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Abstract

The optimization of sheet metal forming processes requires accurate evalua-

tions of material forming abilities. This paper presents an original technique

based on the use of a cruciform shape for experimental characterization and

numerical prediction of forming limit curves. The whole forming limit dia-

gram is covered with a unique geometry by controlling displacements in the

two main directions of the cruciform shape. The test is frictionless and the

influence of linear and non-linear strain paths can be easily studied. The

modeling of the cruciform shape with the finite element method permits

to plot forming limit curves without any calibration step, essential for the

classical Marciniak-Kuczynski (M-K) model. Experimental and numerical

results are presented for an aluminium alloy 5086. These results are respec-

tively compared with the ones from classical techniques : Marciniak test and
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numerical M-K model.

Keywords: Forming Limit Curves (FLCs); Cruciform specimen; Biaxial tensile
test; M-K Model; Aluminium alloys

1. Introduction

Sheet metal forming is a widely used method for producing various com-

ponents for different fields of application. In sheet metal forming operations,

the sheet can be deformed only up to a certain limit. The ability of sheet

metal to deform into desired shape without local necking or fracture is defined

as its formability. Formability may depends on many factors like material

properties or process parameters (strain paths, strain rate, temperature, ...).

The design and optimization of forming operations with numerical simula-

tion tools needs more and more accurate predictions of material formability

in order to fully exploit its forming abilities. Thus, understanding and char-

acterizing the formability of metal sheets are essential for controlling final

product quality and then evaluating the success of the sheet forming oper-

ation, especially with the increasing use of aluminium alloys. Miller et al.

(2000) have shown that these alloys exhibit generally low formability com-

pared with typical mild steels.

The most popular technique to evaluate the formability of sheet metals is
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the forming limit diagram (FLD). A FLD is a major/minor strain diagram

which can distinguish between safe points and necked or failed points. The

transition from safe to failed points is defined by the forming limit curve

(FLC). The determination of FLDs is a complex task and research on FLDs

has always been the subject of extensive experimental, analytical or numeri-

cal studies. For experimental determination of forming limit curves, two main

kinds of forming methods have been developed, the so-called out-of-plane

stretching (e.g. Nakajima test) and the in-plane stretching (e.g. Marciniak

test). For out-of-plane stretching, the blank is deformed under triaxial stress

while during in-plane stretching, the sheet is under plane stress conditions

in the central part. By forming a number of sheet specimens with varying

widths, different deformation modes (strain states) are observed (Figure 1).
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Figure 1: Exemple of Forming Limit Curve and Marciniak’s specimens with varying widths

Despite some major drawbacks, these conventional tests are widely used.

The main drawbacks are the use of a high number of specimens with different

geometrical properties, the influence of friction and the description of forming

limit curves for simplistic linear strain paths. Barata Da Rocha et al. (1984)

have notably demonstrated that non-linear loadings, frequently encountered

in industrial processes, have a great influence on level and shape of FLCs.

The Marciniak and Kuczynski model (known as the M-K model) is a

widely used analytical tool which has undergone great improvement. How-

ever, for complex constitutive laws (like thermo-viscoplastic behaviours), the

analytical M-K model does not work well because the inherent system equa-

tions cannot be easily resolved. Due to the developments in the methods
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of modeling and simulation, numerical predictions of FLCs have become

more attractive. Petek et al. (2005) have selected the Finite Element (FE)

method to model the Marciniak test and then simulate the necking process.

This approach permits to reduce the experimental effort of formability char-

acterization even if in this case the drawbacks of the Marciniak test are still

present. With numerical methods, the limits of the analytical approaches

can be overcome by implanting any complex constitutive law into FE code,

as already explained by Zhang and present authors with the use of a FE

geometrical model of the M-K model (Zhang et al. (2010)). Nevertheless,

the initial geometrical imperfection factor in the M-K model is uncertain.

Its value can be adjusted by making the best fit between the numerical and

experimental results or by making a microstructural analysis of the metallic

sheet, as it is successfully used by Abedrabbo et al. (2007). Moreover, the

choice of an appropriate constitutive law is a key to obtaining the practical

prediction of FLCs.

In order to overcome the drawbacks of the above experimental and numer-

ical methods, a cruciform shape could be an interesting alternative to char-

acterize and predict forming limit curves. Yu et al. (2002) tried to propose a

cruciform biaxial tensile specimen with a chamfer on the arms and the cen-
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tral region to reach limit states. The interest of the cruciform shape is clearly

demonstrated in this study but no forming limit curves have been obtained

with this specimen. Many authors intensively used cruciform specimens for

various mechanical characterizations. Pascole and De Villiers (1973) have

used a cruciform specimen to study the low cycle fatigue of steels, a similar

shape has been used by Kelly (1976) to study creep failure. Yield criteria and

hardening identifications have notably been carried out by Lin et al. (1993).

In these studies, a low level of strain is generally reached in the central zone

of the specimens, cruciform shape must be improved in order to observe high

level of strains in the central region. Although cruciform specimens have been

investigated quite extensively, Hannon and Tiernan (2008) mention that no

standard geometry exists and the design of a dedicated specimen shape is

still the main difficulty that restricts applications for the cruciform biaxial

tensile test. The main advantage of this shape is that the strain path at the

onset of necking is directly imposed by the control of the testing machine, in-

dependently on the specimen geometry. A unique geometry is then sufficient

to cover the whole forming limit diagram, the influence of strain path can

be easily studied by applying linear or non-linear loadings. Another benefit

is that the test is frictionless, the formability is characterized without any
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influence of friction. Numerically, the use of the finite element method to

model the cruciform shape can permit the implementation of complex me-

chanical behaviour in order to evaluate the influence of operating conditions

like temperature or strain rate on the formability. Moreover for this numer-

ical model, the calibrating step of the initial geometrical imperfection factor

which is essential for M-K models, is unnecessary. A direct evaluation of the

formability is possible with this predictive model and its experimental vali-

dation is made easier by the use of the same experimental cruciform shape

with well-known boundary conditions.

In this paper, experimental results are first presented for an aluminium

alloy 5086. This alloy possesses good welding characteristics, resistance to

corrosion and formability properties. It is commonly used in aeronautics

and marine. Then numerical predictions of formability are given for different

implementations of material behaviours, the aim of this part is to show that

a good correlation between experimental and numerical results exists if an

accurate identification of the material behaviour is used, especially for high

strains. Finally, a comparison between experimental and numerical results

from the cruciform shape and conventional tools (Marciniak test and M-K

model) is presented.

7



2. Experimental results

2.1. Specimen design

A dedicated cruciform shape must be designed in order to observe the

onset of necking in the central zone of the specimen and not in the arms or

fillets of the specimen. This condition permits to control the strain path of

the necking zone thanks to the displacements of the four actuators. From

finite element simulations, different geometries have been investigated. The

more effective and the more promising specimen shape (Figure 2) has been

already optimized by present authors (Zidane et al. (2010)) in order to make

efficient its use for a whole forming limit curve identification. The central

region of the specimen is fabricated by using a digital numerical turning-

lathe, with a precision of 0.02mm for the central thickness.
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Figure 2: Cruciform shape

For this geometry, the strain path value at the central point of the spec-

imen is directly linked to the velocity ratio of actuators. At the onset of

necking, the value of the strain path remains almost constant for all speed

ratios, as illustrated in figure 5 for three different strain path values (dashed

curves). The evolution of the strain path is linear as it is observed in con-

ventional tests of formability (Marciniak or Nakajima).

To test this specimen, a servo-hydraulic testing machine provided with

four independent dynamic actuators is used (Figure 3). The center point of

the specimen is always maintained stationary during the test thanks to an

efficient servo-hydraulic control. For each actuator, the loading capacity is
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50KN and the maximum velocity can reach up 2m/s.

Figure 3: Cruciform specimen tested by a servo-hydraulic machine with four independent

actuators

To cover the whole forming limit diagram, constant speeds are set on each

axis of the cruciform specimen and the tested speed ratios are given in Table

1.

Axis 1(mm/s) 1 1 1 1 1 1 1 1 1 1

Axis 2(mm/s) 1 0.75 0.5 0.4 0.25 0.1 0 −0.02 −0.1 free

Table 1: Constant speeds set on each axis of the cruciform specimen
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2.2. Results

The difficulty in identifying experimental forming limit curves lies in the

choice of an appropriate criterion to detect the onset of necking. The interna-

tional standard ISO 12004-2 can be applied using either the Nakajima or the

Marciniak procedure. The limit strains that can be imposed on the material

are determined through interpolation, using a ”position-dependent” method.

In this work, due to its simplicity and reproducibility, a ”time-dependent”

method is preferred and will be applied also to determine numerical forming

limit curves. When necking occurs in a zone, a sharp change of strain can

be observed, corresponding to the onset of a plastic instability. Outside the

necking zone, the level of strains remains stable and constant. When the

equivalent plastic strain increment ratio between a point located inside the

necking zone (zone 1 in Figure 4) and outside the necking zone (zone 2 in

Figure 4) has reached a critical value, the time step of onset of necking is then

defined and the corresponding major and minor strains in zone 1 represents

one point of the FLC. The strain fields on the surface of the specimen are

measured thanks to a Digital Image Correlation (DIC) technique associated

with a high resolution camera.
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Zone 1

Zone 2

Figure 4: Zones 1 and 2 of the cruciform specimen

For the cruciform shape, the procedure to calibrate this critical value is

described by Zidane et al. (2010). A critical equivalent plastic strain incre-

ment ratio of 8 between zones 1 and 2 was chosen by identifying the time

step of onset of a bifurcation point on the evolution of the equivalent plas-

tic strain inside the necking zone (zone 1). The experimental forming limit

points for the different strain paths are shown in Figure 5. As it is illus-

trated in this figure, it is confirmed that the initial stage of fracture takes

place in the centre of the specimen. The experimental necking directions are

repeatable. For the cruciform shape, the necking direction is perpendicular

to major strain direction in uniaxial tension, the same observation is made

with the Marciniak test for this aluminium alloy. For the equibiaxial strain

mode, the direction is oblique (45o) to major strain direction for the cruci-
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form shape whereas for the Marciniak test, the direction is also oblique but

the angle presents more fluctuations.
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Figure 5: Experimental forming limit points for AA5086 and two examples of fracture in

the centre of the specimen

3. Numerical predictions

This section presents the numerical model used to predict FLCs and some

results for different descriptions of the mechanical behaviour of the metallic

sheet.

3.1. Model

Based on the cruciform specimen shape (Figure 2), the finite element

method is applied to build a new predictive model for forming limit curves.
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Due to the symmetrical properties of the specimen, only one-quarter is mod-

eled (Figure 6). For meshing, tetrahedral elements are applied and a refined

mesh is adopted where strain localization may appear (central zone, fillet,

grooves).

ZY

X

X

Y
Z

Figure 6: Mesh of the cruciform specimen

The elastic part is described by Hooke’s model (Young modulus of 67290

MPa and Poisson ratio of 0.3). Different hardening laws are proposed to

model the plastic behaviour of the material : (L) the classical power law of

Ludwick (Eq. 1), (V2) a saturation law based on the Voce’s formulation

(Eq. 2) and (V1) an intermediate additive law made up of a saturation term

and a linear one (Eq. 3).

σ = σ0 +Kεn (1)
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σ = σ0 +Q
√

1− e−Bε (2)

σ = σ0 +Q
(

1− e−Bε
)

+Hε (3)

In equations from (1) to (3), σ and ε are respectively the equivalent

stress and the equivalent plastic strain. Constitutive model parameters are

constants identified from a mono-axial test on a constant section AA5086

specimen. For the three hardening laws (L, V2 and V1), the results of the

identification are respectively presented in tables 2, 3 and 4. These laws are

implemented in the finite element code ABAQUS by means of the Fortran

subroutine UHARD.

σ0(MPa) K(MPa) n

125.9 447.1 0.41

Table 2: Constitutive model parameters for the Ludwick’s law (L)

σ0(MPa) Q(MPa) B

130.2 300.4 3.94

Table 3: Constitutive model parameters for the Voce’s law (V2)
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σ0(MPa) Q(MPa) B H(MPa)

160.0 166.8 15.0 161.9

Table 4: Constitutive model parameters for the additive Voce’s law (V1)

A comparison between the three identified hardening laws is proposed

in Figure 7. In this figure, one can see the very good correlation between

the three approaches and the experimental values for an equivalent strain

value between 0 and 20%. For larger values of the equivalent strain, a clear

discrepancy appears between the power law and the two Voce’s formulations.

For (V2), a saturation is observed and the evolution of (V1) is very close to

(V2) despite its linear term. Finally, The mono-axial test does not permit

to choose the appropriate hardening law for this material. For predictive

models of forming limit curves, hardening laws must be defined accurately

for equivalent plastic strain generally larger than 50% which is impossible

with the mono-axial tensile test. Nevertheless, in the following section, the

effects of the choice of the hardening law on the evaluation of the forming

limit curves will be quantified.
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Figure 7: Identification of L, V2 and V1 hardening laws

The choice of the yield criterion for this predictive model is also dis-

cussed hereafter. The isotropic Mises’s criterion is compared with the classi-

cal anisotropic Hill48 yield criterion. The anisotropy of this alloy is relatively

low in the plane of the sheet and Hill48 yield criterion can give an acceptable

description of this anisotropy. For Hill48 yield criterion, the equivalent stress

σ̄ is expressed by a quadratic function of the following type :

2σ̄2 = F (σy−σz)
2+G(σz−σx)

2+H(σx−σy)
2+2Lσ2

yz+2Mσ2

zx+2Nσxy
2 (4)

where F , G, H , L, M and N are constants specific to the state of

anisotropy of the material. The direction x is the rolling direction, y the

transverse direction and z the normal direction. Its ease of use permits to
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evaluate the influence of an anisotropic criterion on the determination of

the forming limit curves. The parameters of the Hill48 criterion have been

identified from Lankford’s coefficients and are given in table 5.

F G H L M N

0.7 0.637 0.363 1.5 1.5 1.494

Table 5: Hill48 yield parameters

3.2. Numerical FLCs

Different displacements should be imposed in the two perpendicular di-

rections in order to obtain different points belonging to the forming limit

curve. The procedure already used to detect the experimental limit strains

is applied to identify the numerical forming limit curves. Figure 8 shows the

impact of the hardening law and yield criterion on the prediction of FLCs.
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Figure 8: Influence of hardening law and yield criterion on numerical FLCs

As seen in figure 8, the two Voce’s hardening laws (V1) and (V2) asso-

ciated with the Hill48 yield criterion predict a lower forming limit curve as

compared to the power law of Ludwick (L), associated with the same yield

criterion. This difference between the predictions of the two models was

also reported by Abedrabbo et al. (2006) for calculations based on the M-K

model. The influence of the yield criterion is only studied for the Ludwick’s

law, Figure 8 shows a noticeable difference of behaviour between left-hand

side and right-hand side of the Forming Limit Diagram. In the left-hand side,

Hill48 yield criterion predicts a lower FLC as compared to isotropic Mises

criterion, which is the opposite for the right-hand side. By means of these

numerical predictions with different hardening laws and yield criteria, it is
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observed that the modeling of material behaviour greatly influences the level

and shape of predictive FLCs. An experimental verification of these results

is proposed hereafter.

3.3. Comparison with experimental results

Figure 9 shows a comparison between experimental and numerical FLCs

for Ludwick’s law with Hill48 and Mises criterion. The conservative FLCs

predicted by the two Voce models are not presented in this figure. As could

be seen from this plot, the correlation between experimental and numeri-

cal results is very good for the right-hand side of the forming limit curve,

especially for the Hill48 criterion. In this case, taking an anisotropic yield

criterion into consideration improves considerably the accuracy of the numer-

ical predictions. These results demonstrate the pertinency and the efficiency

of the numerical model based on the cruciform shape to evaluate forming

limits, without any calibration procedure as it will be discussed in the next

section.
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Figure 9: Comparison between experimental and numerical FLCs

4. Discussion

The aim of this section is to compare the numerical and experimental

results from the cruciform shape with the results obtained with widespread

tools like Marciniak test for experimental FLCs and M-K model for analytical

and numerical ones.

4.1. Comparison with experimental results from Marciniak test

A Marciniak test setup associated with a digital image correlation tech-

nique has been developed to experimentally evaluate sheet formability, this

setup has been already described by Zhang et al. (2010). In this work, a

similar time-dependent method based on a critical increment strain ratio is
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used. The comparison between forming limits from this Marciniak test and

from the tensile biaxial test is presented in Figure 10.
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Figure 10: Experimental FLCs from Marciniak test and biaxial test

For the right-hand side of the forming limit diagram, despite some dis-

crepancies due to the variability encountered in forming limits evaluation,

the two experimental procedures give the same results. For the left-hand

side and more especially for strain path corresponding to uniaxial tension,

the forming limits from cruciform shapes are much higher. This behaviour

was also observed for the previous numerical results. For the cruciform shape,

we can suppose the existence of a mechanism which stabilize the deformation

and then enhance the formability. Several mechanisms of stabilization are

mentioned by Emmens and Van Den Boogaard (2009) and discussed for the
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specific case of incremental sheet forming. In our case, only the bending-

under-tension mechanism due to the dissymmetry of the cruciform specimen

could contribute to the stabilization of the deformation. Nevertheless, the

bending observed during the tests is slight and can not explain such a dis-

crepancy for the left-hand side. The evolution of major and minor strains

before necking for the two tests can give a better explanation for the forma-

bility increase measured in the biaxial test. During an uniaxial tension test,

diffuse and localized necking are distinguished (Figure 11).

                 (a) 
Uniform deformation

          (b) 
Diffuse necking

           (c)
Localized necking

F F F

F F F

1

2

Figure 11: Diffuse and localized necking

Diffuse necking is characterized by contraction strains in both the width

and the thickness directions of the specimen, the size of a diffuse necking

is of the order of the specimen width. Diffuse necking develops gradually

and a significant extension is still possible after the onset of diffuse necking.
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Finally, a condition is reached where a sharp localized necking occurs. With

localized necking, the strain along the necking band is zero and the thickness

strain is exclusively provided by the remaining in-plane strain. The size of the

necking band is of the order of the sheet thickness. The same phenomenon is

observed in the Marciniak test when using narrow specimens (Figure 12-(a))

for the uniaxial tension strain path.

(b)(a)

Punch displacement

Actuator displacement

Figure 12: Specimens and imposed displacements for an uniaxial tension strain path, for

Marciniak (a) and cruciform specimen (b)

Figure 13 illustrates the onset of diffuse and localized necking during a

Marciniak test by following the evolution of major and minor strain. After

a steady stage of major strain increase and minor strain decrease, diffuse

necking develops and a considerable acceleration of the evolutions of in-plane

strains is observed. Localized necking clearly appears for a zero evolution of
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the minor strain.
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Figure 13: Evolution of minor and major strains for Marciniak test for the strain path

corresponding to uniaxial tension

In industrial stamping, as mentioned by Aretz (2004), the maximum al-

lowable strains are given by localized necking. Many criteria to detect the

onset of necking have been already presented and discussed in the literature

and even if a standard is established, the discussion is still opened. In Figure

13, the forming limits given by our critical increment strain ratio and the

ones given by the international standard ISO 12004-2 are represented. For

the two criteria, necking is detected during the diffuse stage, the increment

strain ratio criterion is more conservative. The same evolution of the major

and minor strains can be plotted for the cruciform shape (Figure 12-(b)) for
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the strain path corresponding to uniaxial tension. As shown in Figure 14, the

diffuse necking is not really observed. The localized necking corresponding

to a zero contraction of the minor strain clearly appears after a steady evolu-

tion of in-plane strains. The forming limits detected by the critical increment

strain ratio are then very close to the localized necking zone.
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Figure 14: Evolution of minor and major strains for cruciform shape for the strain path

corresponding to uniaxial tension

Figures 13 and 14 clearly show that the mechanisms of the necking on-

set is different in the two tests. This difference can explain the increase

of formability observed with the cruciform shape. Firstly, for the cruci-

form shape the forming limit criterion detects the onset of localized necking

whereas for the Marciniak test it is activated during the diffuse necking stage
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prior to localized necking. Secondly, the appearance of diffuse necking prob-

ably accelerates the onset of localized necking in the narrow specimen of the

Marciniak test. For the cruciform shape, the in-plane strain evolutions are

stable and directly linked to the actuator displacements, which delays the

onset of localized necking.

For the left-hand side of the forming limit diagram, the two tests give

different forming limits and it is difficult to assert that one prediction is

better than the other. Nevertheless, the shape of the narrow specimens

used in Marciniak or Nakajima tests is debatable, even if it permits to reach

strain paths in uniaxial tension, this shape is not always representative of

the geometry of industrial parts zones with the same strain path. For a

complex part, in a zone where uniaxial tension is observed, large width in

the direction of the minor strain could stabilize and delay the onset of necking

as it is observed for the cruciform shape.

4.2. Numerical M-K model

Many analytical or numerical results based on M-K models have been

already presented in the literature. It would be interesting to compare the

formability predictions of the numerical model of the cruciform shape with

the results of a classical M-K model. For this comparison, a geometrical
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M-K model already presented by Zhang et al. (2010) is built in the FE code

ABAQUS. Due to symmetry, only one half of the entire model in the thickness

is considered and the sheet is meshed by hexahedral elements. The boundary

conditions are imposed by displacement constraints in main directions of the

sheet. The previous identified constitutive models can be easily implemented

by means of the subroutine UHARD. Similarly as the analytical M-K model,

an initial defect in the sheet is characterized by two different zone thicknesses

: ta and tb in zone a and b respectively (Figure 15).

Element B Element A

2 1

zone a
zone b

zone a

Figure 15: Finite Element M-K model

The initial imperfection of the sheet thickness is characterized by the ini-

tial imperfection factor f0 = tb/ta. The main drawback of the M-K model is

that the results are highly sensitive to this geometrical imperfection. The im-

perfection can be caused by various factors such as local grain size variation,
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texture, alloy elements or thickness variation but in many studies, the value

of f0 is arbitrary fixed (a value of 0.98 is usual). A good approach consists

in adjusting the imperfection by fitting theoretical results and experimental

ones. One experimental point is sufficient to adjust the initial imperfection

but the choice of strain path influences the plot of the forming limit curve,

as illustrated in Figure 16.
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Figure 16: Influence of the geometrical imperfection value on the formability prediction

ok M-K model

In Figure 16, for the same material behaviour (L and Hill48 yield cri-

terion), the calibration of f0 in biaxial tension gives a value close to 0.95

whereas for plane strain (zero minor strain) the value is 0.9876. The calibra-

tion is made with the experimental results of the Marciniak test. For the M-K
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model, the L hardening law associated with the mises criterion (f0 = 0.979)

gives the best fitting with the three experimental points represented in the

figure. Figure 16 clearly underlines the difficulties in using a M-K model

as a predictive model for plotting forming limit curves. The calibration is

essential and strongly depends on the choice of the experimental point. The

results are also sensitive to the constitutive model but this remark has been

already made for the numerical model based on the cruciform shape. Fig-

ure 17 shows a comparison between numerical FLCs from cruciform shape

and M-K model (calibrated with Marciniak test results) for the L hardening

law associated with Hill48 and Mises yield criterion. For the two material

behaviours implemented in the finite element code, the major discrepancies

between the two models are mainly observed for positive minor strain with

the Hill criterion and for negative minor strain with the Mises criterion. The

difference between the two predictive models, especially for the left-hand side

could be reduced by calibrating the M-K model with the results of the biax-

ial tensile test. The choice of the yield criterion is then crucial for the two

models.
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Figure 17: Comparison of the two numerical models for L hardening law associated with

Hill48 or Mises yield criterion

The reliability of a predictive numerical model for forming limit curves

needs an accurate description of the material behaviour for large strains.

The main advantage of the numerical model based on the cruciform shape is

the removal of the calibration step which requires necessarily experimental

results.

5. Conclusion

The use of a cruciform shape can be an interesting alternative method

to plot experimental or numerical forming limit curves. The main advantage

of this shape is that the strain paths are directly imposed by the testing
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machine. For linear strain paths, the comparison of experimental results

with the ones from a classical Marciniak test shows a very good correlation.

Tests with non-linear strain paths can provide adapted forming limit curves

to evaluate material formability for complex parts. The test is frictionless

and the coupled influence of operating conditions like temperature or strain

rate can be easily evaluated. Numerically, the current research shows the

importance of using an accurate mechanical model of the material to predict

FLCs. Nevertheless, the FE model based on the cruciform shape gives a

direct evaluation of formability without any calibration step, contrary to the

classical M-K model. The cruciform shape can contribute to a better predic-

tion of forming limit curves by evaluating the effects of various parameters,

not easily quantified with the conventional tests.
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