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Abstract

A crucial step in the assessment of an image compression method is the evaluation of the perceived quality of the

compressed images. Typically, researchers ask observers to rate perceived image quality directly and use these rating

measures, averaged across observers and images, to assess how image quality degrades with increasing compression.

These ratings in turn are used to calibrate and compare imagequality assessment algorithms intended to predict

human perception of image degradation. There are several drawbacks to using such omnibus measures. First, the

intepretation of the rating scale is subjective and may differ from one observer to the next. Second, it is easy to

overlook compression artifacts that are only present in particular kinds of images.

In this paper, we use a recently developed method for assessing perceived image quality, Maximum Likelihood

Difference Scaling (MLDS), and use it to assess the performance of a widely-used image quality assessment algorithm,

MS-SSIM. MLDS allows us to quantify supra-threshold perceptual differences between pairs of images and to examine

how perceived image quality, estimated through MLDS, changes as the compression rate is increased. We apply the

method to a wide range of images and also analyze results for specific images. This approach circumvents the

limitations inherent in the use of rating methods and allowsus also to evaluate MS-SSIM for different classes of

visual image. We show how the data collected by MLDS allows usto recalibrate MS-SSIM to improve its performance.

Index Terms

Image quality assessment performance, Difference scaling.

I. I NTRODUCTION

Lossy image compression techniques such as JPEG2000 allow high compression rates, but only at the cost of

perceived degradation in image quality. There is a considerable literature concerning how human observers perceive

compression-induced degradation in images and how well several Image Quality Assessment (IQA) algorithms tend

to predict human judgments of reduction in image quality as afunction of compression.
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The most commonly employed means to assess human judgment ofimage quality is to ask human observers to

rate image quality directly on a numerical scale. Human judgments are ordinarily expressed as the Mean Opinion

Score (MOS) obtained from a sufficiently large set of human observer ratings relative to a normalized scale defined

by the International Telecommunications Union (ITU) [?].

The typical summary of the agreement between rated subjective image quality and the ouput of an IQA algorithm

is some measure of the correlation between the subjective ratings and the measured degree of distortion. Typical

measures of correlation include 1) Pearson’s linear correlation coefficient (CC) between MOS and algorithm score

after nonlinear regression, 2) the root-mean-squared error (RMSE) between MOS and the algorithm score after

nonlinear regression and 3) the Spearman rank order correlation coefficient (SROCC).

Examples of well-known IQA algorithms include DCtune [?], Picture Quality Scale (PQS) [?], Multi-Scale Struc-

tural SIMilarity (MS-SSIM) [?], Wavelet Structural Similarity (WSSI) [?], Visual Signal-to-Noise Ratio (VSNR)

[?], and Visual Information Fidelity (VIF) [?] indices, to name a few. These indices compute relative quality scores

between a reference image and a distorted version, often acheiving excellent correlations with MOS values. All

those IQA indices have been designed using different frameworks. For example, MS-SSIM, WSSI and VIF were

developed within a Natural Scene Statistics (NSS) framework or under assumptions about natural image structure.

They are based on an assumption that distortion-free imagesoccupy a small subspace of the space of all possible

images. Image distortions can be interpreted as adding a distortion vector to distortion free images. DCtune and

PQS were developed within a distortion-specific framework.They use distortion models based on a specific set of

distortions (blockiness, blur, and so on) to predict quality scores. Any one of these algorithms can be judged better

than a second if it correlates to a great extent with human MOS.

In [?], SHEIK et al. compared 10 recent IQA algorithms and determined which had particularly high levels of

performance. They concluded that more can be done to reduce the gap between machine and human evaluation of

image quality. In [?], SESHADRINATHAN and BOVIK studied the relationship between the structural similarity and

VIF frameworks and older metrics,i.e. the MSE and HVS-based quality metrics. They concluded that SSIM and

VIF are closely related to the older IQA metrics under certain natural scene modeling assumptions. This was, also,

recently studied by HOR and ZIOU who defined a bijective relation between SSIM and PSNR yielding predictions

of SSIM values from PSNR (and inversely) [?]. The global conclusion of all those comparison studies is that no

IQA algorithm has been shown to definitively outperform all others for all possible degradations, although owing

to the inclusion of both scene models and perceptual models,the MS-SSIM and VIF indices outperform many with

statistical significance.

Consider two hypothetical IQA algorithms (sayq1 andq2) that provide objective quality scores computed on a

large database. Fig 1(a) and 1(b) illustrate non real samples of the obtained scores for each metric where outliers

have been intentionally mentioned, for the purpose of our explanation. For each subfigure, let the score equal to 80

represents the ground truth score and the grey circles are the computed scores for each image usingq1 (Fig. 1(a))

andq2 (Fig. 1(b)). Suppose the SROCC score is identical for the twometrics (say 0.96). This means that both IQA

algorithms have the same global efficiency. Nevertheless, no information is provided about the “local” efficiency of
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(a) distribution of the ratings obtained
for the metricq1.

(b) distribution of the ratings obtained
for the metricq2.

Fig. 1. Sample of the quality ratings obtained for each metric q1 andq2.

each metric,i.e., do there exist individual outliers from the ground truth orare all individual scores a very close to

the ground truth score? In Fig 1(a) and 1(b), one observes a difference in the distribution of the computed ratings.

In Fig. 1(b), the distribution of ratings is very close to theground truth rating except for two values. This can be

interpreted as a fault in the design of the associated metricq2 since it fails to accurately predict the actual ratings

in two cases. Yet, no such failure is visible in Fig. 1(a). Because of the reduced variance in correlation scores, one

may conclude that the IQA algorithmq1 is globally better designed thanq2.

For example, when considering the MS-SSIM index [?], one can observe that despite a high degree of correlation

with human ratings, it sometimes fails to accurately predict the quality score of a particular image. Fig 2 shows

such two cases: 1) both human rating and predicted score of a degraded version of an original image are equivalent

and equal to 71, and 2) human rating (54) and predicted score (27) of a degraded version of an original image are

different.

Ultimately, however, the interpretation of human ratings is difficult. Suppose, for example, that the human observer

rates two compressed (or otherwise distorted) images as 3 and 4 in image quality (on say, a scale of 1 to 10) and

also rates two other images as 7 and 8, respectively. Although the difference in rating is the same for both pairs,

we have no way to conclude whether the perceived increase in quality between the first pair of images is equal

to, greater than, or less than, the perceived increase in quality between the second pair. The subjective ratings only

allow us to order the images by quality.

CHARRIER et al. [?] recently applied a novel psychophysical method, Maximum Likelihood Difference Scaling

(MLDS) [?], [?] that circumvents this limitation of subjective rating methods. MLDS estimates an interval perceptual

scale and, thus, makes it possible to quantify supra-threshold perceptual differences between pairs of images in

order to evaluate perceptual changes in the images as compression-generated or other distortion is increased. The

MLDS method is based on simple, forced-choice judgments andrequires remarkably few trials to obtain quantitative

estimates of the effects of any degree of distortion [?].

In this paper, we evaluate the efficacy of a recently-developed general-purpose IQA algorithm in the specific

context of compression-quality trade-off using MLDS. An investigation about its local variation to accurately predict

the image quality score is performed, yielding a refinement of the IQA algorithm. The trial IQA algorithm that is

used is the MS-SSIM index, due to its high degree of correlation with human ratings [?]. This paper is structured as
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(a) Both human rating and predicted score of a degraded version (right) of an original image (left) are equivalent and
equal to 71

(b) Human rating (54) and predicted score (27) of a degraded version (right) of an original image (left) are different.

Fig. 2. Image extracted from the TID2008 image database for which MS-SSIM is in accordance with human rating (a) and for which MS-SSIM
fails to accurately predict the human ratings (b).

follows. In Section II, we present the MLDS method. Section III summarizes MS-SSIM and its relevant parameters.

In section IV, we discuss the evolution of the local correlation of the predicted ratings. The apparatus is also

presented. In section V, one approach to counterbalance thelocal lack of correlation is detailed and discussed.

Section VI presents the results on two large public image quality assessment databases. This is followed by a

concluding section.

II. M AXIMUM L IKELIHOOD DIFFERENCESCALING

Typical MOS algorithms are based on a psychophysical methodintroduced by Stevens in 1946 [?] known as

magnitude estimation. In response to criticisms of the reliability of data collected using magnitude estimation, other

scaling methods have been developed, among them the MLDS technique.

The MLDS method is based on forced-choice judgments of stimulus intervals and yields an interval scale of image

degradation. The task underlying MLDS is not discrimination of images but direct comparison of suprathreshold

differences between pairs of stimuli (images); the observer simply judges which of a pair of stimulus differences

is greater. Avoiding the use of rating scales, the MLDS method avoids known problems associated with their use

by human beings [?], [?].
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MLDS has previously been used to estimate the effect of distortion level on perceived image quality [?]. Next

we explain the model of the observer’s judgments in the psychophysical task on which MLDS is based, using

compression distortion as the application of interest.

An image seriesconsists of abase imageφ1 and compressed versions of the base image denotedφ2, . . . , φp,

indexed by increasing degree of compression. If imageφi is compressed to a greater degree than imageφj we write

φi > φj . For brevity, we denote images in the series by their subscripts. The pair(i, j) will serve as shorthand for

(φi, φj).

On each trial, the observer views two pairs of stimuli(i, j) and (k, l) representing four different levels of

compression of the initial image (including possibly no compression). We refer to these two pairs as aquadruple

denoted{i, j; k, l}. The observer judges whether the perceptual difference between the first pair(i, j) is greater

than that between the second pair(k, l). Over the course of the experiment, the observer judges the differences of

a subset of all possible quadruples (pairs of pairs) for theN stimuli in the seriesφ1, ..., φp. (i.e., p compression

levels).

The goal of MLDS is to assign numerical scale values(ψ1, ψ2, . . . , ψp) that can be used to predict how the

observer orders the pairs in each quadruple. We refer to these values as adifference scale. In principle, we wish

to assign these scale values so that the perceived difference between the images of the pair(i, j) is judged greater

than the perceived difference between the images of the pair(k, l) if and only if,

‖ψi − ψj‖ > ‖ψk − ψl‖. (1)

However, if the differences‖ψi − ψj‖ and ‖ψk − ψl‖ are close, it is unlikely that human observers would be

so reliable in judgment as to satisfy the criterion (1). To take into account this judgment variation, MALONEY

and YANG [?] proposed a model of difference judgment that allows the observer to exhibit stochastic variations in

judgment. We next describe their model. LetLij = ‖ψi − ψj‖ be thelengthof the interval(ai, aj). The proposed

decision model is an equal-variance, Gaussian, signal detection model [?], where the signal is the difference in the

lengths of the intervals:

δ(i, j; k, l) = Lij − Lkl = ‖ψi − ψj‖ − ‖ψk − ψl‖ (2)

The signalδ is assumed to be contaminated by a Gaussian errorǫ with mean 0 and standard deviationσ to form

the judgment variable

∆(i, j; k, l) = δ(i, j; k, l) + ǫ. (3)

MALONEY and YANG assumed that the observer, given the quadruple(i, j; k, l), selects the pair(i, j) precisely

when∆(i, j; k, l) > 0. The resulting model of the observer allows for stochastic variation in judgment. When the

magnitude ofδ(i, j; k, l) is small relative to the Gaussian standard deviation,σ, the observer, presented with the

same stimuli, can give different responses. The degree of inconsistency predicted depends on the magnitude of

δ(i, j; k, l) relative toσ. This dependence can be used to test the model itself [?], [?].
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MALONEY and YANG [?] proposed a method to estimate the scale values by direct maximization of the likelihood.

However, because the decision rule involves a simple linearcombination of the internal responses, the scale values

may also be estimated using a Generalized Linear Model (GLM)[?], [?].

Let Rt be the observers’ response to thetth quadruple(it, jt; kt, lt) in the experiment,t = 1, . . . , n. Rt is coded

as follows:Rt = 0 if the difference of the first pair is judged to be larger, andRt = 1 otherwise. The GLM can

be specified as

g(E[P (R = 1)]) = β1X1 + β2X2 + · · ·+ βpXp, (4)

where the linear predictor is related to the expected value of the observer’s response through a link function,g

$$$Christophe: Sentence to remove in italic, followed by the suggested one$$$ (more details about GLM

are given in Appendix A).

*****BEGIN*******

andX is the model matrix andβ a vector of coefficients, as described in Appendix A.

******END********

For binary choice models, as here, the link will be the inverse of a sigmoidal function, and here we use cumulative

distribution function (cdf) of a Gaussian.

For each trial, all explanatory variables are set to 0 exceptfor the 4 that correspond to the stimuli presented on

that trial. These 4 take the values±1 depending on the sign of their contributions to the decisionvariable, (2). The

coefficients,βi, correspond to the scale values,ψi and are estimated by an iterative procedure to yield a maximum

likelihood solution.

We estimated difference scales for each observer’s data foreach image, using MLDS as described above. All

computations were carried out in the statistical language Rusing theglm function. We have integrated the functions

necessary to perform these fits using either the direct or theGLM approach in an R package (MLDS) available

from the Comprehensive R Archive Network (CRAN, accessiblefrom http://www.rproject.org/).

If we add a constantc to all the values on the difference scale(ψ1, ψ2, . . . , ψp) that maximizes likelihood,

the resulting difference scale also maximizes likelihood.If we multiply all the values on the maximum likelihood

difference scale(ψ1, ψ2, . . . , ψp) by a positive constanta > 0, the resulting difference scale also maximizes

likelihood once we scaleσ by a. Therefore, without loss of generality, we can fix the end points of the maximum

likelihood difference scale to beψ1 = 0 andψp = 1. We report all our results in this normalized format.

III. T HE TEST IQA ALGORITHM

The MS-SSIM index [?] is a multiscale extension of the SSIM IQA algorithm introduced in [?]. MS-SSIM

contains three factors pertaining to: 1) luminance distortion, 2) contrast distortion and 3) structure comparison.

All of these are first computed within multi-scale subband local patches and then pooled together to obtain the

final predicted score between an original image and its degraded version.

The basis of this measure lies in the representation of an image as a vector within an image space. Any image

distortion can be interpreted as adding a distortion vectorto the reference image vector. In this space, the two
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vectors that represent luminance and contrast changes spana plane that is specific to the reference image vector.

The image distortion corresponding to a rotation of such a plane by an angle can be interpreted as a structural

change.

The luminance comparison is defined as

l(I, J) =
2µIµJ + C1

µ2
I + µ2

J + C1
(5)

whereµI andµJ respectively represent the mean intensity of the imageI andJ , andC1 is a constant for avoiding

instability whenµ2
I + µ2

J ≈ 0. A common choice for the stabilizing constant isC1 = (K1L)
2, whereL is the

theoretical dynamic range of the image’s pixels andK1 = 0.01.

The contrast distortion measure is defined to have a similar form:

c(I, J) =
2σIσJ + C2

σ2
I + σ2

J + C2
(6)

whereC2 is a non negative constant commonly defined asC2 = (K2L)
2 (K2 = 0.03), andσI (resp.σJ ) represents

the standard deviation.

The structure comparison is performed after luminance subtraction and contrast normalization. The structure

comparison function is defined as:

s(I, J) =
σI,J + C3

σIσJ + C3
(7)

whereC3 is a non negative constant defined asC3 = C2/2, andσIJ = 1
N−1

∑N

i=1(Ii − µi)(Ji −µJ ). Substituting

C3 by C2/2 in 7:

s(I, J) =
2σI,J + C2

2σIσJ + C2
(8)

Note thats(I, J) can be negative (e.g., if the subband is inverted)

$$$Christophe: Sentence to remove in italic, followed by the suggested one$$$To obtain a multi-scale index,

a low-pass filter is applied to the reference (I) and the distorted images (J). Next a downsampling of the filtered

images by a factor of 2 is performed.

*******BEGIN***** To obtain a multi-scale index, a blur/downsample operation is recursively applied on he

reference (I) and the distorted images (J) to generate M scales. *******END*******

The original scale is referred to as scale1, and the highest scale as scaleM . Finally MS-SSIM is given by

combining the luminance comparison (5), the contrast distortion measure (6) and the structure comparison (8) at

different scales by:

MS-SSIM(I, J) = [lM (I, J)]
αM

M
∏

i=1

[ci(I, J))]
βi [si(I, J))]

γi (9)

where the contrast comparison and the structure comparisonare computed at theith scale, and denoted asci(I, J)

andsi(I, J), respectively; the luminance comparisonlM (I, J) is computed only at scaleM. The2M +1 exponents

αM , βi andγi, i = 1, · · · ,M are used to adjust the relative importances of the components. In the commonly used
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(a) imga (b) imgb (c) imgc (d) imgd (e) imge (f) imgf

(g) imgg (h) imgh (i) imgi (j) imgj (k) imgk (l) imgl

(m) imgm (n) imgn (o) imgo

Fig. 3. The 15 images used in the experiments are shown, with mnemonic labels. For each image, we estimated a difference scale based on
each observer’s judgments, yielding a total of 450 difference scales.

implementation [?], M = 5 corresponds to the maximum scale, whilei = 1 corresponds to the original resolution of

the image. In [?], the authors definedβ1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363,

andα5 = β5 = γ5 = 0.1333.

IV. EVOLUTION OF THE CORRELATION WITH RESPECT TO COMPRESSION RATE

A. Apparatus

Thirty observers participated in the psychophysical tests. All observers had normal color vision (Ishihara test)

and normal or corrected-to-normal acuity (Snellen test).

We computed 15 image series using the base images shown in Fig. 3. These images portray a variety of scenes

and differ in their distributions of spatial and chromatic detail.

The size of images was typically768× 512 pixels or of similar size. For each visual test, the viewing distance

was fixed at 32 pixels per degree of visual angle.

We first tested whether observers could correctly order the compressed images in descending order of quality.

If they could not do so, then allowing for possible difficultyin discriminating adjacent images in the scale, there

could be no difference scale that could account for their performance.

For an observer to have a valid difference scale, his judgments must satisfy two conditions [?], the ordering

condition and the six-point condition. If the observer fails either condition, then there is no difference scale that

can explain his pattern of choices. For any two stimuli,ai, aj we use the notationai ≻1 aj to mean that the image

ai is judged to be less distorted than the imageaj .

The ordering condition requires only that the observer’s ordering of pairs of stimuli must be transitive.

(ai ≻1 aj) & (aj ≻1 ak) ⇒ (ai ≻1 ak).
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Fig. 4. Example of a single trial during the ordering test. The subject sees an image at the nine trial compression rates. The stimuli are
randomly arranged on 3 lines. The subject was asked to order the quality of all images from the best to the worst quality.

for any choice of stimuliai, aj , ak .Intuitively, a failure of transitive would preclude assigning scale values that

predict the observers ordering. We also require that the observers ordering agree with the degree of compression

of the stimuli (that the observer judges more compressed stimuli to be more distorted).

The six-point condition is a constraint on how the observer orders differences of pairs of stimuli(ai : aj). We

use the notation(ai : aj) ≻2 (al : am) to mean that the observer judges the first pair to be less different than

the second. The six-point condition requires that, given any six imagesai ≻1 aj ≻1 ak and al ≻1 am ≻1 an,

(ai : aj) ≻2 (al : am)&(aj : ak) ≻2 (am : an) implies (ai : ak) ≻2 (al : an). The condition is effectively a test of

additivity of intervals [?]. If the observer fails the six-point condition, there is nodifference scale that can account

for his judgments. Of course, in practice, we must allow for the possibility that observers will make inconsistent

judgments due to difficulties in discriminating stimuli. The maximum likelihood fitting methods allow for failures

to discriminate. The two conditions are based on the two judgments≻1, ≻2 and we test the conditions in two

experiments reported here.

During this initial test, observers had to first select the highest quality image, then the second highest, etc. A

sample trial is shown in Fig. 4. During the test, each time an image was selected by clicking on it, the selected

image disappeared and the number of the rank order was shown.If the observer decided to cancel his choice, s/he

just had to click on the rank order number. The correspondingimage was shown again and the rank order number

disappeared. In addition, s/he could deselect more than oneimage, depending on the selected number, for example,

if the observer had already classified six images, the observer could deselect any image numbered from 1 to 6. If

s/he deselected image numbered 3, all images from 3 to 6 were automatically deselected.

During the second psychophysical task, the observer saw a quadruple of images drawn from a single image

series. These four images were arranged as two pairs(i, j) and (k, l) on a computer display. On half of the trials,

the first pair was displayed on the upper half of the display screen, the second on the lower, and on the remaining

trials the first pair was displayed on the lower, the second onthe upper. For the convenience of the observer,
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Fig. 5. Example of a single trial in MLDS. The subject was presented with an image at four different compression rates. Thestimuli are
arranged as two pairs(i, j) and(k, l). In each pair, the right-hand stimulus was more compressed.The subject was asked to judge whether the
decrease in quality in going fromi to j is greater than the decrease in going fromk to l. In this example, most observers would judge that the
upper pair exhibits the larger change.

the less compressed of the two images in each pair was always on the left. The observer then judged which pair

(upper or lower) exhibited the larger change or difference in quality. A sample trial is shown in Figure 5. Over the

course of the experiment, the observer judged several hundred quadruples. These judgments were used to construct

a numerical difference scale that captures the effect of additional compression on image quality [?], [?].

We applied MLDS to evaluate the image quality of the 15 trial original images, each compressed with JPEG2000 to

nine different levels:{0.1000, 0.3057, 0.5627, 0.7684, 0.9741, 1.1798, 1.3854, 1.5912} bpp, plus the original image.

We used the JPEG2000 implementation provided by The JasPer Project [?]. We obtained difference scales for each

subject and image.

In order to compare MLDS values with scores obtained from theMS-SSIM IQA algorithm, we computed the

score provided by the IQA algorithm for each of the nine trialimages. Then the difference of scores for each

pair of consecutive images was computed. Those differenceswere then cumulated across the series. The cumulated

MS-SSIM scores were then fitted to the MLDS values using a logistic regression function.

B. Results

The obtained results (Fig. 6) show that MS-SSIM captures perceptual changes in images with increasing compres-

sion rates very well. Yet, even if MS-SSIM globally yields high correlations with the judgment of human observers,

sometimes it fails to accurately predict perceptual changes between images as the compression rate is increased.

For example, considering the imageimgk, observers have judged a high visible difference between stimulus 3 and

4, whereas the associated MS-SSIM values are nearly identical.

In order to investigate these indivudual failures, the sameprocedure that was used to compare the scores obtained

from the IQA algorithm and MLDS values was used for each one ofthe three factors embedded within MS-SSIM.

The results are shown in Fig. 7 for all trial images. The first row of each of the three subfigures corresponds to

the contrast comparison values
∏M

i=1 ci(I, J)
βi , the second row corresponds to the luminance comparison values
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Fig. 6. Obtained results for all trial images and for the thirty observers. The black points and the black curve respectively represent the MLDS
and the MS-SSIM values.

lM (I, J)αM , while the last row represents the structure comparison values
∏M

i=1 si(I, J)
γi . At first glance, one

might remark that the third factor is less well correlated with MLDS than the two other factors, especially at the

beginning of the scale. The same remark can be made when one compares the MLDS values to MS-SSIM in Fig.

6. A poor fit is observed at the beginning of most curves. Thus,structure comparison
∏M

i=1 si(I, J) is of great

influence on the MS-SSIM values, as suggested in [?].

To acheive the best fit possible, one has to modify the influence of this third parameter. This can be done by

changing the fiveγi exponents. To perform this change, we first investigated theinfluence of the decomposition

levelM on the fitting with MLDS values.

Since the third (structure) factor is initially computed using M = 5 levels, we first investigated the influence of

M : how doesM influence the curve for this third factor? To measure this influence, we computed the structure

comparison factor for levels from 1 to 5. The obtained results are shown in Fig. 8 for a representative subset of

trial images (imga to imge), where the black points and the black curve respectively represent the MLDS and the

third factor values.

At each decomposition level, one can observe poor fit at the beginning of each scale, for each trial image. This
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Fig. 7. Obtained results for all trial images. The black points and the curve respectively represent the MLDS and each of the three MS-SSIM factor
values. For each of the three subfigures, the first row of each subimage corresponds to the contrast comparison values

∏M
i=1

ci(I, J)
βi , the second

row corresponds to luminance comparison valueslM (I, J)αM , and the last row represents the structure comparison values
∏M

i=1
si(I, J)

γi
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Fig. 8. The structure comparison feature values (8) as used to compute the MS-SSIM values, for different decomposition levels and for the 5
first images (imga to imge). The black points and the black curve, respectively, represent the MLDS and the third factor values used to compute
MS-SSIM. Each row corresponds to a decomposition level.

poor fit is observed for low decomposition level values (M = 1, M = 2). The best fitting curve occurs at the third

level, on average.

In order to counterbalance this lack of fit, we first investigated a basic weighting rule that consists of modifying

the weight value on the third factor [?]. The main goal is to obtain a better fit of the third MS-SSIM values to

MLDS. It has been found that refining the exponents values forthe third MS-SSIM factors(., .), the individual

failure observed at the beginning of the scale (Fig. 6) tendsto disappear, while the rest of the curve is unaffected,

yielding a higher correlation value with human ratings.

From this, it can be presumed that to improve the correlationof the MS-SSIM IQA algorithm scores and MLDS,

the coefficients(βi, γi) do not necessarily have to be identical (as initially suggested in [?]).

Furthermore, in MS-SSIM luminance is not used at each scale,but only at the coarsest scale,i.e., only at the

fifth level with an exponent value equal toα5 = β5. Note thatα5 does not necessarily have to be equal toβ5

and luminance information contained from previous resolution levels could be interesting to take into account to

optimize the correlation of MS-SSIM with human ratings. We could take into account all the levels as with the two
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other attributes.

Thus, next we investigate the impact of letting all of the parameters,αi,βi andγi, vary. Thus we will estimate

15 coefficient values to improve the MS-SSIM IQA algorithm.

V. THE IQA ALGORITHM GENETICALLY IMPROVED

Given the obtained results from the weight coefficientκ for the third MS-SSIM factor, we hypothesize that

different exponent values for each of the three attributes embedded in the MS-SSIM index would provide a higher

global correlation rate.

A. The associated error function

The main objective is to find new exponent values for each decomposition scale of MS-SSIM. The associated

formula can be expressed as a 15-parameter function :

MS-SSIM(I, J, αi, βi, γi; i = 1, · · · ,M) =

M
∏

i=1

[

li(I, J)
αici(I, J)

βisi(I, J)
γi

]

(10)

where
∑M

i=1 αi + βi + γi = 1 and∀i ∈ [1, · · · ,M ], 0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, 0 ≤ γi ≤ 1.

From (10), the search for the new exponent values seeks minimization of the error function

E(αi, βi, γi; i = 1, · · · ,M) = min





K
∑

j=1

(MLDSj(I, J)− fMS-SSIMj(I, J, αi, βi, γi))
2



 (11)

whereK is the number of tested images for which the MLDS values are provided, and fMS-SSIMj(.) are the

computed rates obtained following a logistic regression.

In other words, the goal is to estimate the 15 exponent valuesthat minimize the error functionE(.). Since the

error function is non-convex and may contain numerous localoptima, the choice of search strategy to optimize it

is important.

B. Search strategy

In this section, the problem of defining a suitable search strategy is addressed. The retrieval of the minimum

between the MLDS value and the MS-SSIM value is a global optimization problem, where the error functionE(.)

is minimized with respect to a set of parameters as in (10). More specifically, the error function (Eq. 11) defines a

non-linear multidimensional function, usually characterized by several local maxima. Therefore, the search strategy

should find the global minimum, and avoid remaining trapped in local minima. Two problems must be successfully

treated 1) the large search space and 2) false matches corresponding to local minima.

The simplest way to find(αi, βi, γi)i∈[1,··· ,M ] is by considering a large number of(αi, βi, γi)i∈[1,··· ,M ] values,

keeping the one whose MS-SSIM value is the closest to MLDS (i.e. the one with the lowest errorE(.)). Of course,

the more samples considered, the more precise the end resultwill be. This kind of brute-force approach based on

searching all possible combinations of parameters is not feasible in practice.
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The Genetic Algorithm (GA) is a population-based stochastic search procedure that finds exact or approximate

solutions to optimization and search problems. Modeled on the mechanisms of evolution and natural genetics,

genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches

to locate optimal solutions in multimodal landscapes [?]. Their basic principles were first introduced by Holland in

1975 [?] and extended to functional optimization by De Jong [?] and Goldberg [?], and have since proven to be

efficient and stable in searching for global optimum solutions [?], [?], [?]. One of the most attractive features of

GAs is their ability to solve problems involving non-differentiable functions and those defined in discrete as well

as continuous spaces.

Usually, a simple GA is composed of three operations: selection, genetic operation, and replacement. GAs use

a population, which is composed of a group of chromosomes, torepresent the solutions of the system. Defining

the solution representation of the system is the first task when applying GAs. The solution in the problem domain

can then be encoded into the chromosome in the GA domain, andvice versa. Initially, a population is randomly

generated. The fitting function then uses values from objective functions to evaluate the quality of fit of each

chromosome.

The “fitter” chromosome has the greater chance to survive during the evolution process. The objective function is

problem specific; its objective value can represent the system performance index (e.g., an error). Next, a particular

group of chromosomes is chosen from the population to be parents. The offspring are then generated from these

parents using genetic operations, which normally are crossover and mutation. Similar to their parents, the fitness of

the offspring are evaluated and used in replacement processes in order to replace the chromosomes in the current

population by the selected off-spring. The GA cycle is then repeated until a desired termination criterion is satisfied,

for example, the maximum number of generations is reached, or the objective value is below the threshold.

In this paper,M = 5 is the number of levels used to compute the MS-SSIM value. In that case, the GA domain

represents a 15-dimensional space in which one point is expressed as(α1, · · · , αM , β1, · · · , βM , γ1, · · · , γM ), and

the fitness function is defined by (11).

C. Optimization results

To seek each exponent value, the 15 reference images JP2K compressed at nine different compression level as

depicted in section IV-A are used to compute the 15 multilevel featuresli(I, J), ci(I, J) andsi(I, J) ∀i ∈ [1, · · · , 5].

Table I shows the estimated values for each exponent after minimizing (11). Fig. 9 shows the comparison of the

MLDS scale values and the 15 parameter fitted MS-SSIM model. The black points represents the MLDS values, the

black continuous curves the MS-SSIM indices computed usingthe original exponent values and the dashed curves

by computing MS-SSIM values with the exponent values from Table I. For each trial image (imga to imgo), a

better fit to the MLDS values was obtained when the MS-SSIM values are computed with the new exponent values

than with the original ones. Table II presents the MSE obtained using the original exponent values and the new

ones for all trial images. A reduction of more than 0.2 was attained. This means that the new MS-SSIM indices

are better correlated to the MLDS values than the original ones. This is not really surprising, since minimizing
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Exponent α1 α2 α3 α4 α5

Value 0.1920 0.2169 0.2026 0.2136 0.1749
CI [0.0989,0.2415] [0.1877,0.2791] [0.1692,0.2384] [0.1765,0.2868] [0.0814,0.2304]

Exponent β1 β2 β3 β4 β5
Value 0.9612 0.0097 0.0097 0.0097 0.0097

CI [0.8288,0.9681] [-0.0145,0.0933] [0.0084,0.0112] [0.0084,0.0112] [-0.0133,0.1012]

Exponent γ1 γ2 γ3 γ4 γ5
Value 0.0082 0.1586 0.8167 0.0083 0.0082

CI [0.0073,0.0086] [0.1241,0.2530] [0.7250,0.8501] [0.0073,0.0086] [0.0073,0.0086]

TABLE I
THE 15 COMPUTED EXPONENTS AND ASSOCIATEDCONFIDENCE INTERVALS (CI) WITH A 95% CONFIDENCE LEVEL USING AGA

APPROACH UNDER THE CONSTRAINTS
∑M

i=1
αi + βi + γi = 1 AND ∀i ∈ [1, · · · ,M ], 0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, 0 ≤ γi ≤ 1.

MS-SSIM Original weighted New weighted
MSE 0.6092 0.3863

TABLE II
COMPUTEDMSE FOR BOTH ORIGINALMS-SSIM INDEX AND FOR MS-SSIM INDEX USING NEW EXPONENTS USING A LINEAR

REGRESSION WITH RESPECT TOMLDS VALUES.

the error functionE(.) is the basis for deriving those new values. In addition, confidence intervals with a 95%

confidence level are provided for each exponent. They are computed using a boostrap process with 999 replicates.

In order to take into account local correlation to design an IQA algorithm, one can define and minimize an error

function between MLDS values and the predicted values. Thiscan help improve the design of the test IQA method,

i.e. the MS-SSIM measure by finding new exponent values. Fig. 10 displays the original exponent values (black

points) and the new ones (black stars) for the three multiscale parameters embedded in MS-SSIM. If we consider

the associated coefficients for the structure attribute (third line), we observe that the third decomposition level seems

to be considered of greater importance since its exponent value is higher whereas the four others are quite similar.

Analyzing Fig. 8, one can see that this level is the best in terms of the fit to the MLDS values. The four other

levels are quite similar in terms of fit with the MLDS values. The curve associated with these exponent values is

quite similar to the curve associated with the original exponents. Nevertheless, considering individual correlation,

the new exponent value associated to the third level is of higher degree than the original one. This is mainly due

to the fact that the structure attribute at the third level isa good estimator of the structure degradation evolution.

If we consider the multi-level luminance attribute, only the fifth level was originally considered to be of interest,

since onlyα5 is used. But, if we observe Fig. 11 the fiting at each level is nearly identical. This suggests that all

the five levels should contribute approximately equally to measurement of the luminance degradation.

Focusing on the contrast attribute, note that the first levelfits the MLDS values quite well. For levels from 2 to

5, one observes that the values are quite similar with lower fitting accuracy. This agrees with the displayed values

in Fig. 10 where the first value is higher than the others and the four last values are identical.
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Fig. 9. Obtained results for all trial images. The black points represent the MLDS values, the black curve is associated with the original
MS-SSIM index, and the dashed curve represents the computedMS-SSIM values using the new exponent values.

Following the above procedure, better local correlation isobtained, and thus, the error between the MLDS

values and the predicted MS-SSIM indices is minimized. Thisimplies that the refined MS-SSIM indices are better

correlated to human judgments.

VI. EVALUATION OF THE PERFORMANCE OF THE REFINEDMS-SSIM INDEX .

In order to judge the relevance of the 15 new exponents estimated in the previous section, we tested the refined

MS-SSIM index on both the LIVE and the TID2008 Image Quality databases.

To provide quantitative performance evaluation, three measures of correlation have been used: 1) Pearson, 2)

Kendall and 3) Spearman measures. To perform the Pearson correlation measures, a logistic function (as adopted in

the video quality experts group (VQEG) Phase I FR-TV test [?]) was used to provide a non-linear mapping between

the refined MS-SSIM values and subjective scores. We then separately used the subjective scores provided with

the overall LIVE and the TID2008 database. Kendall and Spearman correlation measures were computed between

the DMOS values and the MS-SSIM indices obtained using both the original exponent values and the new ones
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Fig. 10. The original exponent values (black points) and thenew ones (black stars) for each MS-SSIM attribute.

(Table I). Those measures can be interpreted as prediction accuracy measures (Pearson and Kendall coefficients)

and prediction monotonicity measure (Spearman coefficient).

A. Results on the LIVE database

Considering first the LIVE database, the results are presented in Table III. The scatter plots of DMOS versus

both the original and the refined MS-SSIM values are shown in Fig. 13, where each point represents one test image,

the vertical and horizontal axes representing MOS and the given distortion objective quality score for the original

MS-SSIM (black points) and the refined MS-SSIM values (crosses), respectively.

From both the scatter plots and the correlation evaluation results, we see that the performance of the MS-

SSIM index computed with the new exponent values yields improved performance relative to the MS-SSIM values

obtained with the original exponent values. This is not truefor noisy or blurred images, since a decrease of the

correlation coefficients is observed. Nevertheless, when all degradations are included, one observes that the SROCC

is significantly higher when new exponent values are used. Naturally, this is driven in part by optimization of QA

with respect to JP2K and also FastFading (which uses JP2K), but also JPEG distortion.

B. Results on the TID database

Table IV displays the correlations obtained for both original MS-SSIM index and refined MS-SSIM index with

respect to DMOS values from the TID2008 database. When the correlations relative to the subjective values
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Fig. 11. The luminance feature values for the five decomposition levels and for the five first images (imga to imge). The black points and the
black curve respectively represent the MLDS and the luminance factor values used to compute MS-SSIM. The i-th row corresponds to a i-th
decomposition level.

JP2K JPEG White Noise
Original New Original New Original New

CC 0.783 0.810 0.730 0.742 0.9153 0.9142
KROCC 0.884 0.884 0.849 0.852 0.8887 0.8878
SROCC 0.980 0.991 0.962 0.981 0.9825 0.9813

Gaussian blur FastFading All
Original New Original New Original New

CC 0.8864 0.8623 0.725 0.788 0.7980 0.8142
KROCC 0.8591 0.8413 0.859 0.876 0.8021 0.8543
SROCC 0.9725 0.9627 0.965 0.974 0.9464 0.9762

TABLE III
COMPUTED CORRELATION COEFFICIENTS FOR BOTH ORIGINALMS-SSIM INDEX AND FOR MS-SSIM INDEX USING NEW EXPONENTS

USING A LINEAR REGRESSION WITH RESPECT TODMOS VALUES FROM THE LIVE DATABASE.
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Fig. 12. The contrast feature values for the five decomposition levels and for the 5 first images (imga through imge). The black points and
the black curve respectively represent the MLDS and the third factor values used to compute MS-SSIM. The i-th row corresponds to a i-th
decomposition level.

Degrad #1 Degrad #2 Degrad #3 Degrad #4 Degrad #5 Degrad #6
Original New Original New Original New Original New Original New Original New

CC 0.7994 0.7700 0.8151 0.7913 0.8278 0.8340 0.8341 0.8224 0.8861 0.8333 0.6672 0.6399
KROCC 0.6139 0.5767 0.6013 0.5677 0.6148 0.6241 0.6117 0.5977 0.6419 0.5887 0.4846 0.4575
SROCC 0.8099 0.7767 0.8055 0.7748 0.8215 0.8265 0.8099 0.7923 0.8706 0.8211 0.6899 0.6547

Degrad #7 Degrad #8 Degrad #9 Degrad #10 Degrad #11 Degrad #12
CC 0.8524 0.8355 0.9384 0.9292 0.9638 0.9485 0.9629 0.9796 0.9727 0.9823 0.8784 0.8983

KROCC 0.6569 0.6514 0.8169 0.7793 0.8316 0.8013 0.7489 0.7664 0.8559 0.8876 0.6637 0.6891
SROCC 0.8488 0.8361 0.9563 0.9355 0.9587 0.9458 0.9328 0.9571 0.9697 0.9812 0.8663 0.8852

Degrad #13 Degrad #14 Degrad #15 Degrad #16 Degrad #17 All
CC 0.8414 0.8437 0.7417 0.7388 0.7290 0.8666 0.7322 0.7259 0.7721 0.5468 0.8332 0.8532

KROCC 0.6766 0.6957 0.5254 0.5335 0.5038 0.6309 0.5345 0.5427 0.4748 0.4068 0.6577 0.6699
SROCC 0.8609 0.8849 0.7375 0.7434 0.7109 0.8353 0.7239 0.7402 0.6349 0.5430 0.8543 0.8601

TABLE IV
COMPUTED CORRELATION COEFFICIENTS FOR BOTH ORIGINALMS-SSIM INDEX AND FOR MS-SSIM INDEX USING NEW EXPONENTS

USING A LINEAR REGRESSION WITH RESPECT TODMOS VALUES FROM THE TID2008DATABASE. THE TYPE OF DEGRADATIONS ARE
EXPLAINED IN TABLE V
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Fig. 13. Scatter plots of DMOS versus the original and MLDS-refined MS-SSIM predictions (with original exponent values and the new ones).
Each point represents one test image in the LIVE image database.

calculated on the TID2008 database, the refined MS-SSIM index again outperformed the originally designed MS-

SSIM. If we only investigate compression artifacts (degradation #10 to #13, as defined in Table V), the refined

MS-SSIM yields a significant increase of the correlation values. Similar to the results obtained from the LIVE

image database, a decrease of the correlation values is globally observed for noise artifacts (degradation #1 to #7

and #14). One notes that for two particular noise artifacts,an increase of the correlation value occurs (#3 and

#14). A small increase of the correlation values is also obtained for degradation #15 and #16. Both non eccentricity

pattern noise (#14) and local block-wise distortions of different intensity (#15) artifacts can be interprated as a block

degradation of the image that is a typical compression artifact. This can explain the associated notable increase of

the correlation, since the refined MS-SSIM index has been optimized for compression artifacts.

Degradations #3 and #16, respectively, concern a spatiallycorrelated noise and a change of intensity. When

analysing the images corresponding to degradation #16, visible differences between the reference image and the

degraded versions are not necessarily great. This could correspond to the first part of the obtained curves when

the fitting with MLDS values is generated. Actually, from Fig. 9, a flat part is noticeable at the beginning of

each curve. The refined MS-SSIM index seems to fit better this particular part than the original MS-SSIM. For

JP2K compression artifacts, this particular part corresponds to slightly compressed images, where visible differences

are not easily observable (that is the case for degraded images with artifact # 16). This can explain why higher

correlation values are obtained for degradation # 16.
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Degrad # Type of distortion
1 Additive Gaussian noise
2 Additive noise in color components is more intensive

than additive noise in the luminance component
3 Spatially correlated noise
4 Masked noise
5 High frequency noise
6 Impulse noise
7 Quantization noise
8 Gaussian blur
9 Image denoising
10 JPEG compression
11 JPEG 2000compression
12 JPEG transmission errors
13 JPEG2000 transmission errors
14 Non eccentricity pattern noise
15 Local block-wise distortions of different intensity
16 Mean shift (intensity shift)
17 Contrast change

TABLE V
DESCRIPTION OF THE17 DEGRADATION TYPES WITHIN THETID2008DATABASE

C. Statistical significance

To assess whether the difference in performance between theoriginal MS-SSIM index and the refined MS-SSIM

index is statistically significant, we applied a variance-based hypothesis test using the residuals between the DMOS

values and the ratings provided by the trial IQA algorithms.This test is based on the F-test that determines whether

two population variances are equal. This is done by comparing the ratio of the two computed variances. The

null hypothesis is that the residuals from the original MS-SSIM index are statistically indistinguishable (at a 95%

confidence level) from the residuals of the refined MS-SSIM. As mentioned in [?], the threshold ratio value for

which the two sets of residuals are statistically distinguishable can be obtained from the F-distribution [?].

The results obtained from this test confirm that the difference of correlation over the entire LIVE database (Table

III) is statistically significative.

Regarding the TID2008 database (Table IV), we found that thedifference of correlation is not statistically

significant overall the database, which is not surprising given the breadth of distortions in the TID database. However,

we did find that the refined MS-SSIM index is superior to the original MS-SSIM index with statistical significance

for degradations #10 to #13 and #15. Those degradations concern artifacts that occur during a compression scheme

applied on images.

VII. C ONCLUSION

When one judges the performance of IQA algorithms, correlations with human ratings are computed. The higher

the correlation value is, the better the prediction score is. Absolute rating quality methods are usually used to obtain

human ratings that will serve as ground truth (MOS or DMOS). Yet, image quality ratings (based on absolute

judgments) are considerably less reliable than differencejudgements, for reasons described in section II. Intead of
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using MOS (or DMOS) values which are obtained from quality ratings based on absolute judgments, we have used

a recent psychophysical method, Maximum Likelihood Difference Scaling (MLDS) to evaluate IQA methods and

improve them.

We applied it to a large collection of images to assess the consequences of JP2K compression and compared

observers’ judgments image quality to the predictions of one IQA method, MS-SSIM. We found that MS-SSIM

suffers from local failures when assessing JP2K compression, especially due to its third (structure) factor that greatly

influences the predicted values. It was found these local failures can be reduced using different values for the three

(αi, βi, γi) exponents which we estimate from data. The refined MS-SSIM index was found to yield significantly

improved performance relative to the original algorithm ontwo large public image quality assessment databases.

The use of MLDS permits interpretation of the correlation value of IQA algorithms across the series of degra-

dation. This help us identify levels of degradation for which IQA can fail. This is not easily done when absolute

rating quality methods are used instead of MLDS. This yieldsa more precise comparison to human ratings, and

helps in the design of high performance IQA algorithms. Thisallowed us to improve the performance of MS-SSIM

for compression-based distortions. Even if the results could be attributed to the use of JP2K compressed images

to reweight MS-SSIM, the obtained overall performance for both LIVE and TID2008 database is better than using

original MS-SSIM.

APPENDIX A

MAXIMUM L IKELIHOOD DIFFERENCESCALING AS A GLM

A GLM [ ?] is described by

η(E[Y ]) = Xβ (12)

whereη(.) is a link function transforming the expected value of the elements of the response vector (Y ) to the scale

of a linear predictor given by the product of the model matrix(X) and a vector of coefficients (β). The elementsY

are distributed as a member of the exponential family. We assume that each quadruple(i, j; k, l) has been reordered

so thati < j < k < l. Equation (2) can thus be rewritten as

δ(i, j; k, l) = ψl − ψk − ψj − ψi (13)

The design matrixX can be constructed by considering the weights of theψ as the covariates. This yields an

n× p matrixX wheren is the number of quadruples tested andp is the number of physical levels evaluated over

the experiment. On a given trial, the values in only four columns are non-zero, taking on the values 1,-1,-1,1 in

that order (these coefficents correpond to the entries in (13)). All the remaining entries are set to 0. For example,

consider a set of 7 stimuli distributed along a physical scale and numbered 1 to 7. Four quadruples and the associated
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design matrixX are
















1 3; 5 7

7 9; 4 5

1 5; 6 7

2 3; 9 10

































1 0 −1 0 −1 0 1 0 0 0

0 0 0 1 −1 0 −1 0 1 0

1 0 0 0 −1 −1 1 0 0 0

0 1 −1 0 0 0 0 0 −1 1

















To render the model identifiable, however, we drop the first column, which has effect of fixingβ1 = 0, yielding a

model withp− 1 parameters to estimate as with the direct method. The GLM canbe specified as

g(E[P (R = 1)]) = β2X2 + β3X3 + · · ·+ βpXp, (14)

whereXj id the jth column ofX . In the present case, the responses of the observer can be modeled as Bernouilli

random variables. The expected values of the response ,δ, are related to the linear predictors through a non linear

function g, that is here the inverse cumulative distribution funtion of the Gaussian. GLM is used to estimate

maximum likelihood estimateŝψ2, · · · , ψ̂p, and, together withψ1 = 0, we have maximum likelihood estimates of

the scale values. These form a difference scale whereσ = 1 by assumption, and̂ψp is not normalized to 1. As

ψ̂p = σ̂−1, the scale can be normalized bŷψp as a last step. The justification for these last steps is the invariance

of maximum likelihood estimation under reparameterization [?]. In practice, the fits were obtained using the open

source softwareR (http://www.r-project.org/) with the packageMLDS [?].
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