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Optimizing Multi-Scale SSIM for Compression
via MLDS

Christophe CharriefMember, IEEE Kenneth Knoblauch, Laurence T. Maloney,
Alan C. Bovik, Fellow, IEEE Anush K. MoorthyMember, IEEE,

Abstract

A crucial step in the assessment of an image compressiorothéthihe evaluation of the perceived quality of the
compressed images. Typically, researchers ask observeasetperceived image quality directly and use these rating
measures, averaged across observers and images, to asgassalye quality degrades with increasing compression.
These ratings in turn are used to calibrate and compare imagkty assessment algorithms intended to predict
human perception of image degradation. There are sevemmlbdcks to using such omnibus measures. First, the
intepretation of the rating scale is subjective and mayediffom one observer to the next. Second, it is easy to
overlook compression artifacts that are only present itiqadar kinds of images.

In this paper, we use a recently developed method for asgepsirceived image quality, Maximum Likelihood
Difference Scaling (MLDS), and use it to assess the perfoomaf a widely-used image quality assessment algorithm,
MS-SSIM. MLDS allows us to quantify supra-threshold petoapdifferences between pairs of images and to examine
how perceived image quality, estimated through MLDS, clkanas the compression rate is increased. We apply the
method to a wide range of images and also analyze resultspixific images. This approach circumvents the
limitations inherent in the use of rating methods and allassalso to evaluate MS-SSIM for different classes of
visual image. We show how the data collected by MLDS allowtusgcalibrate MS-SSIM to improve its performance.

Index Terms

Image quality assessment performance, Difference scaling

I. INTRODUCTION

Lossy image compression techniques such as JPEG2000 atitmcbmpression rates, but only at the cost of
perceived degradation in image quality. There is a conalieriterature concerning how human observers perceive
compression-induced degradation in images and how wedrablmage Quality Assessment (IQA) algorithms tend

to predict human judgments of reduction in image quality dsration of compression.
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The most commonly employed means to assess human judgmanagé quality is to ask human observers to
rate image quality directly on a numerical scale. Human ine€lgts are ordinarily expressed as the Mean Opinion
Score (MOS) obtained from a sufficiently large set of humaseoker ratings relative to a normalized scale defined
by the International Telecommunications Union (ITQ)].[

The typical summary of the agreement between rated sugdatiage quality and the ouput of an IQA algorithm
is some measure of the correlation between the subjectiirgsaand the measured degree of distortion. Typical
measures of correlation include 1) Pearson’s linear catical coefficient (CC) between MOS and algorithm score
after nonlinear regression, 2) the root-mean-squared éRBISE) between MOS and the algorithm score after
nonlinear regression and 3) the Spearman rank order ctioreleoefficient (SROCC).

Examples of well-known IQA algorithms include DCturig,[Picture Quality Scale (PQSY], Multi-Scale Struc-
tural SIMilarity (MS-SSIM) [?], Wavelet Structural Similarity (WSSI)?], Visual Signhal-to-Noise Ratio (VSNR)
[?], and Visual Information Fidelity (VIF) 7] indices, to name a few. These indices compute relativeityusdores
between a reference image and a distorted version, oftesivéief) excellent correlations with MOS values. All
those IQA indices have been designed using different frammesv For example, MS-SSIM, WSSI and VIF were
developed within a Natural Scene Statistics (NSS) framkworunder assumptions about natural image structure.
They are based on an assumption that distortion-free imagagy a small subspace of the space of all possible
images. Image distortions can be interpreted as addingtartiti; vector to distortion free images. DCtune and
PQS were developed within a distortion-specific framewadikey use distortion models based on a specific set of
distortions (blockiness, blur, and so on) to predict qyaditores. Any one of these algorithms can be judged better
than a second if it correlates to a great extent with human MOS

In [?], SHEIK et al. compared 10 recent IQA algorithms and determined which faatcplarly high levels of
performance. They concluded that more can be done to retiecgap between machine and human evaluation of
image quality. In ], SESHADRINATHAN and Bovik studied the relationship between the structural simjlaaitd
VIF frameworks and older metricée. the MSE and HVS-based quality metrics. They concluded tisdMSand
VIF are closely related to the older IQA metrics under certaatural scene modeling assumptions. This was, also,
recently studied by HR and 20U who defined a bijective relation between SSIM and PSNR yiglgiredictions
of SSIM values from PSNR (and inverselyd][ The global conclusion of all those comparison studieha nho
IQA algorithm has been shown to definitively outperform ahers for all possible degradations, although owing
to the inclusion of both scene models and perceptual mothedIS-SSIM and VIF indices outperform many with
statistical significance.

Consider two hypothetical IQA algorithms (say and ¢-) that provide objective quality scores computed on a
large database. Fig 1(a) and 1(b) illustrate non real samgfl¢he obtained scores for each metric where outliers
have been intentionally mentioned, for the purpose of optasation. For each subfigure, let the score equal to 80
represents the ground truth score and the grey circles aredimputed scores for each image usindFig. 1(a))
andg¢. (Fig. 1(b)). Suppose the SROCC score is identical for thervedrics (say 0.96). This means that both IQA

algorithms have the same global efficiency. Neverthelassfiormation is provided about the “local” efficiency of
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Fig. 1. Sample of the quality ratings obtained for each roetti and ¢2.

each metricj.e., do there exist individual outliers from the ground truthame all individual scores a very close to
the ground truth score? In Fig 1(a) and 1(b), one observefeaatice in the distribution of the computed ratings.
In Fig. 1(b), the distribution of ratings is very close to theund truth rating except for two values. This can be
interpreted as a fault in the design of the associated mgirgince it fails to accurately predict the actual ratings
in two cases. Yet, no such failure is visible in Fig. 1(a). 8ege of the reduced variance in correlation scores, one
may conclude that the IQA algorithi;y is globally better designed thap.

For example, when considering the MS-SSIM ind@k pne can observe that despite a high degree of correlation
with human ratings, it sometimes fails to accurately prethe quality score of a particular image. Fig 2 shows
such two cases: 1) both human rating and predicted score ef@aded version of an original image are equivalent
and equal to 71, and 2) human rating (54) and predicted s@deof a degraded version of an original image are
different.

Ultimately, however, the interpretation of human ratingdiificult. Suppose, for example, that the human observer
rates two compressed (or otherwise distorted) images asl 3 &am image quality (on say, a scale of 1 to 10) and
also rates two other images as 7 and 8, respectively. Althdlig difference in rating is the same for both pairs,
we have no way to conclude whether the perceived increaseafity between the first pair of images is equal
to, greater than, or less than, the perceived increase iitygbatween the second pair. The subjective ratings only
allow us to order the images by quality.

CHARRIER et al. [?] recently applied a novel psychophysical method, Maximukelihood Difference Scaling
(MLDS) [?], [?] that circumvents this limitation of subjective rating rhetls. MLDS estimates an interval perceptual
scale and, thus, makes it possible to quantify supra-tbtdgherceptual differences between pairs of images in
order to evaluate perceptual changes in the images as cesigegenerated or other distortion is increased. The
MLDS method is based on simple, forced-choice judgmentgequires remarkably few trials to obtain quantitative
estimates of the effects of any degree of distortigp [

In this paper, we evaluate the efficacy of a recently-devadogeneral-purpose IQA algorithm in the specific
context of compression-quality trade-off using MLDS. Areéstigation about its local variation to accurately predic
the image quality score is performed, yielding a refinemérihe IQA algorithm. The trial IQA algorithm that is
used is the MS-SSIM index, due to its high degree of cor@tatiith human ratings?]. This paper is structured as
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(a) Both human rating and predicted score of a degradedove(gght) of an original image (left) are equivalent and
equal to 71

(b) Human rating (54) and predicted score (27) of a degra@esion (right) of an original image (left) are different.

Fig. 2. Image extracted from the TID2008 image database FacwMS-SSIM is in accordance with human rating (a) and forcWiMS-SSIM
fails to accurately predict the human ratings (b).

follows. In Section Il, we present the MLDS method. Sectibrsimmarizes MS-SSIM and its relevant parameters.
In section IV, we discuss the evolution of the local corielatof the predicted ratings. The apparatus is also
presented. In section V, one approach to counterbalancéotat lack of correlation is detailed and discussed.
Section VI presents the results on two large public imagdityuassessment databases. This is followed by a

concluding section.

1. MAXIMUM LIKELIHOOD DIFFERENCESCALING

Typical MOS algorithms are based on a psychophysical methivdduced by Stevens in 194@&][known as
magnitude estimation. In response to criticisms of thebdlity of data collected using magnitude estimation, othe
scaling methods have been developed, among them the MLD8itee.

The MLDS method is based on forced-choice judgments of dtimntervals and yields an interval scale of image
degradation. The task underlying MLDS is not discriminataf images but direct comparison of suprathreshold
differences between pairs of stimuli (images); the obsesiraply judges which of a pair of stimulus differences
is greater. Avoiding the use of rating scales, the MLDS meétheoids known problems associated with their use

by human beings?], [?].
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MLDS has previously been used to estimate the effect of distolevel on perceived image qualit®]] Next
we explain the model of the observer's judgments in the pspbiisical task on which MLDS is based, using
compression distortion as the application of interest.

An image seriexonsists of eéase imagep; and compressed versions of the base image dengted. , ¢,,
indexed by increasing degree of compression. If imagis compressed to a greater degree than imggee write
¢; > ¢;. For brevity, we denote images in the series by their supiscriThe pair(i, j) will serve as shorthand for
(¢is &)

On each trial, the observer views two pairs of stim(lij) and (k,!) representing four different levels of
compression of the initial image (including possibly no guassion). We refer to these two pairs aquadruple
denoted{s, j; k,l}. The observer judges whether the perceptual differencseaet the first pairi, j) is greater
than that between the second pgdirl). Over the course of the experiment, the observer judgesitfezethces of
a subset of all possible quadruples (pairs of pairs) for¥hetimuli in the seriespy, ..., ¢,. (i.e., p compression
levels).

The goal of MLDS is to assign numerical scale valgs, -, ...,1,) that can be used to predict how the
observer orders the pairs in each quadruple. We refer t@ thalsies as d@ifference scaleln principle, we wish
to assign these scale values so that the perceived difiefsgtoveen the images of the péirj) is judged greater

than the perceived difference between the images of the(paly if and only if,

l9i — sl > vk — ull- 1)

However, if the differencegy; — ;|| and || — 9| are close, it is unlikely that human observers would be
so reliable in judgment as to satisfy the criterion (1). Tketanto account this judgment variation, AMONEY
and YANG [?] proposed a model of difference judgment that allows theenles to exhibit stochastic variations in
judgment. We next describe their model. gt = ||; — ;|| be thelengthof the interval(a;, a;). The proposed
decision model is an equal-variance, Gaussian, signattitmtemnodel P], where the signal is the difference in the

lengths of the intervals:
0(i, Jik, 1) = Lij — Ly = |5 — 4| = [|[vn — ]| 2

The signald is assumed to be contaminated by a Gaussian erwdth mean O and standard deviatiento form
the judgment variable
A(i, ik, 1) = 0(i, 5 k1) + €. ®3)

MALONEY and YANG assumed that the observer, given the quadr@plg k, 1), selects the paifi, j) precisely
when A(i, j; k,1) > 0. The resulting model of the observer allows for stochastiGation in judgment. When the
magnitude ofé (¢, j; k, 1) is small relative to the Gaussian standard deviatignthe observer, presented with the
same stimuli, can give different responses. The degree aansistency predicted depends on the magnitude of

0(i,7; k,1) relative too. This dependence can be used to test the model itgglf7].
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MALONEY and YANG [?] proposed a method to estimate the scale values by diredtmization of the likelihood.
However, because the decision rule involves a simple lioearbination of the internal responses, the scale values
may also be estimated using a Generalized Linear Model (GLA)[?].

Let R; be the observers’ response to # quadruple(iy, ji; k¢, ;) in the experiment; = 1,...,n. R; is coded
as follows: R, = 0 if the difference of the first pair is judged to be larger, aRd= 1 otherwise. The GLM can
be specified as

g(E[P(R=1)]) = B1X1 + o Xo + - + BpXp, (4)

where the linear predictor is related to the expected vafubaobserver's response through a link functign,
$$EChristophe: Sentence to remove in italic, followed by the suggested one$$$ (more details about GLM
are given in Appendix A).

Hekrk B G | N A RrE

and X is the model matrix and a vector of coefficients, as described in Appendix A.

Sekokk £ | [ Rk kk

For binary choice models, as here, the link will be the ingarka sigmoidal function, and here we use cumulative
distribution function (cdf) of a Gaussian.

For each trial, all explanatory variables are set to 0 extmpthe 4 that correspond to the stimuli presented on
that trial. These 4 take the valugéd depending on the sign of their contributions to the decisiariable, (2). The
coefficients,s;, correspond to the scale values,and are estimated by an iterative procedure to yield a maximu
likelihood solution.

We estimated difference scales for each observer’s datadohn image, using MLDS as described above. All
computations were carried out in the statistical languagsiRg thegl mfunction. We have integrated the functions
necessary to perform these fits using either the direct oGkl approach in an R package (MLDS) available
from the Comprehensive R Archive Network (CRAN, accessflden ht t p: / / www. r pr oj ect . org/).

If we add a constant to all the values on the difference scdle:,.,...,v¢,) that maximizes likelihood,
the resulting difference scale also maximizes likelihadédve multiply all the values on the maximum likelihood
difference scale(t1, ¢, ...,1,) by a positive constant > 0, the resulting difference scale also maximizes
likelihood once we scale by a. Therefore, without loss of generality, we can fix the endchigbdf the maximum

likelihood difference scale to bg¢; = 0 and, = 1. We report all our results in this normalized format.

Ill. THE TESTIQA ALGORITHM

The MS-SSIM index 7] is a multiscale extension of the SSIM IQA algorithm intregd in [?]. MS-SSIM
contains three factors pertaining to: 1) luminance diginrt2) contrast distortion and 3) structure comparison.

All of these are first computed within multi-scale subbancklgpatches and then pooled together to obtain the
final predicted score between an original image and its diegraersion.

The basis of this measure lies in the representation of agénaa a vector within an image space. Any image

distortion can be interpreted as adding a distortion vetdothe reference image vector. In this space, the two
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vectors that represent luminance and contrast changesaspkame that is specific to the reference image vector.
The image distortion corresponding to a rotation of suchanglby an angle can be interpreted as a structural
change.

The luminance comparison is defined as

2urpy + Cy

I(I,J)= ———
A R

(5)

wherep; andp; respectively represent the mean intensity of the imaged.J, andC, is a constant for avoiding
instability whenyu? + 1% =~ 0. A common choice for the stabilizing constant@§ = (K;L)?, whereL is the
theoretical dynamic range of the image’s pixels did= 0.01.

The contrast distortion measure is defined to have a sinolan:f

20105 + Cy

I,J)=—5——-"5—-—
ol;J) a%—i—cr%—i—Cz

(6)

whereC, is a non negative constant commonly defined’as= (K, L)? (K, = 0.03), ando; (resp.o ;) represents
the standard deviation.
The structure comparison is performed after luminanceraatibn and contrast normalization. The structure

comparison function is defined as:
or.;+Cs

1,J)=
8(7 ) U[UJ+C3

()

whereC} is a non negative constant defined@s= C>/2, ando;; = ﬁ vazl(li — ;) (J; — ). Substituting
Cs by Cy/2in 7:
20[7J + Cy

I,J)=24J T2 8

Note thats(Z, J) can be negative (e.g., if the subband is inverted)
$$RChristophe: Sentence to remove in italic, followed by the suggested one$$$ To obtain a multi-scale index,
a low-pass filter is applied to the referencB @nd the distorted images/. Next a downsampling of the filtered

images by a factor of 2 is performed.

ek BEGIN***** To obtain a multi-scale index, a blur/downsample operation is recursively applied on he

reference [) and the distorted imaged) to generate M scales. *******xEND**xxxk*

The original scale is referred to as scdleand the highest scale as scdlé. Finally MS-SSIM is given by
combining the luminance comparison (5), the contrast disto measure (6) and the structure comparison (8) at
different scales by: y

MS-SSIMUZ..J) = [1ar (171" [T les(Z. )1 [ss(.D)] ©
i=1

where the contrast comparison and the structure compasisbnomputed at thié" scale, and denoted ag(1, .J)
ands; (I, J), respectively; the luminance comparisan(I, J) is computed only at scalé. The2M + 1 exponents

anr, Biand~y;, i =1,--- , M are used to adjust the relative importances of the compsnknthe commonly used
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Fig. 3. The 15 images used in the experiments are shown, wittrmonic labels. For each image, we estimated a differerale sased on
each observer's judgments, yielding a total of 450 diffeeescales.

implementation?®], M = 5 corresponds to the maximum scale, wtiile 1 corresponds to the original resolution of
the image. In P], the authors define@; = v; = 0.0448, 83 = 72 = 0.2856, 3 = v3 = 0.3001, 84 = 4 = 0.2363,
and a5 = ﬁ5 =5 = 0.1333.

IV. EVOLUTION OF THE CORRELATION WITH RESPECT TO COMPRESSION RAT
A. Apparatus

Thirty observers participated in the psychophysical teatsobservers had normal color vision (Ishihara test)
and normal or corrected-to-normal acuity (Snellen test).

We computed 15 image series using the base images shown.i.FHtese images portray a variety of scenes
and differ in their distributions of spatial and chromatietail.

The size of images was typicall§68 x 512 pixels or of similar size. For each visual test, the viewirigtahce
was fixed at 32 pixels per degree of visual angle.

We first tested whether observers could correctly order tmepressed images in descending order of quality.
If they could not do so, then allowing for possible difficulty discriminating adjacent images in the scale, there
could be no difference scale that could account for theifoparance.

For an observer to have a valid difference scale, his jud¢gsnemst satisfy two conditions?], the ordering
condition and the six-point condition. If the observer dadlither condition, then there is no difference scale that
can explain his pattern of choices. For any two stimulj,a; we use the notation; >~ a; to mean that the image
a; is judged to be less distorted than the image

The ordering condition requires only that the observerieang of pairs of stimuli must be transitive.
(ai 1 aj) & (aj 1 ak) = (ai 1 ak).
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Fig. 4. Example of a single trial during the ordering testeTubject sees an image at the nine trial compression rabkessfimuli are
randomly arranged on 3 lines. The subject was asked to ondeguality of all images from the best to the worst quality.

for any choice of stimulia;, a;, aj .Intuitively, a failure of transitive would preclude assigg scale values that
predict the observers ordering. We also require that therobss ordering agree with the degree of compression
of the stimuli (that the observer judges more compressetufitio be more distorted).

The six-point condition is a constraint on how the observelecs differences of pairs of stimulu; : a;). We
use the notatior{a; : a;) =2 (a; : a,,) to mean that the observer judges the first pair to be lessreliffehan
the second. The six-point condition requires that, givey sim imagesa; >1 a; =1 ar anda; >1 am >1 an,

(@i 2 aj) =2 (a; : am)&(a; : ag) =2 (am : an) implies (a; : ax) =2 (a; : an). The condition is effectively a test of
additivity of intervals P]. If the observer fails the six-point condition, there is diference scale that can account
for his judgments. Of course, in practice, we must allow foe possibility that observers will make inconsistent
judgments due to difficulties in discriminating stimuli. @ maximum likelihood fitting methods allow for failures
to discriminate. The two conditions are based on the two juelggs >, > and we test the conditions in two
experiments reported here.

During this initial test, observers had to first select thghleist quality image, then the second highest, etc. A
sample trial is shown in Fig. 4. During the test, each timeraage was selected by clicking on it, the selected
image disappeared and the number of the rank order was sliiothie. observer decided to cancel his choice, s/he
just had to click on the rank order number. The corresponitirage was shown again and the rank order number
disappeared. In addition, s/he could deselect more tharneage, depending on the selected number, for example,
if the observer had already classified six images, the obs@wuld deselect any image numbered from 1 to 6. If
s/he deselected image numbered 3, all images from 3 to 6 wioenatically deselected.

During the second psychophysical task, the observer sawadrgple of images drawn from a single image
series. These four images were arranged as two paif$ and (k, ) on a computer display. On half of the trials,
the first pair was displayed on the upper half of the displagest, the second on the lower, and on the remaining

trials the first pair was displayed on the lower, the secondh@nupper. For the convenience of the observer,
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Fig. 5. Example of a single trial in MLDS. The subject was preged with an image at four different compression rates. dttmuli are
arranged as two pair@, j) and (k, 1). In each pair, the right-hand stimulus was more compresBeel.subject was asked to judge whether the
decrease in quality in going fromto j is greater than the decrease in going fréro [. In this example, most observers would judge that the
upper pair exhibits the larger change.

the less compressed of the two images in each pair was alwagisedeft. The observer then judged which pair
(upper or lower) exhibited the larger change or differencquality. A sample trial is shown in Figure 5. Over the
course of the experiment, the observer judged several bdrugiradruples. These judgments were used to construct
a numerical difference scale that captures the effect oftiadd! compression on image qualit][ [?].

We applied MLDS to evaluate the image quality of the 15 trigdioal images, each compressed with JPEG2000 to
nine different levels{0.1000, 0.3057,0.5627,0.7684,0.9741,1.1798, 1.3854, 1.5912} bpp, plus the original image.
We used the JPEG2000 implementation provided by The JasBjecP[?]. We obtained difference scales for each
subject and image.

In order to compare MLDS values with scores obtained fromM®&SSIM IQA algorithm, we computed the
score provided by the IQA algorithm for each of the nine tiraages. Then the difference of scores for each
pair of consecutive images was computed. Those differamees then cumulated across the series. The cumulated

MS-SSIM scores were then fitted to the MLDS values using astagregression function.

B. Results

The obtained results (Fig. 6) show that MS-SSIM capturesgmual changes in images with increasing compres-
sion rates very well. Yet, even if MS-SSIM globally yieldgihicorrelations with the judgment of human observers,
sometimes it fails to accurately predict perceptual charggween images as the compression rate is increased.
For example, considering the imapegk, observers have judged a high visible difference betweaeruhis 3 and
4, whereas the associated MS-SSIM values are nearly idéntic

In order to investigate these indivudual failures, the spnoeedure that was used to compare the scores obtained
from the IQA algorithm and MLDS values was used for each onthefthree factors embedded within MS-SSIM.
The results are shown in Fig. 7 for all trial images. The fim# rof each of the three subfigures corresponds to

the contrast comparison valuﬁil‘i1 c;(1,.J)P, the second row corresponds to the luminance comparisaresal
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Fig. 6. Obtained results for all trial images and for thetthabservers. The black points and the black curve resmdgtiepresent the MLDS
and the MS-SSIM values.

imge

imgm imgn
: mﬂ’/ ESE

stimulus

pscale

Ip (I, J)*, while the last row represents the structure comparisonewa:z{l]f‘i1 si(I, ). At first glance, one
might remark that the third factor is less well correlatedhvWMLDS than the two other factors, especially at the
beginning of the scale. The same remark can be made when amgaces the MLDS values to MS-SSIM in Fig.
6. A poor fit is observed at the beginning of most curves. Tistisicture comparisoﬂf[ij\i1 s;(I,J) is of great
influence on the MS-SSIM values, as suggested?|n [

To acheive the best fit possible, one has to modify the infleesfcthis third parameter. This can be done by
changing the fivey; exponents. To perform this change, we first investigatedrtfieence of the decomposition
level M on the fitting with MLDS values.

Since the third (structure) factor is initially computedngs M = 5 levels, we first investigated the influence of
M: how doesM influence the curve for this third factor? To measure thisugrice, we computed the structure
comparison factor for levels from 1 to 5. The obtained rasalie shown in Fig. 8 for a representative subset of
trial images (imga to imge), where the black points and tlaelblcurve respectively represent the MLDS and the
third factor values.

At each decomposition level, one can observe poor fit at tiggnheng of each scale, for each trial image. This
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Fig. 7. Obtained results for all trial images. The black poend the curve respectively represent the MLDS and eadtedhtee MS-SSIM factor
values. For each of the three subfigures, the first row of ealsimsge corresponds to the contrast comparison vz{llﬂéisl ¢ (I, J)Pi, the second
row corresponds to luminance comparison valigsI, J)*M, and the last row represents the structure comparison s@lﬂil si(L, J)Yi
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Fig. 8. The structure comparison feature values (8) as wsedrhpute the MS-SSIM values, for different decompositievels and for the 5
first images (imga to imge). The black points and the blackeurespectively, represent the MLDS and the third facttwesused to compute
MS-SSIM. Each row corresponds to a decomposition level.

poor fit is observed for low decomposition level valudg & 1, M = 2). The best fitting curve occurs at the third
level, on average.

In order to counterbalance this lack of fit, we first investigha basic weighting rule that consists of modifying
the weight value on the third factoP][ The main goal is to obtain a better fit of the third MS-SSIMu&s to
MLDS. It has been found that refining the exponents valuesHerthird MS-SSIM factors(., .), the individual
failure observed at the beginning of the scale (Fig. 6) tedndiisappear, while the rest of the curve is unaffected,
yielding a higher correlation value with human ratings.

From this, it can be presumed that to improve the correlaifdhe MS-SSIM IQA algorithm scores and MLDS,
the coefficientg3;, ;) do not necessarily have to be identical (as initially sugggesn [?]).

Furthermore, in MS-SSIM luminance is not used at each staiepnly at the coarsest scaieg., only at the
fifth level with an exponent value equal tg; = (5. Note thata; does not necessarily have to be equalsto
and luminance information contained from previous resofutevels could be interesting to take into account to

optimize the correlation of MS-SSIM with human ratings. Wuld take into account all the levels as with the two
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other attributes.
Thus, next we investigate the impact of letting all of thegmaetersq;,3; and~;, vary. Thus we will estimate

15 coefficient values to improve the MS-SSIM IQA algorithm.

V. THE IQA ALGORITHM GENETICALLY IMPROVED

Given the obtained results from the weight coefficienfor the third MS-SSIM factor, we hypothesize that
different exponent values for each of the three attributebexlded in the MS-SSIM index would provide a higher

global correlation rate.

A. The associated error function

The main objective is to find new exponent values for each mgosition scale of MS-SSIM. The associated
formula can be expressed as a 15-parameter function :
M
MS-SSIM(I, J, i, B, yizi = 1, -+, M) = [ [ [Li(I, J)*ei(1, J)% s:(1, )] (10)
=1
where>" Y o + B+ =1landVie[1,--- ,M],0< ; <1,0< 3 <1,0 < 3 < 1.
From (10), the search for the new exponent values seeks mmation of the error function

K
E(Oéi, Bi, ’}/i;i = 1, cee 7]\/[) = min Z(MLDSJ(I, J) — fMS-SSle(I, J, (679 ﬁi, ’yi))Q (11)
j=1
where K is the number of tested images for which the MLDS values aowiged, and fMS-SSIM.) are the
computed rates obtained following a logistic regression.
In other words, the goal is to estimate the 15 exponent vehegsminimize the error functio®(.). Since the

error function is non-convex and may contain numerous loptiima, the choice of search strategy to optimize it

is important.

B. Search strategy

In this section, the problem of defining a suitable searcateyy is addressed. The retrieval of the minimum
between the MLDS value and the MS-SSIM value is a global dptition problem, where the error functidty.)
is minimized with respect to a set of parameters as in (10xeMpecifically, the error function (Eq. 11) defines a
non-linear multidimensional function, usually charaized by several local maxima. Therefore, the search styateg
should find the global minimum, and avoid remaining trappetbcal minima. Two problems must be successfully
treated 1) the large search space and 2) false matchespamdisg to local minima.

The simplest way to finda, 3:,7i)ic[1,...,ar) is by considering a large number Of;, 3;,7i)ic[1,... ) Values,
keeping the one whose MS-SSIM value is the closest to MLZSthe one with the lowest errdt(.)). Of course,
the more samples considered, the more precise the end valde. This kind of brute-force approach based on

searching all possible combinations of parameters is rasiliée in practice.
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The Genetic Algorithm (GA) is a population-based stocliasiarch procedure that finds exact or approximate
solutions to optimization and search problems. Modeled lan rhechanisms of evolution and natural genetics,
genetic algorithms provide an alternative to traditionalimization techniques by using directed random searches
to locate optimal solutions in multimodal landscap®s Their basic principles were first introduced by Holland in
1975 [?] and extended to functional optimization by De Jor®y gnd Goldberg P], and have since proven to be
efficient and stable in searching for global optimum sohsid?], [?], [?]. One of the most attractive features of
GAs is their ability to solve problems involving non-diféartiable functions and those defined in discrete as well
as continuous spaces.

Usually, a simple GA is composed of three operations: selecgenetic operation, and replacement. GAs use
a population, which is composed of a group of chromosomesgpicesent the solutions of the system. Defining
the solution representation of the system is the first tasknndpplying GAs. The solution in the problem domain
can then be encoded into the chromosome in the GA domainyigedversa Initially, a population is randomly
generated. The fitting function then uses values from obgdtunctions to evaluate the quality of fit of each
chromosome.

The “fitter” chromosome has the greater chance to survivenguhe evolution process. The objective function is
problem specific; its objective value can represent theegygierformance index (e.g., an error). Next, a particular
group of chromosomes is chosen from the population to bengar@&he offspring are then generated from these
parents using genetic operations, which normally are or@ssand mutation. Similar to their parents, the fithess of
the offspring are evaluated and used in replacement preg@ssorder to replace the chromosomes in the current
population by the selected off-spring. The GA cycle is theymerated until a desired termination criterion is satisfied,
for example, the maximum number of generations is reachetheoobjective value is below the threshold.

In this paper,M = 5 is the number of levels used to compute the MS-SSIM valuehdh ¢ase, the GA domain
represents a 15-dimensional space in which one point iseegpd asas, - -, aa, 51, -, Bm, Y1, ,Ym ), @and

the fitness function is defined by (11).

C. Optimization results

To seek each exponent value, the 15 reference images JP2pressed at nine different compression level as
depicted in section IV-A are used to compute the 15 multliéeetured; (1, J), ¢;(I, J) ands; (I, J) Vi € [1,--- ,5].

Table | shows the estimated values for each exponent aftemizing (11). Fig. 9 shows the comparison of the
MLDS scale values and the 15 parameter fitted MS-SSIM modwe.Black points represents the MLDS values, the
black continuous curves the MS-SSIM indices computed uiegoriginal exponent values and the dashed curves
by computing MS-SSIM values with the exponent values frorhldd. For each trial image (imga to imgo), a
better fit to the MLDS values was obtained when the MS-SSIMeslare computed with the new exponent values
than with the original ones. Table Il presents the MSE oleginsing the original exponent values and the new
ones for all trial images. A reduction of more than 0.2 wasiaéd. This means that the new MS-SSIM indices

are better correlated to the MLDS values than the origin&sorhis is not really surprising, since minimizing
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Exponent (a7} (%)) (0%} QY (071
Value 0.1920 0.2169 0.2026 0.2136 0.1749
Cl || [0.0989,0.2415] [0.1877,0.2791]| [0.1692,0.2384] [0.1765,0.2868] [0.0814,0.2304]
Exponent B1 B2 B3 B4 Bs
Value 0.9612 0.0097 0.0097 0.0097 0.0097
Cl || [0.8288,0.9681] [-0.0145,0.0933] [0.0084,0.0112] [0.0084,0.0112] [-0.0133,0.1012]
Exponent M 72 V3 V4 V5
Value 0.0082 0.1586 0.8167 0.0083 0.0082
Cl || [0.0073,0.0086] [0.1241,0.2530] [0.7250,0.8501] [0.0073,0.0086] [0.0073,0.0086]
TABLE |
THE 15 COMPUTED EXPONENTS AND ASSOCIATEICONFIDENCEINTERVALS (C|) WITH A 95% CONFIDENCE LEVEL USING AGA
APPROACH UNDER THE CONSTRAINTS M o, + 8; +vi = 1AND Vi € [1,--- ,M],0< ; <1,0< 8; <1,0< v < 1.

MS-SSIM | Original weighted| New weighted
MSE 0.6092 0.3863

TABLE I
COMPUTEDMSE FOR BOTH ORIGINALMS-SSIMINDEX AND FOR MS-SSIMINDEX USING NEW EXPONENTS USING A LINEAR
REGRESSIONWITH RESPECT TMLDS VALUES.

the error functionE(.) is the basis for deriving those new values. In addition, c@mfce intervals with a 95%
confidence level are provided for each exponent. They arguted using a boostrap process with 999 replicates.

In order to take into account local correlation to design @A lalgorithm, one can define and minimize an error
function between MLDS values and the predicted values. G&ishelp improve the design of the test IQA method,
i.e. the MS-SSIM measure by finding new exponent values. Fig. $plalys the original exponent values (black
points) and the new ones (black stars) for the three mulésgcarameters embedded in MS-SSIM. If we consider
the associated coefficients for the structure attributedime), we observe that the third decomposition levehsge
to be considered of greater importance since its exponémé v higher whereas the four others are quite similar.
Analyzing Fig. 8, one can see that this level is the best imseof the fit to the MLDS values. The four other
levels are quite similar in terms of fit with the MLDS valueséeTcurve associated with these exponent values is
quite similar to the curve associated with the original exgrits. Nevertheless, considering individual correlation
the new exponent value associated to the third level is didriglegree than the original one. This is mainly due
to the fact that the structure attribute at the third leved igood estimator of the structure degradation evolution.

If we consider the multi-level luminance attribute, onlftfifth level was originally considered to be of interest,
since onlyas is used. But, if we observe Fig. 11 the fiting at each level igrlyeidentical. This suggests that all
the five levels should contribute approximately equally teasurement of the luminance degradation.

Focusing on the contrast attribute, note that the first léteethe MLDS values quite well. For levels from 2 to
5, one observes that the values are quite similar with lovindiaccuracy. This agrees with the displayed values

in Fig. 10 where the first value is higher than the others aedfdlr last values are identical.
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Fig. 9. Obtained results for all trial images. The black poirepresent the MLDS values, the black curve is associaféd the original
MS-SSIM index, and the dashed curve represents the compMEe8SIM values using the new exponent values.

Following the above procedure, better local correlatioroligained, and thus, the error between the MLDS
values and the predicted MS-SSIM indices is minimized. Timiglies that the refined MS-SSIM indices are better

correlated to human judgments.

V1. EVALUATION OF THE PERFORMANCE OF THE REFINEOMS-SSIMINDEX.

In order to judge the relevance of the 15 new exponents e&ihia the previous section, we tested the refined
MS-SSIM index on both the LIVE and the TID2008 Image Qualiptabases.

To provide quantitative performance evaluation, three saezs of correlation have been used: 1) Pearson, 2)
Kendall and 3) Spearman measures. To perform the Pearsmiatimn measures, a logistic function (as adopted in
the video quality experts group (VQEG) Phase | FR-TV t@htias used to provide a non-linear mapping between
the refined MS-SSIM values and subjective scores. We thearaggly used the subjective scores provided with
the overall LIVE and the TID2008 database. Kendall and Speaarcorrelation measures were computed between

the DMOS values and the MS-SSIM indices obtained using buothoriginal exponent values and the new ones
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Fig. 10. The original exponent values (black points) andrite ones (black stars) for each MS-SSIM attribute.

(Table ). Those measures can be interpreted as predicticuracy measures (Pearson and Kendall coefficients)

and prediction monotonicity measure (Spearman coefficient

A. Results on the LIVE database

Considering first the LIVE database, the results are predeint Table IIl. The scatter plots of DMOS versus
both the original and the refined MS-SSIM values are showrign B3, where each point represents one test image,
the vertical and horizontal axes representing MOS and thengdlistortion objective quality score for the original
MS-SSIM (black points) and the refined MS-SSIM values (cee)srespectively.

From both the scatter plots and the correlation evaluatesults, we see that the performance of the MS-
SSIM index computed with the new exponent values yields awpd performance relative to the MS-SSIM values
obtained with the original exponent values. This is not tfokenoisy or blurred images, since a decrease of the
correlation coefficients is observed. Nevertheless, whietegradations are included, one observes that the SROCC
is significantly higher when new exponent values are usetlrilily, this is driven in part by optimization of QA
with respect to JP2K and also FastFading (which uses JP2K)glbo JPEG distortion.

B. Results on the TID database

Table IV displays the correlations obtained for both or&iMS-SSIM index and refined MS-SSIM index with

respect to DMOS values from the TID2008 database. When theslations relative to the subjective values
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black curve respectively represent the MLDS and the lunteafactor values used to compute MS-SSIM. Thh fow corresponds to ath
decomposition level.

JP2K JPEG White Noise
Original | New | Original | New | Original | New
CC| 0.783 0.810 0.730 | 0.742 | 0.9153 | 0.9142
KROCC | 0.884 0.884 0.849 | 0.852| 0.8887 | 0.8878
SROCC]| 0.980 0.991 0.962 | 0.981| 0.9825 | 0.9813

Gaussian blur FastFading All
Original | New | Original | New | Original [ New
CC | 0.8864 | 0.8623| 0.725 0.788 | 0.7980 | 0.8142
KROCC | 0.8591 | 0.8413| 0.859 0.876 | 0.8021 | 0.8543
SROCC | 0.9725 | 0.9627| 0.965 0.974 | 0.9464 | 0.9762

TABLE Il
COMPUTED CORRELATION COEFFICIENTS FOR BOTH ORIGINAMS-SSIMINDEX AND FOR MS-SSIMINDEX USING NEW EXPONENTS
USING A LINEAR REGRESSION WITH RESPECT T®OMOS VALUES FROM THELIVE DATABASE.
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The contrast feature values for the five decompusitvels and for the 5 first images (imga through imge). Thelblpoints and

the black curve respectively represent the MLDS and thel tfaictor values used to compute MS-SSIM. Thid Fow corresponds to ath
decomposition level.

Degrad #1 Degrad #2 Degrad #3 Degrad #4 Degrad #5 Degrad #6
Original | New | Original | New | Original | New | Original | New | Original | New | Original | New
CC | 0.7994 | 0.7700| 0.8151 | 0.7913] 0.8278 | 0.8340| 0.8341 | 0.8224| 0.8861 | 0.8333| 0.6672 | 0.6399
KROCC | 0.6139 | 0.5767| 0.6013 | 0.5677| 0.6148 | 0.6241| 0.6117 | 0.5977| 0.6419 | 0.5887| 0.4846 | 0.4575
SROCC]| 0.8099 | 0.7767| 0.8055 | 0.7748| 0.8215 | 0.8265| 0.8099 | 0.7923| 0.8706 | 0.8211] 0.6899 | 0.6547
Degrad #7 Degrad #8 Degrad #9 Degrad #10 Degrad #11 Degrad #12
CC | 0.8524 | 0.8355| 0.9384 | 0.9292| 0.9638 | 0.9485| 0.9629 | 0.9796| 0.9727 | 0.9823| 0.8784 | 0.8983
KROCC | 0.6569 | 0.6514| 0.8169 | 0.7793| 0.8316 | 0.8013| 0.7489 | 0.7664| 0.8559 | 0.8876| 0.6637 | 0.6891
SROCC]| 0.8488 | 0.8361| 0.9563 | 0.9355| 0.9587 | 0.9458| 0.9328 | 0.9571] 0.9697 | 0.9812] 0.8663 | 0.8852
Degrad #13 Degrad #14 Degrad #15 Degrad #16 Degrad #17 All
CC | 0.8414 | 0.8437] 0.7417 | 0.7388] 0.7290 | 0.8666| 0.7322 | 0.7259| 0.7721 | 0.5468| 0.8332 | 0.8532
KROCC | 0.6766 | 0.6957| 0.5254 | 0.5335| 0.5038 | 0.6309 | 0.5345 | 0.5427| 0.4748 | 0.4068| 0.6577 | 0.6699
SROCC| 0.8609 | 0.8849| 0.7375 | 0.7434| 0.7109 | 0.8353| 0.7239 | 0.7402| 0.6349 | 0.5430| 0.8543 | 0.8601
TABLE IV

COMPUTED CORRELATION COEFFICIENTS FOR BOTH ORIGINAMS-SSIMINDEX AND FOR MS-SSIMINDEX USING NEW EXPONENTS
USING A LINEAR REGRESSION WITH RESPECT T®@MOS VALUES FROM THE TID2008DATABASE. THE TYPE OF DEGRADATIONS ARE
EXPLAINED IN TABLE V
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Fig. 13. Scatter plots of DMOS versus the original and MLR8red MS-SSIM predictions (with original exponent valuesl ¢he new ones).
Each point represents one test image in the LIVE image ds¢aba

calculated on the TID2008 database, the refined MS-SSIMxiad@in outperformed the originally designed MS-
SSIM. If we only investigate compression artifacts (degtamh #10 to #13, as defined in Table V), the refined
MS-SSIM vyields a significant increase of the correlationuesl Similar to the results obtained from the LIVE
image database, a decrease of the correlation values iallyl@bserved for noise artifacts (degradation #1 to #7
and #14). One notes that for two particular noise artifaats,increase of the correlation value occurs (#3 and
#14). A small increase of the correlation values is alsoiobthfor degradation #15 and #16. Both non eccentricity
pattern noise (#14) and local block-wise distortions ofedént intensity (#15) artifacts can be interprated as akblo
degradation of the image that is a typical compressiona&itifThis can explain the associated notable increase of
the correlation, since the refined MS-SSIM index has beeimigd for compression artifacts.

Degradations #3 and #16, respectively, concern a spataltyelated noise and a change of intensity. When
analysing the images corresponding to degradation #1fleidifferences between the reference image and the
degraded versions are not necessarily great. This coulgsymmnd to the first part of the obtained curves when
the fitting with MLDS values is generated. Actually, from Fig, a flat part is noticeable at the beginning of
each curve. The refined MS-SSIM index seems to fit better thitiqular part than the original MS-SSIM. For
JP2K compression artifacts, this particular part corraggdo slightly compressed images, where visible diffeeenc
are not easily observable (that is the case for degradedeinagh artifact # 16). This can explain why higher
correlation values are obtained for degradation # 16.
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Degrad # | Type of distortion
1 Additive Gaussian noise
2 Additive noise in color components is more intensive
than additive noise in the luminance component
3 Spatially correlated noise
4 Masked noise
5 High frequency noise
6 Impulse noise
7 Quantization noise
8 Gaussian blur
9 Image denoising
10 JPEG compression
11 JPEG 2000compression
12 JPEG transmission errors
13
14
15
16
17

JPEG2000 transmission errors

Non eccentricity pattern noise

Local block-wise distortions of different intensity
Mean shift (intensity shift)

Contrast change

TABLE V
DESCRIPTION OF THEL7 DEGRADATION TYPES WITHIN THETID2008DATABASE

C. Statistical significance

To assess whether the difference in performance betweesrigiaal MS-SSIM index and the refined MS-SSIM
index is statistically significant, we applied a varian@sdd hypothesis test using the residuals between the DMOS
values and the ratings provided by the trial IQA algorithifisis test is based on the F-test that determines whether
two population variances are equal. This is done by comgaitie ratio of the two computed variances. The
null hypothesis is that the residuals from the original MSH8 index are statistically indistinguishable (at a 95%
confidence level) from the residuals of the refined MS-SSIM. mMentioned in 7], the threshold ratio value for
which the two sets of residuals are statistically distishable can be obtained from the F-distributiGh [

The results obtained from this test confirm that the diffeeeaf correlation over the entire LIVE database (Table
1) is statistically significative.

Regarding the TID2008 database (Table 1V), we found thatdifference of correlation is not statistically
significant overall the database, which is not surprisivgigithe breadth of distortions in the TID database. However,
we did find that the refined MS-SSIM index is superior to thgiodl MS-SSIM index with statistical significance
for degradations #10 to #13 and #15. Those degradation®ooactifacts that occur during a compression scheme

applied on images.

VII. CONCLUSION

When one judges the performance of IQA algorithms, corim@iatwith human ratings are computed. The higher
the correlation value is, the better the prediction scardlisolute rating quality methods are usually used to obtain
human ratings that will serve as ground truth (MOS or DMOS3t, Ymage quality ratings (based on absolute

judgments) are considerably less reliable than differgnadgements, for reasons described in section Il. Intead of
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using MOS (or DMOS) values which are obtained from qualityngs based on absolute judgments, we have used
a recent psychophysical method, Maximum Likelihood D#fece Scaling (MLDS) to evaluate IQA methods and
improve them.

We applied it to a large collection of images to assess thsemurences of JP2K compression and compared
observers’ judgments image quality to the predictions o QA method, MS-SSIM. We found that MS-SSIM
suffers from local failures when assessing JP2K compraessgpecially due to its third (structure) factor that gseat
influences the predicted values. It was found these loclirés can be reduced using different values for the three
(i, Bi,v:) exponents which we estimate from data. The refined MS-SStxrwas found to yield significantly
improved performance relative to the original algorithmta large public image quality assessment databases.

The use of MLDS permits interpretation of the correlatiotueaof IQA algorithms across the series of degra-
dation. This help us identify levels of degradation for whiQA can fail. This is not easily done when absolute
rating quality methods are used instead of MLDS. This yield®ore precise comparison to human ratings, and
helps in the design of high performance IQA algorithms. Tliswed us to improve the performance of MS-SSIM
for compression-based distortions. Even if the resultddcbe attributed to the use of JP2K compressed images
to reweight MS-SSIM, the obtained overall performance fothbLIVE and TID2008 database is better than using
original MS-SSIM.

APPENDIXA

MAXIMUM LIKELIHOOD DIFFERENCESCALING AS A GLM

A GLM [ 7] is described by
n(E[Y]) = X5 (12)

wheren(.) is a link function transforming the expected value of theredats of the response vectaf)to the scale
of a linear predictor given by the product of the model maffX) and a vector of coefficientg3]. The elementy”
are distributed as a member of the exponential family. Warassthat each quadruplé, j; k, 1) has been reordered

so thati < j < k < [. Equation (2) can thus be rewritten as
6, js ke, 1) = Pr — b, — Y5 — i (13)

The design matrixX can be constructed by considering the weights of«thas the covariates. This yields an
n X p matrix X wheren is the number of quadruples tested anis the number of physical levels evaluated over
the experiment. On a given trial, the values in only four cohs are non-zero, taking on the values 1,-1,-1,1 in
that order (these coefficents correpond to the entries i)).(A8 the remaining entries are set to 0. For example,

consider a set of 7 stimuli distributed along a physicaleseald numbered 1 to 7. Four quadruples and the associated
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design matrixX are

1 3 5 7 10 -1 0 -1 0 10 0 0
7 9 4 5 0 0 01 -1 0 -1 0 1 0
1 5 6 7 1 0 0 0 -1 -1 1 0 0 0
2 3 9 10 01 -1 0 0 0 0 0 -1 1

b

To render the model identifiable, however, we drop the firdirom, which has effect of fixings; = 0, yielding a

model withp — 1 parameters to estimate as with the direct method. The GLMbeaspecified as
g(E[P(R=1)]) = B2 X2 + B3 X5+ -+ + BpXp, (14)

where X id the ' column of X. In the present case, the responses of the observer can t@etas Bernouilli
random variables. The expected values of the respdnsae related to the linear predictors through a non linear
function g, that is here the inverse cumulative distribution funtidntltee Gaussian. GLM is used to estimate
maximum likelihood estimateég, e ,1/5p, and, together with); = 0, we have maximum likelihood estimates of
the scale values. These form a difference scale whete 1 by assumption, anaﬂp is not normalized to 1. As
wAp = 6!, the scale can be normalized W as a last step. The justification for these last steps is taiance

of maximum likelihood estimation under reparameterizaf®. In practice, the fits were obtained using the open

source softwar® (http://www.r-project.org/) with the packagdL DS [7].
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