansion of random vector Q(ω) defined in Eq. (17) can be written as

Q(ω) =
∑
α

Aα(ω)ψα(X) , (26)

in which ψα(x) are the real multi-dimensional polynomials and where Aα(ω) is a complex ran-
dom vector (for general developments concerning the stochastic solver based on spectral ap-
proaches, see [37, 44, 54]). The family of random vector-valued coefficients, {A α(ω), ω ∈ B}
depends only on the modeling errors, that is to say, are defined on (Θ ′,T ′,P′) and depends only
on parameter δG. Consequently, using Eq. (26), the use of the sampling technique for random
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vector Q(ω) consists in constructing νP independent realizations θ1, . . . , θνP
in Θ, and νNP inde-

pendent realizations θ′1, . . . , θ
′
νNP

in Θ′, such that

q�,�′ (ω) =
∑
α

Aα(θ′�′ ;ω)ψα(X(θ�)) . (27)

From Eqs. (20) and (21), it can be deduced ν P × νNP independent realizations, {y�,�′(ω), ω ∈ B}
of the stochastic processes {Y(ω), ω ∈ B}. In such a case, the stochastic solution is decomposed
on the polynomial chaos with respect to X and the realizations of the random coefficients of the
polynomial chaos expansion are constructed by the Monte Carlo method which allows the real-
izations Aα(θ′�′ ;ω) to be directly computed.

(2) If the Monte Carlo method is used as stochastic solver, with ν P independent realizations
θ1, . . . , θνP

in Θ and with νNP independent realizations θ′1, . . . , θ
′
νNP

in Θ′, for each (θ�, θ′�′ ), the
deterministic Eqs. (21) and (22) are solved for ω in B. We then directly obtained ν P × νNP

independent realizations {y�,�′ (ω), ω ∈ B} of stochastic process {Y(ω), ω ∈ B}. This method can
also be used for Eq. (19) or for Eqs. (24) and (25).

4. Identification of parametric and nonparametric prior stochastic models of uncertainties
and Bayesian posteriors for low- and medium-frequency ranges

In this section, a methodology is proposed for identifying the stochastic models of uncertainties
(defined in Sections 3.3 and 3.4) in linear structural dynamics for low- and medium-frequency
ranges.

4.1. Preliminary comments

The frequency band of analysis B =]0 , ωmax] is written as B = BLF ∪ BMF in which BLF =

]0 , ωmin] is the low-frequency band and where BMF =]ωmin , ωmax] is the medium-frequency
band. For instance, Fig. 1 shows an example of an experimental frequency response function (in
displacement) for 3 experimental configurations of a same structure. This figure clearly shows
the two frequency bands for which ωmin is about 4 × 105 Hz. The low-frequency band BLF

is relatively robust with respect to uncertainties. It can be seen that variabilities are relatively
small for the first six resonances, and are not significant for the first two resonances which are
really robust to uncertainties. In contrast, the medium-frequency band B MF is very sensitive to
uncertainties and Fig. 1 shows a large variability of the frequency response function. Such a high
sensitivity of the frequency responses to uncertainties characterizes the medium-frequency range
for which a stochastic modeling of uncertainties is absolutely necessary, in particular, the model
uncertainties induced by modeling errors (see [20, 24, 33, 36, 42, 55, 56, 73, 76]).

4.2. Methodology for the identification

The objectives of the identification consist:
(1) in identifying the parameters x and δX of the prior pdf pprior

X (x; x, δX) of X (parametric prob-
abilistic approach of system-parameter uncertainties, see Eq. (11)), and the parameter δ G of the
prior pdf pprior

G ([GM], [GD], [GK]; δG) of [GM], [GD], [GK] (nonparametric probabilistic approach
of model uncertainties induced by modeling errors, see Eq. (15)), using the maximum likelihood
method and the experimental measurements. The identified values are denoted by x opt, δopt

X , δopt
G

10
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Figure 1: Low- and medium-frequency ranges: example of an experimental frequency response function for 3 exper-
imental configurations (3 solid lines) of a same structure. Displacement in log scale at a given observation point as a
function of the frequency.

and yields the optimal prior pdf pprior
X (x; xopt, δopt

X ) for X and pprior
G ([GM], [GD], [GK]; δopt

G ) for
[GM], [GD], [GK].
(2) in identifying the posterior pdf x �→ p post

X (x) of the system-parameter uncertainties from the
optimal prior pdf pprior

X (x; xopt, δopt
X ), in presence of the optimal prior pdf pprior

G ([GM], [GD], [GK]; δopt
G )

of modeling errors, using the Bayes method and the experimental measurements.

The proposed identification procedure is based on the following considerations.
(1) In low-frequency bandBLF, the frequency responses are driven by the eigenfrequencies which
control the frequencies of the resonances and by the modal damping which controls the am-
plitudes of the resonances. In BLF, the role played by the modeling errors is small while the
system-parameter uncertainties play a significant role. Consequently, the first eigenfrequencies
are well adapted as the observations of the dynamical system in order to identify the optimal prior
stochastic model and the posterior stochastic model of the system parameters which control the
mass and the stiffness of the dynamical system.
(2) In medium-frequency bandBMF, the frequency response functions are very sensitive to uncer-
tainties and in particular, to model uncertainties. Consequently, the frequency response functions
over BMF are well adapted as observations of the dynamical system in order to identify the opti-
mal prior stochastic model of model uncertainties induced by modeling errors.

Taking into account the above considerations, the different steps of the identification procedure
will be the following:

• Step 1. Quantification of uncertainties induced by modeling errors in the medium-frequency
range without system-parameter uncertainties. The parameter x is then fixed to the nom-
inal value. The dispersion parameter δX is then equal to zero. An optimal value δopt

G of
δG is estimated using the maximum likelihood method for the observed stochastic fre-
quency response functions over medium-frequency band B MF and using the corresponding
experimental frequency response functions.

11



• Step 2. Quantification of system-parameter uncertainties in the low-frequency range in
presence of the model uncertainties quantified in Step 1.The parameter δG is then fixed to
the value δopt

G . The optimal values xopt and δopt
X of the nominal value x and the dispersion

parameter δX are then estimated using the maximum likelihood method for the observed
first random eigenfrequencies in low-frequency band B LF and using the corresponding
experimental eigenfrequencies.

• Step 3. Identification of the posterior stochastic model of system-parameter uncertainties,
in presence of the optimal stochastic model of model uncertainties induced by modeling
errors, using the Bayesian method for the observed first random eigenfrequencies in low-
frequency band BLF and using the corresponding experimental first eigenfrequencies.

4.3. Frequency discretization

Let ν be the number of frequencies used for sampling the frequency interval B. The corre-
sponding frequency resolution (in rad/s) is Δω = ωmax/ν and the sampling frequency points are
ωk = kΔω for k = 1, . . . , ν.

(i) - Low-frequency band BLF =]0 , ωmin]. Let ω1, . . . , ωk0 be all the sampling frequency points
ωk which belong to frequency band BLF for k = 1, . . . , k0.

(ii) - Medium-frequency band BMF =]ωmin , ωmax]. Let ωk1 , . . . , ων be all the sampling frequency
points ωk which belong to frequency band BMF for k = k1, . . . , ν. We then have k1 = k0 + 1 and
ωk0 ≤ ωmin < ωk1 .

4.4. Step 1 of the identification procedure

(i) - Observations for the identification of the prior stochastic model in medium-frequency band
BMF. For identifying the stochastic models of model uncertainties induced by modeling errors,
we will use as observations, the frequency response functions over the medium-frequency band
BMF at several points located on the structure, for which experimental measurements are avail-
able. We introduce the CN-valued observation Z(ω) = (Z1(ω), . . . , ZN(ω)) of the stochastic
computational model for which measurements are available. This observation is written as

Z(ω) = [H(ω)] Y(ω) , (28)

in which the observation operator [H(ω)] is a linear operator depending on ω. For instance,
such a linear observation operator can be written as [H(ω)] = [h 1] + iω [h2] in which [h1] and
[h2] are two given (N × m) real matrices. In the time domain, the observation Z(t) is then
written as Z(t) = [h1] Y(t) + [h2] Ẏ(t). For instance, if the N observed degrees of freedom
are Y j1 , . . . , Y jN , then we introduce the (N × m) real matrix [h0] which extracts Y j1 , . . . , Y jN from
Y. If the displacements are observed, then [h1] = [h0] and [h2] = [0] while, if the velocities are
observed, then [h1] = [0] and [h2] = [h0]. Clearly, observed displacements and velocities can be
mixed in choosing adapted values of [h1] and [h2]. If components of the strain tensor and/or the
stress tensor are observed in a set of points of the structure, then [h 1] can easily be constructed
with the computational model and [h2] = [0]. Measurement errors are due to measurement noise
and/or to the lack of knowledge of the experimental configuration of the dynamical system for
which measurements are done. The latter reason is the major source of measurement errors for
complex dynamical systems. The real system built with a manufacturing process differs from the

12



design dynamical system and the real complex dynamical system is never completely known. In
the low- and medium-frequency ranges (frequency band B), the experimental FRF are usually
estimated with the spectral analysis for stationary stochastic processes of the experimental data,
in presence of extraneous input and output noise. This type of estimation, based on the use of
the cross-spectral density functions of the input and the output stationary stochastic processes,
allows the effects of the extraneous noises to be removed and consequently, the experimental FRF
which are estimated in presence of measurement errors, do not depend of these noises [13, 14].
Consequently, it is assumed that the experimental FRF are not affected by measurement noise.
For any realization θ′�′ , with �′ = 1, . . . , νNP, and for k = k1, . . . , ν, the realization of complex
random vector Z(ωk) is written as

z�′ (ωk) = Z(θ′�′ ;ωk) = [H(ωk)] y�′ (ωk) , (29)

in which y�′ (ωk) is computed using Eqs. (24) and (25) (for X = x, δ X = 0 and fixed δG). Let
Nobs be defined by Nobs = N × (ν − k1 + 1) such that n < Nobs < νP × νNP. For j = 1, . . . ,N and
k = k1, . . . , ν, let r = 1, . . . ,Nobs be the index associated with j and k. Let V = (V1, . . . ,VNobs ) be
the random vector such that

Vr = log10 |Z j(ωk)| , (30)

whose realization
v�′ = V(θ′�′ ) (31)

is such that,
{v�′ }r = log10 |{z�′ (ωk)} j| . (32)

Finally, we introduce the observation vector W = (W1, . . . ,Wn), with values in Rn, which will
be used for the identification of the stochastic models of uncertainties. This observation vec-
tor corresponds to a statistical reduction of order n (the dimension of the reduced-order mean
computational model) of the random vector V, using the principal component analysis for V. It
should be noted that the order n of such a statistical reduction could be increased, but this choice
corresponds to a good compromise for constructing the observation vector in the context of the
identification procedure. In addition, vector W is introduced as an observation for identifying
the stochastic models of uncertainties. Therefore, we do not seek to build an observation that is
strictly equivalent to V, which means that we choose, a priori, the value n, and it is no necessary
that the convergence of W towards V be reached, i.e, to have an equivalence of W with V. This
means that n is chosen in order that the probability distribution of W be sufficiently sensitive to
small variations of parameters δG of the prior stochastic model of model uncertainties that we
will have to identify. Let mV = E{V} be the mean value of V and let [CV] = [RV] −mV mT

V be
its covariance matrix in which [RV] = E{V VT }. We have the estimations,

mV �
1
νNP

νNP∑
�′=1

v�′ , [RV] �
1
νNP

νNP∑
�′=1

v�′vT
�′ . (33)

Let [CV]ψ = ηψ be the eigenvalue problem for which the n first largest eigenvalues are denoted
by η1 ≥ η2 ≥ . . . ≥ ηn and for which the associated eigenvectors {ψ1,ψ2, . . . ,ψn} are such that
<ψα ,ψβ >= δαβ. Consequently, for all α in {1, . . . , n}, the component Wα of observation vector
W is written as

Wα =
1
√
ηα

<V −mV ,ψα> . (34)
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We have E{W} = 0 and E{W WT } = [ In]. For �′ = 1, . . . , νNP, the realization

w�′ =W(θ′�′ ) (35)

is such that, for α = 1, . . . , n,

{w�′ }α =
1
√
ηα

<v�′ −mV ,ψα > . (36)

(ii) - Experimental measurements. For frequency sampling ω k with k = k1, . . . , ν, it is assumed
that νexp experimental measurements z1,exp(ωk), . . . , zνexp,exp(ωk) are available for the observation
Z. Taking into account Eq. (32), for each s = 1, . . . , ν exp, the vector vs,exp = (vs,exp

1 , . . . , vs,exp
Nobs

) is
introduced such that

vs,exp
r = log10 |z

s,exp
j (ωk)| . (37)

in which r = 1, . . . ,Nobs is the index associated with j and k. Taking into account Eq. (36),
let ws,exp = (ws,exp

1 , . . . , ws,exp
n ) be the vector of the experimental observation such that, for α =

1, . . . , n,

ws,exp
α =

1
√
ηα

<vs,exp −mV ,ψα > . (38)

It should be noted that the projected experimental observation w s,exp = ws,exp(δG) depends on the
parameters δG of the prior stochastic model of model uncertainties, due to the presence of η α, ψα
and mV in Eq. (38).

(iii) - Estimation of the optimal value δopt
G of δG. The optimal value δ opt

G of δG is estimated by
maximizing the logarithm of the likelihood function,

δ opt
G =argmax

δG∈CG

{
νexp∑
s=1

log pW(ws,exp(δG); δG)} . (39)

in which pW(ws,exp(δG); δG) is the value of the pdf w �→ pW(w; δG) of the random vector W for
w = ws,exp(δG), which is estimated for each value w s,exp(δG) of w by nonparametric statistics
in using the multivariate Gaussian kernel density estimation method with the ν NP independent
realizations w1, . . . ,wνNP

. The optimization problem defined by Eq. (39) is not convex and must

be solved using random search or genetic algorithms. An initial value δ 0
G can be computed using

a Gaussian approximation, pg
W, of pW. This initial value can be used as an approximation of

the optimal value or can be used as the center of the region of CG, in which the optimal value is
searched. From Eq. (39), it can be deduced that

δ 0
G = arg max

δG∈CG

Jg(δG) , (40)

Jg(δG) =

νexp∑
s=1

log pg
W(ws,exp(δG); δG) , (41)

where the cost function Jg is written as

Jg(δG) = − 1
2 ln(10)

{νexp n ln(2π)

+

νexp∑
s=1

‖ws,exp(δG)‖2} ,
(42)

where ws,exp(δG) is computed using Eq. (38).
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4.5. Step 2 of the identification procedure

(i) - Observations for the identification of the prior stochastic model in low-frequency band
BLF. For identifying the stochastic model of system-parameter uncertainties, we will use as
observations, the first Neig random eigenfrequencies belonging to low-frequency band B LF, for
which experimental measurements are available. We then introduce the random vector Ω =
(Ω1, . . . ,ΩNeig ) of the first Neig random eigenfrequencies 0 < Ω1 ≤ . . . ≤ ΩNeig whose realizations

Ω1(θ�, θ′�′) ≤ . . . ≤ ΩNeig (θ�, θ′�′) are computed using Eq. (19) for given x, δ X and for δG = δ
opt
G

estimated in Step 1. For any realization (θ�, θ′�′), with � = 1, . . . , νP and �′ = 1, . . . , νNP, the
realization of random vectorΩ is written as

ω�,�′ =Ω(θ�, θ′�′)= (Ω1(θ�, θ′�′), . . . ,ΩNeig(θ�, θ
′
�′)). (43)

(ii) - Experimental measurements. The first experimental eigenfrequencies are usually deduced
from the experimental frequency response functions and consequently, are not affected by mea-
surement noise (see Section 4.4-(i)). Therefore, ν exp experimental measurements of the first
eigenfrequencies are available. For each experimental configuration s with s = 1, . . . , ν exp, let
ωs,exp = (ωs,exp

α1 , . . . , ω
s,exp
αNeig

) be the vector of the Neig experimental eigenfrequencies associated
with the first Neig random eigenfrequenciesΩ1, . . . ,ΩNeig .

(iii) - Estimation of the optimal values (xopt, δopt
X ) of (x, δX). It is recalled that δG = δ

opt
G . The

optimal value (xopt, δopt
X ) of (x, δX) is estimated by maximizing the logarithm of the likelihood

function,
(xopt, δopt

X ) = arg max
(x,δX )∈Cpar×CX

{
νexp∑
s=1

log pΩ(ωs,exp; x, δX , δ
opt
G )} ,

(44)

in which pΩ(ωs,exp; x, δX , δ
opt
G ) is the value, for ω = ωs,exp, of the pdf ω �→ pΩ(ω; x, δX , δ

opt
G ) of

the random vector Ω. Since Neig is small (a few units), the multivariate Gaussian kernel density
estimation method is directly used without difficulties for estimating pΩ(ωs,exp; x, δX , δ

opt
G ) for

each value ωs,exp of ω using the νPνNP independent realizations ω�,�′ .

4.6. Step 3 of the identification procedure

This step is devoted to the identification of the posterior stochastic model of system-parameter
uncertainties using the Bayesian method and in presence of model uncertainties. For � = 1, . . . , ν P

and �′ = 1, . . . , νNP, let ω�,�′ be the realizations of random vector Ω, computed with Eq. (19) for
the optimal value (x opt, δ opt

X , δ opt
G ) of the parameter (x, δX , δG) of the prior stochastic models of

uncertainties. Let be pprior
X (x) = pprior

X (x; xopt, δopt
X ). The Bayesian method allows the posterior

pdf, ppost
X (x), to be calculated by

ppost
X (x) = L(x) pprior

X (x) , (45)

in which x �→ L(x) is the normalized likelihood function defined on R np , with positive values,
such that

L(x) =

∏νexp
s=1 pΩ|X(ωs,exp|x)

E{
∏νexp

s=1 pΩ|X(ωs,exp|X)}
. (46)
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In Eq. (46), pΩ|X(ωs,exp|x) is the experimental value (see Section 4.5-(ii)) of the conditional prob-
ability density functionω �→ pΩ|X(ω|x) of the random eigenfrequenciesΩ|X given X = x in C par.
Equation (46) shows that normalized likelihood function L must verify the following equation,

E{L(X)} =
∫
R

np

L(x) pprior
X (x) dx = 1 . (47)

Similarly to Section 4.5, for all fixed � and for each valueω s,exp ofω, the value pΩ|X(ωs,exp|X(θ�))
of the conditional pdf ω �→ pΩ|X(ω|X(θ�)) is estimated by nonparametric statistics using the
multivariate Gaussian kernel density estimation method with the νNP independent realizations
ω�,1, . . . ,ω�,νNP . From Eq. (46), it can be deduced that

L(X(θ�)) �
∏νexp

s=1 pΩ|X(ωs,exp|X(θ�))
1
νP

∑νP
l=1

∏νexp
s=1 pΩ|X(ωs,exp|X(θl))

. (48)

The posterior pdf of X is given by Eq. (45) and can be rewritten as

ppost
X (x) =

∫
R

np L(y) pprior
X (y) δ0(y − x) dy

= E{δ0(X − x)L(X)} , (49)

in which δ0(y − x) dy is the Dirac measure on Rnp at point x, and where X is always the random
variable for which the probability distribution is defined by the prior stochastic model. For fixed
x = (x1, . . . , xnp ) , if the multivariate Gaussian kernel density estimation method is used, we
obtain

ppost
X (x) � 1

νP
×

νP∑
�=1

L(X(θ�))
np∏
j=1

{
1
h j

k

(
X j(θ�) − x j

h j

)}
,

(50)

in which L(X(θ�)) is given by Eq. (48), where k(w) = (2π)−1/2 exp(−w2/2) and where h j is
defined [16] by

h j = σ j

{
4

νP(2 + np)

}1/(4+np)

, (51)

in which σ j =
√

R j − m2
j with

m j �
1
νP

νP∑
�=1

X j(θ�) , R j �
1
νP

νP∑
�=1

X j(θ�)2. (52)

From Eq. (50), it can be deduced the posterior marginal pdf of X j which is then given by

ppost
X j

(x j)�
1
νP

νP∑
�=1

L(X(θ�))
1
h j

k

(
X j(θ�) − x j

h j

)
. (53)
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5. Posterior stochastic model of the responses and quality assessment

In this section, it is shown how the confidence regions of the frequency response functions
are computed with the stochastic reduced-order computational model for which the posterior
stochastic model of system-parameter uncertainties and the optimal prior stochastic model of
model uncertainties are used (see Section 4). The stochastic response functions are computed
over the low- and medium-frequency band B = B LF ∪ BMF. The observations introduced in this
section are observations used in the identification procedure and other observations which have
not been used in the identification of the stochastic model. The comparisons of experimental
frequency response functions (not used for the identification) with the corresponding computed
random frequency response functions are usually called the quality assessment.

5.1. Observations of the dynamical system for the quality assessment

Let Zobs(ω) = (Zobs
1 (ω), . . . , Zobs

Nobs
(ω)) be the observation vector of the stochastic reduced-order

computational model such that

Zobs(ω) = [Hobs(ω)] Y(ω) , (54)

in which [Hobs(ω)] is the observation operator which will be, for instance, written as [H obs(ω)] =
[hobs

1 ] + iω [hobs
2 ] in which [hobs

1 ] and [hobs
2 ] are two given (Nobs × m) real matrices. Let {ωk, k =

1, . . . , ν} be the sampling frequency points of frequency band B, introduced in Section 4.3. For
� = 1, . . . , νP and �′ = 1, . . . , νNP, the realization zobs

�,�′ (ωk) = Zobs(θ�, θ′�′ ;ωk) is given by

zobs
�,�′(ωk) = [Hobs(ωk)] y�,�′ (ωk) , (55)

in which y�,�′(ωk) is computed with Eqs. (21) and (22) for which the optimal prior stochastic

models pprior
X (x; xopt, δopt

X ) and pprior
G ([GM],[GD],[GK];δopt

G ) of uncertainties are used. Below, j is
fixed in {1, . . . ,Nobs}. In order to simplify the notation, j is removed in the quantities depending
on j. Let U(ωk) be the real-valued random observation such that U(ω k) = log10 |Zobs

j (ωk)|. The
realization u�,�′(ωk) = U(θ�, θ′�′ ;ωk) of random variable U(ωk) is such that

u�,�′(ωk) = log10 |{zobs
�,�′ (ωk)} j| . (56)

5.2. Posterior probability density function of an observation

The posterior probability density function u �→ p post
U(ωk )(u) of the real-valued random observation

U(ωk) is given by

ppost
U(ωk )(u) =

∫
R

np

pU(ωk )|X(u|x) ppost
X (x) dx , (57)

in which pU(ωk )|X(u|x) is the conditional pdf of U(ωk), given X = x. From Eq. (45), it can be
deduced that

ppost
U(ωk )(u) =

∫
R

np

pU(ωk )|X(u|x)L(x) pprior
X (x) dx

= E{L(Xprior) pU(ωk )|X(u|Xprior)} , (58)
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in which Xprior denotes the random variable X for which the probability distribution is defined by
the optimal prior pdf pprior

X (x; xopt, δopt
X ). The following estimation of Eq. (58) can be used,

ppost
U(ωk )(u) �

1
νP

νP∑
�=1

L(X(θ�)) pU(ωk)|X(u|X(θ�)), (59)

in which L(X(θ�)) is given by Eq. (48). The conditional pdf p U(ωk )|X(u|X(θ�)) can be estimated
by using the Gaussian kernel density method,

pU(ωk)|X(u|X(θ�))�
1
νNP

νNP∑
�′=1

1
h�(ωk)

k

(
u�,�′(ωk)−u

h�(ωk)

)
(60)

in which u�,�′(ωk) is given by Eq. (56) and where the constant h �(ωk) is written [16] as

h�(ωk) = σ�(ωk)

{
4

3 νNP

}1/5

, (61)

in which σ�(ωk) =
√

R�(ωk) − m�(ωk)2 with

m�(ωk) � 1
νNP

νNP∑
�′=1

u�,�′(ωk) ,

R�(ωk) � 1
νNP

νNP∑
�′=1

u�,�′(ωk)2 .

(62)

5.3. Posterior confidence region of the observation in the frequency domain

For a probability level Pc, let {u+(ωk), k = 1, . . . , ν} and {u−(ωk), k = 1, . . . , ν} be the upper
and the lower envelopes of the confidence region of the random sampled frequency response
{U(ωk), k = 1, . . . , ν}, such that, for k = 1, . . . , ν,

Proba{u−(ωk) < U(ωk) ≤ u+(ωk)} = Pc . (63)

Consequently, for k = 1, . . . , ν, the upper and lower envelopes are defined, by

u+(ωk) = ζ(
1 + Pc

2
;ωk) ,

u−(ωk) = ζ(
1 − Pc

2
;ωk) .

(64)

The p-th quantile is defined by

ζ(p;ωk) = inf{u : Fpost
U(ωk )(u) ≥ p} . (65)

The cumulative distribution function F post
U(ωk ) of random variable U(ωk) is defined by

Fpost
U(ωk )(u) = Proba{U(ωk) ≤ u}

=
∫ u
−∞ ppost

U(ωk )(v;ωk) dv . (66)
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From Eqs. (59) and (66), it can be deduced that

Fpost
U(ωk )(u) � 1

νP

νP∑
�=1

L(X(θ�)) FU(ωk)|X(u|X(θ�)), (67)

in which the conditional cumulative distribution function, F U(ωk )|X(u|X(θ�)) =
∫ u
−∞ pU(ωk )|X(v|X(θ�)) dv,

is estimated using the Gaussian kernel density method and can be written, taking into account
Eq. (60), as

FU(ωk )|X(u|X(θ�))�
1
νNP

νNP∑
�′=1

Fk

(
u−u�,�′(ωk)

h�(ωk)

)
, (68)

in which h�(ωk) is defined by Eq. (61) and where Fk(u) =
∫ u
−∞ k(v) dv.

6. Application

In this section, a validation of the previous theory is presented for which the real system cor-
responds to a three-dimensional slender damped elastic bounded medium for which the mean
computational model is constructed using the Timoshenko beam theory. The question is not to
discuss the choice of the Timoshenko beam theory to construct the mean computational model
but to analyze how the system-parameter uncertainties and the model uncertainties induced by
modeling errors can be quantified using simulated experiments of the real system and how the
predictions performed with the mean computational model can be improved in taking into ac-
count uncertainties.

6.1. Designed system

The designed system is a slender cylindrical elastic medium defined in a cartesian co-ordinate
system Ox1x2x3 (see Fig. 2). The cylinder has length L1 = 0.01 m and has a rectangular section
with height L2 = 0.001 m and width L3 = 0.002 m. The two end sections are located at x1 = 0
and x1 = 0.01. The origin O is in the corner of the end section and Ox 1 is parallel to the cylinder
axis. The axis Ox2 is the transversal axis along the height and Ox3 is the lateral axis along the
width. The neutral line has for equation {0 ≤ x1 ≤ 0.01 ; x2 = 0.0005 ; x3 = 0.001}. The
elastic medium is made of a homogeneous and isotropic elastic material for which the Young
modulus is 1010 N/m2, the Poisson coefficient is 0.15 and the mass density is 1, 500 Kg/m 3. A
damping term is added and is described by a critical damping rate of 0.01 for each elastic mode
used in the reduced-order model. Concerning the boundary conditions, the displacements are
locked on the two lines defined by {(x1, x2, x3) : x1 = 0 ; x2 = 0.0005 ; 0 ≤ x3 ≤ 0.002} and by
{(x1, x2, x3) : x1 = 0.01 ; x2 = 0.0005 ; 0 ≤ x3 ≤ 0.002}. The frequency band of analysis is B =
2π×]0 , 1.2× 106] rad/s. The external load is a point load applied to the point (x 1 = 0.0042, x2 =

0.001, x3 = 0.001) and its Fourier transform is the vector-valued function ω �→ (0,−1 B(ω), 0) in
which 1B(ω) = 1 if frequency ω belongs to B and 1B(ω) = 0 if ω does not belong to B. We are
interested in the transversal displacement along Ox2 in the plane Ox1x2 of the neutral line. For
Step 1 of the identification procedure, the following six observation points P 1, P2, P3, P4, P5 and
P6 are considered in the neutral line for which x1 are 0.0013, 0.0029, 0.0042, 0.005, 0.0064 and
0.0084 m respectively. For the quality assessment, the following four observation points QA 1,
QA2, QA3 and QA4 are considered in the neutral line for which x1 are 0.0021, 0.0035, 0.0057
and 0.0074 m respectively.
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Figure 2: Scheme of the designed mechanical system.

6.2. Simulated experiments of the real system

In this application, νexp = 5 simulated experiments of the real system are used to perform the
identification of the stochastic models of uncertainties. The design system described in Sec-
tion 6.1 is used with a homogeneous and isotropic elastic material for which the Young modulus
is 1010 N/m2, the Poisson coefficient is 0.15 and the mass density is 1, 500 Kg/m 3. A 3D com-
putational model of the design system is constructed with a finite element mesh made up of
100 × 10 × 20 = 20, 000 three-dimensional 8-nodes solid elements. There are 23, 331 nodes and
a total of 69, 867 degrees of freedom (due to the boundary conditions, the displacement is zero
for 2× 21 nodes). There are 165 eigenfrequencies in frequency band B. The fundamental eigen-
frequency is 11, 936 Hz. The five simulated experiments of the real system are then constructed
as five realizations of the random computational model corresponding to the 3D computational
model of the design system for which random parameters have been introduced. The Young
modulus, the Poisson coefficient and the mass density are modeled as three independent random
variables with values in R+. The Poisson coefficient has a bounded support included in ]−1, 0.5[.
The Young modulus and the mass density are random variables with positive values. The mean
values of these three random variables are equal to the values of the designed system. The co-
efficients of variation of each random variable is 0.1. The random Young modulus is written as
the product of two independent Gamma random variables and the random Poisson coefficient as
the product of two independent uniform random variables. With respect to the nominal compu-
tational model, the uncertain model parameters will be induced by the stochastic computational
model used for simulating the experiments and the model uncertainties are mainly due to the
modeling errors induced by the use of a Timoshenko beam for modeling a 3D slender elastic
body. Each realization of the frequency response functions are calculated using modal analysis
with the first 200 elastic modes over the frequency band B with ν = 1000 frequency points in the
frequency band. A damping term is added and is described by a critical damping rate of 0.01 for
each elastic mode used in the reduced-order model.

6.3. Mean (or nominal) computational model prediction and comparison with the simulated
experiments

(i) - Construction of the mean (or nominal) computational model. The mean (or nominal) com-
putational model, as the predictive model of the real system defined in Section 6.2, is con-
structed from the designed system defined in Section 6.1. This mean computational model
is made up of a damped homogeneous Timoshenko elastic beam with length L 1 = 0.01 m,
simply supported at x1 = 0 and x1 = 0.01, with section S = L2L3 = 2 × 10−6 m2, iner-
tia J = L3L3

2/12 = 1.6667 × 10−13 m4, Young’s modulus y = 1010 N/m2, bending stiffness
k = Jy = 0.001667 N×m2, radius of gyration of the cross section r 2 = J/S = 0.8334 × 10−7 m2,
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mass density 1, 500 Kg/m3, linear mass density ρ1 = 0.003 Kg/m, damping rate 0.01. For integer
α ≥ 1, the eigenvalues (square of the eigenfrequencies) of the Euler beam associated with the
Timoshenko model are given by λEUL

α = (k/ρ1)(πα/L1)4 and the corresponding eigenvalues of
the Timoshenko beam model is then written as λTIM

α = λEUL
α × {1 + f

s
× (αrπ/L1)2}−1 in which

f
s
= 3 is the shear deformation factor (for a rectangular cross section) due to the effects of the

shear deformation on the bending stiffness. This mean model is used to predict the transversal
displacement along Ox2 corresponding to the bending vibrations in the plane Ox 1x2 due to the
external load defined in Section 6.1 and applied to the point x 1 = 0.0042 (observation point P3).
There are 17 eigenfrequencies in band ]0 , 1.2]×10 6 Hz and 13 eigenfrequencies in the frequency
band [1.2 , 2.2]× 106 Hz. The first six eigenfrequencies of the bending modes in plane Ox 1x2 are
11 566 , 44 670 , 95 319 , 158 617 , 230 191 and 306 729 Hz.

(ii) - Comparison of the mean computational model prediction with the simulated experiments.
The frequency response functions of the mean computational model are calculated using modal
analysis with the first 30 elastic modes and in ν = 1000 frequency points of band B. We then
have n = 30. Figure 3 displays the modulus of the frequency response function in log 10 scale
for the transversal displacement (x2-direction) at observation point P2 located in the neutral line
with x1 = 0.0029 m. In this figure, the experimental frequency response function allows the low-
frequency band BLF and the medium-frequency band BMF to be defined. Using the explanations
given in Section 4.1, it can be seen that these two bands can be defined as B LF =]0 , 3.6]×105 Hz
and BMF =]3.6 , 12.0] × 105 Hz. Fig. 3 shows the comparison between the mean computational
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Figure 3: Modulus of the FRF in log10 scale over band B = BLF ∪BMF for transversal displacement at observation point
P2: experiments (five thin solid lines), mean computational model (thick dashed line).

model prediction and the simulated experiments. It can be seen, that there are significant differ-
ences due to uncertainties in the medium-frequency band BMF while in the low-frequency band
BLF, the predictions are very good for the first two resonances and acceptable for the next four
resonances. The deterministic mean computational model has not the capability to represent the
variabilities of the experiments. This figure clearly shows that system-parameter uncertainties
and model uncertainties induced by modeling errors have to be taken into account in order to
improve the capability of the mean computational model to predict the simulated experiments.
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6.4. Identification of the optimal prior stochastic models of uncertainties

(i) - Step 1 presented in Section 4.4 is used for the identification in medium-frequency band
BMF. The observations used for this identification step are the N = 6 transversal displace-
ments in x2-direction at points P1 to P6 defined in Section 6.1. Band BLF is sampled with
300 frequency points and BMF with 700 frequency points. We then have k1 = 301 and then,
Nobs = N × (ν − k1 + 1) = 6 × 700 = 4, 200. The Monte Carlo method is carried out with
νP = 1, 000 and νNP = 1, 500 that is to say with 1, 500, 000 independent realizations of the prior
stochastic models of uncertainties. We have n = 30. For the prior stochastic model of model un-
certainties, it is assumed that only the stiffness operator is uncertain. We then have δM = δD = 0
and δK ∈]0 , 0.94[. The optimization problem defined by Eq. (39) is solved by the trial method
using the estimator computed with Eq. (40) and yields δ opt

G = (0 , 0 , 0.35) which means that
δK = 0.35.

(ii) - Step 2 presented in Section 4.5 is used for the identification in low-frequency bandB LF. The
observations used for this identification step are the first Neig = 6 random eigenfrequencies in
low-frequency band BLF, for which the corresponding ranks of the experimental eigenfrequen-
cies are respectively 1, 3, 6, 10, 14 and 17. The uncertain system parameters are the Young
modulus y and the shear deformation factor f

s
which are modeled by random variables Y and F s

respectively. The prior stochastic models of Y and F s are constructed using the maximum en-
tropy principle under the constraints defined by the available information which yields Gamma
distributions with mean values y = 1010 N/m2 and f

s
= 3 and with coefficients of variation δY

and δFs . We then have X = (Y, Fs), x = (y, f
s
) and δX = (δY , δFs ). For δG = δ

opt
G estimated in

Step 1, the optimal values (xopt, δopt
X ) of (x, δX) are estimated solving the optimization problem

defined by Eq. (44) by the trial method and yields xopt = (1010, 3.8) and δopt
X = (0.12 , 0.08).

(iii) - Step 3 presented in Section 4.6 is used for the identification of the posterior stochastic
model of system-parameter uncertainties using the Bayes method. The optimal prior stochastic
models of uncertainties which have been estimated in Steps 1 and 2 are used. We have always
νP = 1, 000 and νNP = 1, 500. Figs. 4 and 5 display the optimal prior probability density function
and the posterior probability density function of the random Young modulus Y and the random
shear deformation factor F s.

(iv) - Response predicted with the optimal prior stochastic models of uncertainties. Fig. 6 dis-
plays the confidence region of the modulus of the FRF in log 10 scale over band B = BLF ∪ BMF

for transversal displacement along x2 at observation point P2 located in the neutral line with
x1 = 0.0029 m. This figure compares the experimental frequency response functions with the
confidence region for Pc = 0.95 calculated with the stochastic reduced-order computational
model using the optimal prior stochastic model of system-parameter uncertainties (Step 2) and
the optimal prior stochastic model of model uncertainties (Step 1). It can be seen that the pre-
diction of the stochastic model is good in the medium-frequency band. Fig. 7 (which is a zoom
of Fig. 6 for the low-frequency band B LF) shows a reasonable good prediction in this band B LF.
This prediction will be improved with the posterior stochastic model of system-parameter uncer-
tainties.

(v) - Response predicted with the posterior stochastic model of system-parameter uncertainties
and the optimal prior stochastic model of model uncertainties. Fig. 8 is related to the frequency
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response function calculated with the stochastic reduced-order computational model using the
posterior stochastic model of system-parameter uncertainties (Step 3) and the optimal prior
stochastic model of model uncertainties (Step 1). This figure displays the confidence region
for Pc = 0.95 of the modulus of the FRF in log10 scale over band B = BLF ∪BMF, for transversal
displacement along x2 at observation point P2 located in the neutral line with x1 = 0.0029 m. It
can be seen that the prediction of the stochastic model is good in the medium-frequency band.
Fig. 9 (zoom of Fig. 8 for band BLF) shows that the prediction has been improved in band B LF.

6.5. Quality assessment

Figs. 10 to 13 are related to the quality assessment analysis. These figures display the modulus
of the FRF in log10 scale (over band B = BLF ∪ BMF for Figs. 10 and 12, and over band B LF

for Figs. 11 and 13), for transversal displacement at quality assessment point QA 3 located in the
neutral line with x1 = 0.0057 m. The confidence region for P c = 0.95 is calculated with with the
stochastic reduced-order computational model using the optimal prior stochastic model (Figs. 10
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Figure 6: Confidence region of the modulus of the FRF in log10 scale over band B = BLF ∪ BMF for transversal
displacement at observation point P2: stochastic reduced-order computational model with the optimal prior stochastic
model of uncertainties (colored region), experiments (five thin solid lines), mean computational model (thick dashed
line).
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Figure 7: Zoom of Fig. 6 over the low-frequency band - Confidence region of the modulus of the FRF in log10 scale over
band BLF for transversal displacement at observation point P2: stochastic reduced-order computational model with the
optimal prior stochastic model of uncertainties (colored region), experiments (five thin solid lines), mean computational
model (thick dashed line).

and 11) and the posterior stochastic model (Figs. 12 and 13) of system-parameter uncertainties
(Step 3) and the optimal prior stochastic model of model uncertainties (Step 1). It can be seen
a good prediction with the optimal prior stochastic model of uncertainties, which is improved in
low-frequency band BLF with the posterior stochastic model of system-parameter uncertainties
in presence of the optimal prior stochastic model of model uncertainties.

7. Conclusion

A complete methodology has been presented to identify the stochastic model of uncertainties in
computational structural dynamics in the low- and medium-frequency ranges. The first eigen-
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Figure 8: Confidence region of the modulus of the FRF in log10 scale over band B = BLF ∪ BMF for transversal
displacement at observation point P2: stochastic reduced-order computational model with the posterior stochastic model
of uncertainties (colored region), experiments (five thin solid lines), mean computational model (thick dashed line).
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Figure 9: Zoom of Fig. 8 over the low-frequency band - Confidence region of the modulus of the FRF in log10 scale
over band BLF for transversal displacement at observation point P2: stochastic reduced-order computational model with
the posterior stochastic model of uncertainties (colored region), experiments (five thin solid lines), mean computational
model (thick dashed line).

frequencies are used to identify the stochastic model of uncertainties in the low-frequency band
while the frequency response functions are used to identify it in the medium-frequency band. The
system-parameter uncertainties are taken into account with the parametric probabilistic approach.
The model uncertainties induced by modeling errors are taken in to account with the nonparamet-
ric probabilistic approach. The optimal prior stochastic model of model uncertainties is first iden-
tified using the frequency response functions in the medium-frequency band without taking into
account the system-parameter uncertainties. Then, in presence of these optimal prior stochastic
model of model uncertainties, the optimal prior stochastic model of system-parameter uncertain-
ties is identified using the first eigenfrequencies in the low-frequency band and not the frequency
response functions. Finally, always in presence of the optimal prior stochastic model of model
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Figure 10: Confidence region of the modulus of the FRF in log10 scale over band B = BLF ∪ BMF for transversal
displacement at quality assessment point QA3: stochastic reduced-order computational model with the optimal prior
stochastic model of uncertainties (colored region), experiments (five thin solid lines), mean computational model (thick
dashed line).
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Figure 11: Zoom of Fig. 10 over the low-frequency band - Confidence region of the modulus of the FRF in log10 scale
over band BLF for transversal displacement at quality assessment point QA3: stochastic reduced-order computational
model with the optimal prior stochastic model of uncertainties (colored region), experiments (five thin solid lines), mean
computational model (thick dashed line).

uncertainties, the posterior stochastic model of system-parameter uncertainties is identified us-
ing the Bayes method and the same first eigenfrequencies belonging to the low-frequency band
for which the optimal prior stochastic model has previously been identified. All the formulas
required for solving such statistical inverse problems have been given. The presented application
is a simple structure but which is very interesting because the mean computational model intro-
duced significant modeling errors which play an important role in the medium-frequency band.
In contrast, the behavior of the frequency response functions in low-frequency band is driven by
the resonances which mainly depend on the system parameters which control the location of the
first eigenfrequencies. It has been shown that a very good prediction can be obtained in the low-
frequency band with the posterior stochastic model of system-parameter uncertainties while there
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Figure 12: Confidence region of the modulus of the FRF in log10 scale over band B = BLF ∪ BMF for transversal dis-
placement at quality assessment point QA3: stochastic reduced-order computational model with the posterior stochastic
model of uncertainties (colored region), experiments (five thin solid lines), mean computational model (thick dashed
line).
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Figure 13: Zoom of Fig. 12 over the low-frequency band - Confidence region of the modulus of the FRF in log10 scale
over band BLF for transversal displacement at quality assessment point QA3: stochastic reduced-order computational
model with the posterior stochastic model of uncertainties (colored region), experiments (five thin solid lines), mean
computational model (thick dashed line).

is also a very good prediction in the medium-frequency range using the optimal prior stochastic
model of modeling errors. Consequently, a posterior stochastic model is not really required for
the medium-frequency band. This is an important conclusion. it should be noted that, if such a
posterior stochastic model had to be built by the Bayes method for the medium-frequency range,
then it would not be a problem in theory, but would pose significant challenges in terms of imple-
mentation because the random matrices introduced by the nonparametric probabilistic approach
of model uncertainties are described using a large number of independent random variables.
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Appendix A. Random matrix theory for the nonparametric stochastic model of uncertain-
ties

Appendix A.1. Ensemble SG+0 of random matrices

The Gaussian Orthogonal Ensemble (GOE) [49] cannot be used when positiveness property and
integrability of the inverse are required. Consequently, adapted ensembles of random matrices
have been introduced for the nonparametric probabilistic approach of uncertainties in computa-
tional structural dynamics.
The construction of the ensemble SG+0 of random matrices [G0], defined on the probability space
(Θ,T ,P), with values in the set M+n (R) of all the positive-definite symmetric (n × n) real matri-
ces, and such that E{[G0]} = [In] and E{log(det[G0])} = c with |c| < +∞, is given in [70, 71].
The dispersion of the stochastic model of random matrix [G 0] is controlled by the dispersion
parameter δ defined by

δ =

{
1
n

E{‖ [G0] − [In] ‖2F}
}1/2

, (A.1)

which can be such that 0 < δ < (n+1)1/2(n+5)−1/2. It should be noted that {[G0] jk, 1 ≤ j ≤ k ≤ n}
are dependent random variables and it is proven in [71] that E{‖[G 0]−1‖2F } < +∞. In addition,
if (n + 1)/δ2 is an integer, then this stochastic modeling coincides with the Wishart probability
distribution [4, 70].
The generator of independent realizations (which is required to solve the random equations with
the Monte Carlo method) is detailed in [70, 71].

Appendix A.2. Ensemble SG+ε of random matrices

Let 0 ≤ ε � 1 be a positive number as small as one wants. The ensemble SG+ε is defined as the
ensemble of all the random matrices such that

[G] =
1

1 + ε
{[G0] + ε [In]} , (A.2)

in which [G0] is a random matrix which belongs to ensemble SG+0 . Let [G] be in SG+ε (if ε = 0,
then SG+ε = SG+0 and [G] = [G0]). It can easily be seen that E{[G]} = [In] and that, for all
second-order random variable X, defined on the probability space (Θ,T , P), with values in R n,
we have E{< [G] X ,X >} ≥ cεE{‖X‖2} in which cε = ε/(1 + ε), where <x , y>=

∑
j x jy j is the

Euclidean inner product of the vectors x and y, and where ‖x‖ is the associated Euclidean norm.
Finally, for all ε ≥ 0, it can also be proven that E

{
‖[G]−1‖2F

}
< +∞.
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