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PHASE SEPARATION IN HIGHLY CHARGED CONFINED IONIC

SOLUTIONS

R. JOUBAUD1,2,3, O. BERNARD4,5, L. CONTENTO6, A. ERN2, B. ROTENBERG4,5, AND P. TURQ5,4

Abstract. We study phase separation in ionic solutions confined by solid objects carrying
surface charges. Within the framework of Density Functional Theory, the Helmholtz free
energy of the ionic solution is minimized under canonical constraints on the ionic densities
fixing their mean value while ensuring global electroneutrality. The free energy splits into
a bulk and an electrostatic contribution. The bulk contribution, which includes non-ideal
terms accounting for long-range electrostatic and short-range steric correlations between ions,
is evaluated with the Mean Spherical Approximation and the Local Density Approximation.
The Primitive Model is considered with counter- and co-ions having the same diameter.
The electrostatic contribution treats the interactions between the ions and the solid object
at the mean-field level through the solution of a suitable Poisson problem. The numerical
methodology hinges on a regularization of the free energy and a finite element discretization
of the Euler-Lagrange conditions of the constrained minimization problem on adaptively
refined meshes as the regularization parameter approaches zero. Results are presented for
the one-dimensional double-layer configuration and a multi-dimensional periodic network of
charged circular inclusions. The main results are the formation of a condensed phase near the
charge solid surface screening most of the surface charge, the stark contrast with predictions
using the Poisson–Boltzmann theory, and the fact that co-ion densities are higher in the
condensed phase as well. An extension of the methodology to the case where ions do not
carry opposite charges is also presented.

1. Introduction

Charged solutes and charged interfaces are encountered in numerous natural and technolog-
ical contexts, largely due to the ability of water to solvate ions and to screen their electrostatic
interactions by its high dielectric permittivity. In this paper, we are interested in the study of
ionic solutions interacting with (or confined by) solid objects carrying a surface charge (clay
rocks, colloids, DNA, or electrodes, to name only a few examples). Multi-valent ions and
electrolytes near such highly charged objects may depart significantly from the ideal behavior
of infinitely diluted solutions. We are particularly interested in studying confinements at the
nanometric scale and the possible separation of the solution into a condensed phase close to
the charged object and a dilute phase away from it.

In bulk situations, the non-ideal behavior of ionic solutions arises mainly from two types
of effects, which both play a larger role as the ionic concentration increases: long-range
electrostatic interactions and short-range excluded volume effects. By treating the former
at the mean-field level and ignoring the latter, the pioneering work of Debye and Hückel
(DH) [1] identified screening by counter-ions as a fundamental mechanism for non-ideality.
The DH theory is valid at low concentrations and high temperature. For more concentrated
solutions, further progress has been accomplished within the framework of the primitive mod-
els of charged hard spheres in a continuous solvent characterized by its dielectric constant,
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whereby structural and thermodynamic properties are predicted using integral equation the-
ories, such as the Mean Spherical Approximation (MSA) [2, 3, 4, 5]. Liquid-vapor transition
and criticality in bulk ionic solutions have been extensively investigated over the past decades.
The properties of the liquid-vapor interface have been studied using a density-functional the-
ory (DFT) within the restricted primitive model (RPM) in which the ions are modelled
as equi-sized spheres carrying opposite charges [6]. Moreover, by combining Bjerrum’s ion
pairing concept [7] with the MSA or the DH theory through the law of mass action, bet-
ter descriptions of the critical point and of the liquid-vapor coexistence curve have been
obtained [8, 9, 10, 11, 12].

In the case of ionic solutions in contact with charged solid surfaces, e.g., in confined ge-
ometries, electrostatic interactions also control the structure and the phase behavior of the
solution [13, 14, 15]. In some cases, such as clay minerals, cement, ion exchange membranes
or lipid bilayers, the counter-ions compensating the charge of the surface may even be the
only ions present in the confined fluid, resulting in a situation similar to the one-component
plasma (see [16] for a review and [17] for a discussion closer to the present setting). The
starting point for the description of confined ionic solutions is the Poisson–Boltzmann (PB)
theory [18, 19, 20]. The PB theory ignores correlations between ions, and no phase transition
exists within this approach. For highly charged surfaces or multi-valent ions, a large fraction
of the counter-ions appears condensed near the charged surface, as suggested by Stern to gen-
eralize the Gouy-Chapman description of charged surfaces. The remaining ions then feel a
much weaker effective charge, which can be described within the PB theory. Nevertheless, the
determination of the fraction of condensed ions and the corresponding renormalized charge
is not straightforward; results in this direction can be found in [21]. Various approaches have
been proposed to incorporate correlations neglected in the PB theory. In the particular case
where counter-ions are the only ions present, a perturbative correction to the PB theory has
been established [22]. Correlations for confined ions can also be included in integral theories,
e.g., within the Anisotropic Hypernetted Chain approximation [23, 24]. Furthermore, the so-
called “Strong Coupling” theory allows one to investigate regimes where the interaction with
the charged surface is stronger than that between ions [25, 26, 27, 28] and to explain the ori-
gin of the attraction between like-charged surfaces observed under certain conditions [28, 29].
Another successful development for the description of the inhomogeneous primitive model is
the use of DFT, which determines structural and thermodynamic properties of an inhomo-
geneous fluid from a Helmholtz free energy and its functional dependence on the local ionic
densities [30, 31, 32, 33, 34, 35, 36, 37]. Finally, Molecular Dynamics and Monte Carlo sim-
ulations have been used to study the properties of bulk and confined electrolytes, described
either within the primitive model or with an explicit molecular solvent, thus providing a more
realistic description of these complex systems [38, 39, 40, 41, 42]. Although such simulations
remain computationally intensive, and may not be needed to elucidate the phase transition
behavior of confined ionic solutions, they can serve as a basis for multi-scale strategies in
which continuous approaches, such as the one presented here, are parametrized for a given
system using molecular simulations [17].

The present study of confined ionic solutions is based on DFT, where the Helmholtz free
energy of the system depends on the ionic densities and splits into a bulk and an electrostatic
contribution. The former incorporates the ideal and non-ideal effects in the bulk solution
regardless of the presence of the charged solid object. The electrostatic contribution accounts
for the electrostatic potential due to the presence of the solid object carrying surface charges
and is evaluated consistently with the ionic densities as the solution of a suitable Poisson
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problem. Thus, the interactions between the ions and the charged solid surface are treated
at the mean-field level. Our main objective is to investigate numerically phase separation in
confined ionic solutions for simple (one-dimensional) and more complex (multi-dimensional)
geometric setups. Non-ideal effects in the bulk free energy account for correlations between
ions, including both long-range electrostatic and short-range steric contributions. These cor-
relations are evaluated with the MSA and the Local Density Approximation (LDA) [43]. More
elaborate models for non-ideality can be incorporated in further steps. These can include a
more elaborate treatment of excluded volume effects near the solid surface (which can lead
to attraction between like-charged surfaces), improvements in the description of electrostatic
correlations near the critical point, and a more precise treatment of ion-solvent interactions
especially for multi-valent ions and very small confinements.

The material is organized as follows. In Sect. 2 we detail the free energy of the confined
ionic solution describing its bulk and electrostatic contributions. In particular, the screen-
ing length evaluated with the MSA depends on a non-dimensional parameter which can be
interpreted as a reduced temperature. The starting point is the minimization of the free
energy functional. While grand-canonical constraints are often considered in the literature,
we focus here on canonical constraints on the ionic densities fixing their mean value in the
fluid domain while ensuring global electroneutrality. We are interested in the regime where
the reduced temperature falls below the critical one. In this situation, the above constrained
minimization problem becomes ill-posed. Our approach consists in enforcing additionally
that the ionic densities take values in the subset of the state space where the bulk free energy
functional coincides with its convex hull. This condition typically leads to the appearance
in the fluid domain of an interface separating a condensed and a dilute phase. In Sect. 3,
we present the numerical methodology to solve the constrained minimization problem. We
relax the constraint on the values of the ionic densities by considering a regularization of the
free energy functional obtained by adding a least-squares penalty on the gradient of the ionic
densities weighted by a positive parameter η. While a physically-based parameter η can be
considered in some models, this quantity merely plays herein the role of a numerical param-
eter. The Euler–Lagrange equations associated with the regularized free energy functional
are solved in mixed form by introducing the electrostatic potential as an auxiliary variable.
These equations are discretized using finite elements on adaptively refined meshes near the
interface, and the resulting system of nonlinear algebraic equations is solved iteratively using
a Newton–Raphson algorithm. In Sect. 4 and 5, we discuss our results for confined ionic
solutions containing only compensating counter-ions and both counter- and co-ions, respec-
tively. We consider the double-layer configuration of two parallel charged plates confining the
ionic solution and also a two-dimensional periodic network of circular objects carrying a sur-
face charge to demonstrate the capabilities of the present methodology in multi-dimensional
setups. Finally, in Sect. 6, we summarize our main findings and discuss further work.

2. Free energy of confined ionic solutions

We consider ionic solutions in the presence of solid objects with surface charges. Two
typical situations are either that of an ionic solution in a periodic setting with elementary cells
containing a charged inclusion or that of an ionic solution confined by charged walls. These
two situations are illustrated in Figure 1. The length scale associated with the confinement
is denoted by L∗ and is typically of the order of a nanometer. The domain occupied by the
ionic solution is denoted by Ω, and the domain occupied by the solid object is denoted by ΩS.



4 R. JOUBAUD1,2,3, O. BERNARD4,5, L. CONTENTO6, A. ERN2, B. ROTENBERG4,5, AND P. TURQ5,4

To be specific, we assume that the solid object carries negative charges with surface density
−ΣS (ΣS > 0) on its boundary ∂ΩS.
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Figure 1. Geometric setting: elementary cell with charged inclusion (left);
channel with charged walls (right).

For simplicity, we consider at most two dissolved ionic species, a counter-ion (cation) and
a co-ion (anion). Within the primitive model retained herein, ions are modelled as equi-sized
spheres of diameter σ. However, we do not necessarily assume that ions carry opposite charges
(as they do in the RPM). The valences of the ionic species are denoted by Z±, and the case
where Z++Z− = 0 is referred to as symmetric electrolyte. The ionic solution is described by
the ionic (number) densities ρ := (ρ+, ρ−) in the fluid domain Ω, while the solvent enters the
model only by means of its relative dielectric permittivity. In what follows, the mean-value
of the ionic densities is prescribed in the form

(1) 〈ρ±〉Ω = ρmean
± ,

where 〈·〉Ω denotes the mean-value of a function in the fluid domain Ω. The prescribed
nonnegative quantities ρmean

± must satisfy the global electroneutrality condition

(2)
∑

i=±

Ziρ
mean
i =

1

e|Ω|

∫

∂ΩS

ΣS,

where e is the elementary charge. A simple way of ensuring the global electroneutrality
condition (2) is to choose a nonnegative density of added salt, ρsalt, and to set

(3) ρmean
+ = ρΣS

+ + ρsalt, ρmean
− = −(Z+/Z−)ρ

salt,

where ρΣS

+ := (Z+e|Ω|)
−1

∫

∂ΩS
ΣS. In the vanishing limit of added salt, ρsalt → 0+, we obtain

an ionic solution consisting only of compensating counter-ions.
The free energy functional of the ionic solution takes the form

(4) F(ρ) = Fbulk(ρ) + Felst(ρ).

The bulk free energy functional Fbulk accounts for the ideal and non-ideal behavior in the
bulk solution regardless of the presence of the charged solid object, while the electrostatic free
energy functional Felst accounts for the electrostatic potential. The functionals Fbulk and Felst

are detailed in Sect. 2.1 and 2.2, respectively. The equilibrium state of the ionic solution is
determined by minimizing F under the canonical constraint (1). We are particularly interested
in the case where the functional Fbulk is not convex in ρ, as further discussed in Sect. 2.3.
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2.1. Bulk free energy functional. Within the LDA, the bulk free energy is obtained by
integrating over the fluid domain Ω the bulk free energy density f , so that

(5) Fbulk(ρ) =

∫

Ω

f(ρ).

The bulk free energy density splits into an ideal part fid and a non-ideal part fcorr in the form

(6) f(ρ) = fid(ρ) + fcorr(ρ), fcorr(ρ) = fCoul(ρ) + fHS(ρ),

where fcorr accounts for Coulomb electrostatic interactions (through fCoul) and hard-sphere
steric exclusion effects (through fHS). The ideal part reads

(7) fid(ρ) =
1

βσ3

∑

i=±

ρ̂i(log(ρ̂i)− 1),

with non-dimensional ionic densities ρ̂± := σ3ρ±, while β := (kBT )
−1 where kB is the Boltz-

mann constant and T the temperature. The Coulomb contribution is chosen to be of the
MSA form [2, 3, 4, 5]

(8) fCoul(ρ) = −
1

4πβσ3

(

ρ̂α − 4ΓMSA(ρ̂α)
2 −

16

3
ΓMSA(ρ̂α)

3

)

,

with ρ̂α := (ρ̂+/α+) + (ρ̂−/α−) and the non-dimensional parameters

(9) α± :=
σ

4πLBZ2
±

.

Here, LB stands for the Bjerrum length given by LB := (4πε)−1βe2 where ε = ε0εr with
ε0 the vacuum dielectric permittivity and εr the solvent relative dielectric permittivity. The
parameters α± are related to non-dimensional temperatures T ∗

± such that

(10) T ∗

± := 4πα± = kBT
σ(4πε)

Z2
±e

2
,

while the inverse Debye length κ is such that

(11) κσ = ρ̂1/2α .

The (non-dimensional) screening parameter ΓMSA is given by

(12) ΓMSA(ρ̂α) =
1

2

(

(

2ρ̂1/2α + 1
)1/2

− 1

)

.

Moreover, the hard-sphere contribution, which hinges on the Carnahan–Starling (CS) expres-
sion, is given by

(13) fHS(ρ) =











−
6

πβσ3

(

ξ(ρ̂tot)
2 (3ξ(ρ̂tot)− 4)

(1− ξ(ρ̂tot))
2

)

, ξ(ρ̂tot) < 1,

+∞, ξ(ρ̂tot) ≥ 1,

with reduced total ionic density ρ̂tot := ρ̂+ + ρ̂− and packing number ξ(ρ̂tot) := 1
6
πρ̂tot. In

the dilute limit of low ionic densities leads to the linearized hard-sphere contribution (CS1)
in the form

(14) fHS(ρ) =
1

βσ3
24

π
ξ(ρ̂tot)

2.
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A simplification occurs for symmetric electrolytes (Z+ + Z− = 0), since, in this case,
α+ = α− := α and T ∗

+ = T ∗
− := T ∗. Moreover, ρ̂α = α−1ρ̂tot. As a result, fcorr(ρ) only

depends on ρ̂tot and its properties can be described in terms of the reduced temperature T ∗.

2.2. Electrostatic free energy functional. The electrostatic potential is evaluated con-
sistently with the ionic densities by solving a Poisson problem in the fluid domain Ω with
source term given by the charge density q(ρ) =

∑

i=±
Zieρi and a Neumann boundary con-

dition accounting for the surface charge carried by the solid object on ∂ΩS. Specifically, the
electrostatic potential ψ(ρ) solves

(15)



















− ε∆ψ(ρ) = q(ρ) in Ω,

− ε∇ψ(ρ) · n = ΣS on ∂ΩS,

ψ(ρ) periodic on ∂Ω \ ∂ΩS,

〈ψ(ρ)〉Ω = 0,

where n denotes the unit outward normal to Ω. The global electroneutrality condition (2)
ensures that problem (15) admits a solution, and uniqueness of the solution results from the
zero mean condition on ψ(ρ). The electrostatic free energy functional is given by

(16) Felst(ρ) =
1

2

(
∫

Ω

q(ρ)ψ(ρ)−

∫

∂ΩS

ΣSψ(ρ)

)

=
ε

2

∫

Ω

|∇ψ(ρ)|2 ,

the second equality being a direct consequence of (15) and integration by parts.

2.3. Minimizing the free energy functional. We aim at determining the equilibrium
state of the ionic solution by minimizing the free energy functional F under the canonical
constraint (1). A sufficient well-posedness condition for this problem hinges on the strict
convexity of the bulk free energy density f with respect to the ionic densities ρ. This situation,
which has been studied mathematically in [44] (using the linearized hard-sphere term (14)), is
encountered when the reduced temperatures T ∗

± are high enough (typically, above the critical
temperature) so that the non-convexity of the Coulomb interaction term fCoul is compensated
by the convexity of the ideal and hard-sphere terms fid and fHS.

In the present work, we are interested in the regime where at least one of the reduced
temperatures T ∗

± is low enough (typically, below the critical temperature) so that the bulk
free energy density f is no longer convex with respect to the ionic densities ρ. In the case of
bulk ionic solutions, this regime is known to lead to liquid-vapor transition. In such solutions,
the ionic densities satisfy the local electroneutrality condition

∑

i=±
Zieρi = 0, so that the

bulk free energy density f can be analyzed as a univariate function of, e.g., the total density
ρ̂tot. The binodal points of f can be evaluated using the double-tangent construction (also
known as Maxwell’s equal-area rule). These points determine the liquid-vapor coexistence
curves in the phase diagram of the bulk ionic solution. An example is presented in Figure 2
for a bulk symmetric electrolyte (so that a single reduced temperature T ∗ is considered). The
critical temperature and (total) density are respectively T ∗

crit ≈ 0.0787 and ρ̂tot,crit ≈ 0.0147
for CS1 (using (14)) and T ∗

crit ≈ 0.0785 and ρ̂tot,crit ≈ 0.0145 for CS (using (13), in agreement
with the result previously derived in [6]. Differences between CS and CS1 expectedly appear
for high values of the total density.

For confined ionic solutions, the situation becomes more intricate. The presence of the
charged solid object induces gradients in the ionic densities and, thereby, departures from
local electroneutrality. As a result, the whole state space K := {ρ ∈ R

2; ρ± ≥ 0; ξ(ρ̂) < 1}
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Figure 2. Phase diagram for a bulk symmetric electrolyte. For each T ∗

below the critical temperature, the curves provide the two binodal values for
the reduced total density.

can potentially be explored by the ionic densities at different points in the fluid domain Ω.
Hence, the bulk free energy density has to be considered as a fully bivariate function of its
two arguments ρ±. Letting f

∗∗ be the convex hull of f , we introduce the subset

(17) K∗∗ = {ρ ∈ K; f(ρ) = f∗∗(ρ)}.

Our key idea in the confined case is then to supplement the constrained minimization problem
of F with the additional constraint that, everywhere in the fluid domain Ω, the ionic densities
take values in the subset K∗∗. Therefore, our model problem can be stated as follows:

(18)











ρ minimizes F(ρ) defined by (4),

ρ satisfies the canonical constraint (1),

For all x ∈ Ω, ρ(x) takes values in K∗∗ defined by (17).

The model problem (18) can be easily adapted to the case where there are only compen-
sating counter-ions by setting ρ− = 0 and considering ρ+ as the only independent variable
so that the relevant bulk free energy density is f+(ρ+) := f(ρ+, 0). The state space then
reduces to K+ := {ρ+ ∈ R; ρ+ ≥ 0; ξ(ρ̂+) < 1}, and the subset K∗∗ is replaced by the subset
K∗∗

+ = {ρ+ ∈ K+; f+(ρ+) = f∗∗+ (ρ+)} where f∗∗+ is the convex hull of the univariate function
f+. We observe that K∗∗

+ is a subset of R, whereas K∗∗ is a subset of R2. The determina-
tion of the subset K∗∗

+ is straightforward from Figure 2. Namely, given a reduced temperature
T ∗ = T ∗

+ below the critical temperature, the binodal points of f+ are deduced from the liquid-

vapor coexistence curves in which ρ̂tot is replaced by ρ̂+. Denoting by ρ̂♭+ and ρ̂♯+ these two

points yields K∗∗
+ = [0, ρ̂♭+]∪ [ρ̂♯+, 6/π] (up to rescaling by σ3), the first interval corresponding

to the dilute (gas) phase and the second one to the condensed (liquid) phase. In the bivariate
case, the determination of the subset K∗∗ is further discussed in Sect. 5.
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3. Numerical method

The mathematical analysis of the constrained minimization problem (18) goes beyond the
present scope. Assuming well-posedness, the aim of this section is to devise a numerical
method to approximate its solution.

3.1. Regularization and Euler–Lagrange conditions. There is an extensive bibliography
concerning the mathematical and numerical study of phase separation in other settings than
confined electrolytes. In general, the functional used in such phase-field theory is a double-well
potential inducing a partition of the state space into two phases. Most of the studies have been
performed in bulk situations where the state variable (here, the ionic densities) is constant in
each phase. The key idea is to regularize the problem by minimizing a regularized functional
where a least-squares penalty on the gradient of the state variable is added to the double-well
potential. For the mathematical analysis, we refer, e.g., to the seminal work in [45]; further
references and links to Γ-convergence can be found in [46]. Other recent results concerning
the study of the Ohta–Kawasaki model (modelling diblock copolymer systems) are relevant
here owing to the similarity of the mathematical problem. We also mention the mathematical
and numerical works in [47, 48], and, more recently, [49] where a nonlocal operator accounting
for Coulomb interaction is added.

In the present setting, we handle the constraint that the ionic densities take values in the
set K∗∗ by introducing a regularization of the free energy functional in the form

(19) Fη(ρ) := F(ρ) +
η2L5

∗

β

∑

i=±

∫

Ω

1

2
|∇ρi|

2,

with non-dimensional regularization parameter η > 0. The constrained minimization prob-
lem (18) is then replaced by seeking ionic densities ρη such that

(20)

{

ρη minimizes Fη(ρη) defined by (19),

ρη satisfies the canonical constraint (1).

Solving (20) with a fixed positive value of the regularization parameter η typically leads to
a diffuse interface between the two phases, that is, the set I := {x ∈ Ω; ρ(x) 6∈ K∗∗} has
positive measure. The sharp interface approximation η → 0+ leads to two distinct phases
occupying the whole fluid domain Ω while the measure of I tends to zero; an illustration is
presented in Sect. 3.3 below. In the present study, the regularization parameter η plays the
role of a (very) small numerical parameter. From a physical viewpoint, a diffuse interface
is more appropriate based on a certain length scale. One interesting approach is to resort
to a Weighted Density Approximation (WDA) instead of the LDA whereby a coarse-grained
density obtained by convolution of the local density is used in the free energy; see, e.g., [37].

We consider the Euler–Lagrange equations associated with the constrained minimization
problem (20). These equations are formulated in mixed form by introducing as an additional
unknown the electrostatic potential ψη := ψ(ρη) solving (15) with datum q(ρη) in Ω. The
constraints to be taken into account are the canonical constraint (1) on the ionic densities ρη
and the fact that ψη has zero mean value in Ω. In view of finite element discretization, we
write the Euler–Lagrange equations in variational form using test functions. Thus, we seek
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ionic densities ρη, electrostatic potential ψη, and real numbers λη et µbulk± such that

(21)



























∫

Ω

ε∇ψη · ∇ϕ+ λη〈ϕ〉Ω =

∫

Ω

q(ρη)ϕ−

∫

∂ΩS

ΣSϕ,

η2L5
∗β

−1

∫

Ω

∇ρη,± · ∇v± +

∫

Ω

µel±(ρη, ψη)v± = µbulk± |Ω|〈v〉Ω,

r〈ψη〉Ω = 0, s±(〈ρη,±〉Ω − ρbulk± ) = 0,

for all test functions ϕ and v± and for all real numbers r and s±. The electro-chemical
potential µel±(ρη, ψη) is such that

(22) µel±(ρη, ψη) := µ±(ρη) + Z±eψη,

with chemical potential

(23) µ±(ρη) := ∂ρ±f(ρη).

For η = 0, the second equation in (21) expresses that the electro-chemical potentials are
constant in Ω (with constant value equal to µbulk± ). We also observe that in the diffuse
interface case (η > 0), the regularization term weakly enforces an inconsistent homogeneous
Neumann condition on the ionic densities at the boundary ∂ΩS, namely ∇ρη,± · n = 0; this
condition disappears in the sharp interface approximation as η → 0+.

3.2. Finite element discretization and nonlinear algebraic solver. The Euler–Lagrange
equations (21) are discretized using finite elements. Once a mesh of the fluid domain Ω has
been selected, the electrostatic potential and the ionic densities are approximated using con-
tinuous, piecewise affine functions over that mesh. This leads to a large system of nonlinear
algebraic equations which is solved iteratively using a Newton–Raphson algorithm.

When the bulk free energy density f is not convex, the chemical potentials µ± defined
by (23) are non-monotone functions of the ionic densities, and this, in turn, poses difficulties
to achieve convergence of the Newton–Raphson iterations (21). To overcome these difficulties,
we introduce an additional regularization in that the chemical potentials are evaluated using
the convex hull f∗∗ of the bulk free energy density, that is, we use

(24) µreg± (ρη) := ∂ρ±f
∗∗(ρη)

in place of µ±(ρη) to evaluate the electro-chemical potential in the second equation of (21).
By construction, the functions µreg± (ρη) are monotone in ρη,±, respectively. Using µreg± (ρη)
in place of µ±(ρη) modifies the solution in the diffusive interface case (η > 0), but the same
solution is expected to be attained in the sharp interface approximation as η → 0+ since, in
this case, the ionic densities essentially take values in K∗∗ where f and f∗∗ coincide.

Each Newton–Raphson iteration consists in assembling a linear system whose solution
provides an update for the discrete solution vector. By linearity, at each iteration, the elec-
trostatic potential is evaluated consistently with the ionic densities, and the constraints on
the mean value of both the electrostatic potential and the ionic densities are satisfied. In
practice, it is important to apply a clipping to the update vector to avoid that the ionic
densities take negative values or values such that the packing number exceeds unity. If such
a clipping is applied to some components of the update vector, the other components are
rescaled in such a way that the canonical constraint (1) is still verified. The convergence of
the Newton–Raphson algorithm is monitored by checking the Euclidean norm of the discrete
residual vector and that of the update vector at each iteration. Typically, 40 to 50 iterations
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can be necessary to achieve convergence for the systems investigated in the following sections.
The above-mentioned clipping is usually needed only at a few iterations. More details on the
algorithmic aspects can be found in [50].

3.3. Sharp interface approximation. This approximation entails decreasing progressively
the value of the numerical parameter η. When a certain value for η is considered, the initial
guess for the Newton–Raphson algorithm is the converged discrete solution for the previously
considered value of η. It is essential to refine the mesh in the vicinity of the interface as it
becomes sharper. Such a refinement is performed adaptively based on the converged discrete
solution for the previously considered value of η; we refer to [50] for more details and examples.

To illustrate the sharp interface approximation, we present in Figure 3 concentration pro-
files (in mol.L−1) in the double-layer configuration (consisting of two parallel charged plates
separated by a distance L∗, see Figure 1) with only compensating counter-ions. Profiles are
presented for various decreasing values of the parameter η as a function of the distance to
the wall and up to the symmetry plane; a zoom close to the interface is included. The phys-

ical parameters (corresponding to water at room temperature, for which LB = 7.10
◦

A) are

L∗ = 1 nm, ΣS = 0.1 C.m−2, Z+ = 3, σ = 4.5
◦

A, and T ∗ = 0.0704 (below the critical
value T ∗

crit = 0.0785). We observe how the interface separating the two phases is captured
as η → 0+. The left and right limits of the concentration profile at the interface correspond,

respectively, to the binodal points ρ̂♯+ and ρ̂♭+ of the bulk free energy density. Away from the
interface, the concentration profiles appear to coincide almost exactly, independently of the
parameter η. Moreover, the above-mentioned boundary layer near the charged wall caused
by the slight inconsistency in the least-squares penalty appears to be indeed negligible.
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Figure 3. Sharp interface approximation for the double-layer configuration
(η → 0+). Concentration profiles from the charged wall to the symmetry plane
for various decreasing values of η. The insert is a zoom in the vicinity of the
interface.

4. Results without added salt

In this section, we focus on ionic solutions consisting only of a dissolved counter-ion, so
that ρsalt = 0 in (3) and ρ− is identically zero in Ω. We recall that in this case, K∗∗

+ = [0, ρ̂♭+]∪

[ρ̂♯+, 6/π] (up to rescaling by σ3) where the binodal points ρ̂♭+ and ρ̂♯+ are determined from
Figure 2 at a given reduced temperature T ∗. We first consider the double-layer configuration.
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By symmetry, the problem can be posed on the half-interval Ω = [0, L∗/2]. We set L∗ = 1 nm.

We consider a medium-sized divalent counter-ion (Z+ = 2, σ = 2.2
◦

A, and T ∗ = 0.07746

(slightly) below T ∗

crit = 0.0785) and a larger trivalent counter-ion (Z+ = 3, σ = 4.5
◦

A, and
T ∗ = 0.07042 again below T ∗

crit). In the divalent case, we set ΣS = 0.5 or 1.0 C.m−2, which
correspond, respectively, to the canonical constraint ρmean

+ = 5.191 mol.L−1 or 10.38 mol.L−1

(in this second case, the packing number is ξ(ρmean
+ ) = 0.067). In the trivalent case, we set

ΣS = 0.3 or 0.5 C.m−2, which correspond, respectively, to the canonical constraint ρmean
+ =

2.077 mol.L−1 or 3.461 mol.L−1 (in this second case, ξ(ρmean
+ ) = 0.190).
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Figure 4. Double-layer configuration with compensating counter-ion. Con-
centration profiles from the charged wall to the symmetry plane. Left column:
divalent counter-ions with ΣS = 0.5 C.m−2 (top) and ΣS = 1 C.m−2 (bot-
tom). Right column: trivalent counter-ions with ΣS = 0.3 C.m−2 (top) and
ΣS = 0.5 C.m−2 (bottom). Dashed lines correspond to the profiles obtained
using the PB theory.

Figure 4 presents counter-ion concentration profiles (in mol.L−1) as a function of the re-
duced distance to the charged wall. We observe the separation of the solution into two phases,
a condensed phase close to the charged wall where most of the counter-ions concentrate and
screen out the surface charge, and a dilute phase away from the charged wall where the
counter-ion concentration is very small. These profiles are in stark contrast with the predic-
tions of the PB theory (shown with dashed lines) since the PB theory does not predict phase
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separation. Another interesting consequence of our results is that more than 90% (and in
some cases up to 99%) of the surface charge carried by the confining walls is screened out
by the counter-ions in the condensed phase, so that the remaining counter-ions in the dilute
phase feel a much weaker effective charge which can be determined quantitatively. Figure 5
presents the distance of the phase interface to the charged wall as a function of the surface
charge density for divalent counter-ions. While the order of magnitude of this distance is
roughly equal to the ion radius, variations by changing ΣS are sizable. The increase in the
distance is a consequence of correlations between ions, whose concentration at the surface in-
creases with surface charge density. Instead, as indicated by further simulations, this distance
is not very sensitive to the wall separation distance L∗ when the latter is in the range of a
nanometer.
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Figure 5. Distance of the phase interface to the charged wall as a function
of the surface charge density for divalent counter-ions.

Another significant difference with respect to the PB theory concerns the total pressure in
the system, which, for the present double-layer configuration, can be evaluated by computing
the osmotic pressure at the symmetry plane. The osmotic pressure depends on the counter-ion
density ρ+ (recall that ρ− ≡ 0 here) in the form

(25) posm(ρ+) = ρ+µ+(ρ+)− f(ρ+).

Owing to the double-tangent construction of the convex hull, the osmotic pressure is con-
tinuous across the interface separating the two phases. At the symmetry plane, the osmotic
pressure takes very small values, which are at least two orders of magnitude lower than those
predicted by the PB theory. Such an important difference results from the fact that the
condensed phase (which results from non-ideal behavior) screens out most of the surface
charges carried by the walls. However, despite these substantial quantitative differences, the
present model for non-ideality still leads to positive osmotic pressures, albeit very small. Neg-
ative pressures cannot be predicted with the present model since ρ+ takes values in the set
where f coincides with its convex hull f∗∗. This implies that posm can also be evaluated as
posm(ρ+) = ρ+∂ρ+f

∗∗(ρ+)− f∗∗(ρ+), and it is easily verified that the right-hand side always
takes nonnegative values since it is an increasing function of ρ+ vanishing for ρ+ = 0.

Turning to a two-dimensional setup, we now consider an elementary cell [0, L∗]
2 with L∗ = 1

or 2 nm and a circular inclusion carrying surface charges. The inclusion is positioned at
the center of the elementary cell and has radius 0.3L∗. The fluid domain Ω corresponds
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Figure 6. Circular inclusion within compensating trivalent counter-ion.
Concentration profiles for L∗ = 1 nm (left, values between 0.014 and
12.47 mol.L−1) and L∗ = 2 nm (right, values between 0.011 and
12.92 mol.L−1). The two panels are rescaled to the same size.

to the elementary cell minus the circular inclusion. We set the surface charge density to
ΣS = 0.5 C.m−2 and consider dissolved counter-ions with valence Z+ = 3 and diameter

σ = 4.5
◦

A, yielding the canonical constraint ρmean
+ = 3.26 mol.L−1 for L∗ = 1 nm and

ρmean
+ = 1.63 mol.L−1 for L∗ = 2 nm, while the reduced temperature T ∗ is equal to 0.0704

(below T ∗

crit). Figure 6 presents concentration profiles for L∗ = 1 nm (left panel) and L∗ =
2 nm (right panel). The representation has been shifted using periodicity by half the length of
the elementary cell in each direction to illustrate the fact that the dilute phase forms a droplet
away from the charged circular inclusions for L∗ = 1 nm. The conclusions drawn from the
one-dimensional configuration carry over to the present two-dimensional configuration. The
condensed phase screens out most of the surface charge carried by the circular inclusions. The
predictions are in stark contrast with the PB theory, with substantial differences observed in
the concentration profiles and, consequently, on the osmotic pressure.

5. Results with added salt

In this section, we consider ionic solutions with added salt. Implementing the numerical
methodology described in Sect. 3 requires determining (or, at least, approximating with high
accuracy) the convex hull of the bulk free energy density as a bivariate function of the counter-
and co-ion densities. Within the RPM where the ions carry opposite charges, a simple ap-
proach can be devised based on a univariate function of the total ionic density only [50].
This is the case for symmetric electrolytes addressed in Sect. 5.1. In the more general case
where the two charges are not opposite, a discrete double Legendre–Fenchel transform is
employed [51]. This is the case for nonsymmetric electrolytes addressed in Sect. 5.2.

5.1. Symmetric electrolytes. In the case of symmetric electrolytes where Z+ + Z− = 0
(corresponding to the RPM), it is possible to write f(ρ) = fid(ρ) + fcorr(ρtot) exploiting the
fact that fcorr only depends on ρtot. Re-arranging the ideal part leads to

(26) f(ρ) = ftot(ρtot) + frel(ρ),
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Figure 7. Double-layer configuration for a symmetric divalent electrolyte
with L∗ = 1 nm, ΣS = 0.2 C.m−2, and ρsalt = 0.1 (top line), 0.5 (center line),
and 1.0 mol.L−1 (bottom line). Concentration of counter-ions (left column)
and co-ions (right column) as a function of the distance to the wall.

where

(27) ftot(ρtot) =
1

βσ3
ρ̂tot(log(ρ̂tot)− 1) + fcorr(ρtot),



PHASE SEPARATION IN HIGHLY CHARGED CONFINED IONIC SOLUTIONS 15

and

(28) frel(ρ) =
1

βσ3

∑

i=±

ρ̂i log

(

ρ̂i
ρ̂tot

)

.

The bivariate function frel is convex in the ionic densities, while the convexity properties of
the univariate function ftot can be deduced from the phase diagram of Figure 2. Specifically,
for a given reduced temperature T ∗ below the critical temperature T ∗

crit, the binodal points

of ftot, denoted by ρ̂♭tot and ρ̂
♯
tot, are determined from the liquid-vapor coexistence curves of

Figure 2. The subset K∗∗ of the two-dimensional phase space then consists of two connected
components (associated with the dilute and condensed phases) separated by the stripe {ρ̂♭tot ≤

ρ̂+ + ρ̂− ≤ ρ̂♯tot} whose boundary are two parallel lines in the (ρ+, ρ−)-plane.
We first consider the double-layer configuration with L∗ = 1 nm, ΣS = 0.2 C.m−2, valences

Z+ = −Z− = 2, and diameter σ = 2.2
◦

A. This yields ρΣS

+ = 2.076 mol.L−1, while T ∗ =

0.07746 (below T ∗

crit). We consider the values ρsalt = 0.1, 0.5 and 1.0 mol.L−1. Counter-
and co-ion concentration profiles are presented, respectively, in the left and right panels
of Figure 7. Once again, predictions are in stark contrast with those obtained with the PB
description. Interestingly, only one interface appears in the fluid domain Ω, and the condensed
phase close to the charged wall contains most of the counter-ions, but also most of the co-
ions. Spatial inhomogeneities are however present in the condensed phase. In particular,
we observe that the co-ion concentration is non-monotone in the condensed phase. This
phenomenon is explained by the Neumann boundary condition implicitly satisfied by the co-
ion concentration and resulting from the constancy of the electro-chemical potential combined
with the Neumann boundary condition on the electrostatic potential. Hence, even if most of
the co-ions lie in the condensed phase, they are still somewhat repelled away from the wall
by the negative surface charge. Finally, a comparison with the more elaborate approach of
Sect. 5.2 (which also incurs numerical errors owing to discretization) to determine the subset
K∗∗ shows relative differences in predicted ionic densities below 10−4 away from the interface
and 10−2 near the interface.

Figure 8 presents a different viewpoint, in that the cloud of points (ρ+, ρ−) is presented
in the state space. Each point corresponds to the value obtained at a node of the finite
element mesh. Results are presented for the case L∗ = 1 nm considered above, and also for
L∗ = 0.8 nm and L∗ = 1.6 nm. For fixed L∗, moving from right to left along a set of points
corresponds to moving away from the charged wall. Interestingly, higher ionic concentrations
are reached for larger values of L∗. Moreover, in Figure 8, the two parallel oblique lines
indicate the boundary of the subset K∗∗ in which the ionic densities are sought. Thus, the
results show that the constraint that the ionic densities take values in the subset K∗∗ is very
well satisfied, up to very few mesh nodes (less than 0.1%).

Finally, Figure 9 presents counter- and co-ion isocontours for the configuration with circular
inclusions with L∗ = 1 nm, ΣS = 0.2 C.m−2, and ρsalt = 0.5 mol.L−1. We observe again the
formation of a single interface whose shape closely follows that of the circular inclusion, and
that the condensed phase contains most of the counter-ions and co-ions, the latter exhibiting
a non-monotone behavior within this phase.

5.2. Nonsymmetric electrolytes. For nonsymmetric electrolytes where Z+ + Z− 6= 0, the
convex hull of f can be evaluated numerically using a double discrete Legendre–Fenchel
transform following the algorithm recently developed in [51] (where phase diagrams for various
choices of Z± are presented). As discussed in Sect. 3.2, the chemical potentials used in the
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Figure 8. Double-layer configuration for a symmetric divalent electrolyte
with L∗ = 0.8, 1 and 1.6 nm, ΣS = 0.2 C.m−2, and ρsalt = 0.1 mol.L−1.
Each point corresponds to ionic densities obtained at a certain node of the
finite element mesh. The two parallel oblique lines indicate the boundary of
the subset K∗∗.

Figure 9. Circular inclusion within symmetric divalent electrolyte for L∗ =
1 nm, ΣS = 0.2 C.m−2, and ρsalt = 0.5 mol.L−1. Concentration isocontours for
counter-ions (left, values between 0.27 and 25.3 mol.L−1) and co-ions (right,
values between 0.09 and 1.82 mol.L−1).

Newton–Raphson iterations are obtained from the partial derivatives of the convex hull of the
bulk free energy density. To this purpose, values of the convex hull f∗∗ and of its derivatives
are tabulated on a fine grid of the phase space (ρ+, ρ−). When the function f∗∗ is only
known through tabulated values and not analytically, the sharp interface approximation with
adaptively refined meshes becomes more delicate numerically. In our numerical experiments
as η → 0+, we observed that ionic densities feature spurious oscillations in a tight vicinity
of the interface whose measure tends to zero as η → 0+. Such oscillations concern less than
0.1% of the mesh nodes, and the corresponding values of ionic concentrations are omitted in
the results presented below.
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We focus on a nonsymmetric electrolyte with Z+ = 2 and Z− = −1, both ions having

the same diameter σ = 2.2
◦

A. The reduced counter-ion temperature is set to T ∗
+ = 0.07

below the critical temperature T ∗

crit = 0.0785, while T ∗
− = 4T ∗

+ lies above this value. As a
consequence, the function ρ+ 7→ f(ρ+, 0) is nonconvex, while the function ρ− 7→ f(0, ρ−) is
convex. Therefore, the subset K∗∗ has now a completely different shape than in the symmetric
case; specifically, it intersects the ρ+-axis, but not the ρ−-axis in the state space. Figure 10
presents the boundary of the subset K∗∗ for the values T ∗

+ = 0.05, 0.06, 0.07 and 0.075. The
lower the value of T ∗

+, the larger the subset K∗∗. In the four cases presented in Figure 10,
the subset K∗∗ does not intersect the ρ−-axis (it does so for reduced temperatures T ∗

+ ≤
0.0785/4 ≈ 0.0196).
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Figure 10. Phase separation diagram for a nonsymmetric 2:–1 electrolyte.
Boundary of the subset K∗∗ for the values T ∗

+ = 0.05, 0.06, 0.07 and 0.075; the
lower the reduced temperature T ∗

+, the larger the subset K∗∗.

Counter- and co-ion concentration profiles are presented for the double-layer configura-

tion with L∗ = 1 nm, ΣS = 0.1 C.m−2 (yielding ρΣS

+ = 1.04 mol.L−1), and ρsalt = 0.1 or

0.25 mol.L−1 in the left and right panels of Figure 11, respectively. The main result is, once
again, the formation of an interface near the charged surface, with higher values for both
counter- and co-ion densities. Interestingly, the ionic solution separates into two phases, with
both counter- and co-ion densities jumping at the interface. Figure 12 presents the cloud of
points (ρ+, ρ−) in the state space, each point corresponding to a node of the finite element
mesh. For fixed ρsalt, moving from right to left along a set of points corresponds to moving
away from the charged wall. The boundary of the subset K∗∗ is indicated by the dotted line.
Less than 0.1% of mesh nodes contribute to densities falling outside K∗∗.

6. Conclusions

The main findings of the present study can be summarized as follows. The formation of
a condensed layer near the charged surface screens out most of the surface charge (at least
90% of it in our experiments, with up to 99% in some cases). Density profiles are therefore in
stark contrast with PB predictions. In particular, the total pressure, albeit slightly positive,
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Figure 11. Double-layer configuration for a nonsymmetric 2:–1 electrolyte
with L∗ = 1 nm, ΣS = 0.1 C.m−2, and ρsalt = 0.1 (dotted) or 0.25 mol.L−1

(solid). Concentration of counter-ions (left) and co-ions (right) as a function
of the distance to the wall.
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Figure 12. Double layer configuration for a nonsymmetric 2:–1 electrolyte
with L∗ = 1 nm, ΣS = 0.1 C.m−2, and ρsalt = 0.1 and 0.25 mol.L−1. Each
point corresponds to ionic densities obtained at a certain node of the finite
element mesh. The dotted line indicates the boundary of the subset K∗∗.

is much smaller than the PB prediction. Moreover, for the periodic network of circular
inclusions, the dilute phase can form a droplet away from the inclusions, while the condensed
layer roughly follows the shape of the inclusions. In the case of ionic solutions with added
salt, the appearance of a single interface is again observed in the fluid domain separating a
condensed phase close to the charged surface and a dilute phase away from it. The condensed
phase contains most of the counter-ions and again screens out most of the surface charge. The
co-ion density is higher in the condensed phase than in the dilute phase. Moreover, the co-ion
density is non-monotone within the condensed phase, as co-ions still tend to be repelled by
the surface charges.
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The present methodology, which is applicable to multi-dimensional geometries, can be of
interest to study phase separation in confined ionic solutions in other applicative settings. As
natural extensions of this work, one could now include the effect of non-ideality in multi-scale
approaches which currently use the PB theory as a starting point [52, 53, 54, 55]. Another
important issue is that of dynamical properties, in particular the coupling of ion dynamics with
fluid flows resulting in the so-called electro-kinetic effects [56]. The present DFT formulation
can be used to include non-ideality in numerical approaches which couple hydrodynamic flows
to ionic fluxes via time-dependent DFT [57].
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[36] H. Löwen, J.-P. Hansen, and P. A. Madden. Nonlinear counterion screening in colloidal suspensions. J.

Chem. Phys., 98:3275–3289, 1993.
[37] A. Oleksy and J.-P. Hansen. Wetting and drying scenarios of ionic solutions. Mol. Phys., 109(7-10):1275–

1288, 2011.
[38] H. Greberg, R. Kjellander, and T. Akesson. Ion-ion correlations in electric double layers from monte carlo

simulations and integral equation calculations. Molecular Physics, 87(2):407–422, 1996.
[39] H. Greberg, R. Kjellander, and T. Akesson. Ion-ion correlations in electric double layers from monte carlo

simulations and integral equation calculations part 2. case of added salt. Molecular Physics, 92(1):35–48,
1997.

[40] A. Delville and R. J. M. Pellenq. Electrostatic attraction and/or repulsion between charged colloids: A
(NVT) monte-carlo study. Molecular Simulation, 24(1-3):1–24, 2000.

[41] Roland Kjellander, Alexander P. Lyubartsev, and Stjepan Marcelja. McMillan-Mayer theory for solvent
effects in inhomogeneous systems: Calculation of interaction pressure in aqueous electrical double layers.
The Journal of Chemical Physics, 114(21):9565–9577, June 2001.

[42] R. J. M. Pellenq. On the origin of cement cohesion. Actualite Chimique, pages 12–22, March 2004.
WOS:000220862400003.

[43] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev.,
140:A1133–A1138, 1965.
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Malabry Cedex

2: University Paris-Est, CERMICS, Ecole des Ponts ParisTech, 77455 Marne la Vallée cedex
2, France

3: Department of Mathematics, Imperial College London, SW7 2AZ London, UK

4: CNRS, UMR 7195 PECSA, 75005 Paris, France

5: UPMC Univ. Paris 06, UMR 7195 PECSA, 75005 Paris, France

6: Department of Mathematics and Computer Science, University of Udine, Italy


