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The Discrete Legendre-Fenchel Transform and its application to phase separation in electrolytes

Introduction

The study of equilibrium electrolytes in a porous and electrically charged medium is of interest in the design of semiconductor devices or the study of clay rocks at the nanometre scale. The bulk free-energy f of these systems, which is a function of the ionic concentrations, contains a non-convex contribution due to the electrostatic interactions between the ions; it has been shown that for small ion diameters this contribution is strong enough to make the function f non-convex. In such cases the region T of the state space where f differs from its convex hull is thermodynamically unstable and T divides the state space in different phases. For a one-dimensional state space (only one ionic species), the convex hull of the bulk free-energy f can be determined using Maxwell equal area rule. For more than one ionic species, we need to determine the convex hull of a multidimensional function f . In the thesis we study the Legendre-Fenchel transform and we propose an algorithm to approximate the convex hull, which is based on its discrete version. This approach is known in the literature, but here we develop and test an improved version of it. We apply this algorithm to the bulk free energy in the symmetric and asymmetric case, finding the shape of the region T . Finally we solve the model equations by a finite elements discretization, obtaining solutions in which phase separation clearly arises.

The thesis is organized as follows.

In Chapter 1 we study a non-confined electrolyte. We describe its free-energy, called bulk free-energy; in the non-ideal case, i.e. when interactions between ions are not negligible, such free-energy contains terms due to coulombian interaction and steric effects. Finally, we observe that if the free-energy is not convex, phase separation may occur.

In Chapter 2 we introduce and prove some basic results on the Legendre-Fenchel transform and its discrete counterpart with particular attention to the construction of the convex hull; more details can be found in Appendices A and B. Convergence properties are assessed and an exact formula is given for the one-dimensional case.

In Chapter 3 we study the properties of a double application of the discrete Legendre-Fenchel transform, which furnishes an approximation of the convex hull. Attention is payed to the choice of the discretization for the second transform, as it has great importance in the convergence results.

In Chapter 4 we present an algorithm for the computation of the convex hull based on the dimensional factorization of the Legendre-Fenchel transform. Some improvements to the standard approach studied in the literature are proposed and the numerical results of the algorithms are analyzed on some test problems.

In Chapter 5 we unveil the shape of the non-convexity region T of the bulk free-energy density for electrolytes of varying ion diameter; both symmetric and asymmetric mixtures of ions are considered.

In Chapter 6 the full model for a confined electrolyte is introduced; the total free-energy now includes a contribution of the electrostatic potential. A numerical method for the solution of the model equations is briefly presented and actual solutions computed for some test cases, showing that phase separation indeed arises in the presence of charged walls.

To conclude, the proposed algorithm allows to study any confined electrolyte, no matter what the valences and the ionic diameter are. However further improvements are needed to approximate the convex-full of the energy in case of asymmetric mixture with small ion diameters, because the iterative method used thus not converge.

The bulk free-energy of electrolytes

The phenomenon we are going to study is the behaviour of electrolytes in a porous and electrically charged medium; an electrolyte is a solvent, usually water, in which one or more ionic species are dissolved. This behaviour is of interest in many fields of application, such as the design of semiconductor devices or the study of clay rocks at the nanometre scale. The model used in this work is the one considered by Ern, Joubaud and Lelièvre [START_REF] Ern | Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes[END_REF].

Bulk electrolytes

Consider an electrolyte composed by a cation and an anion contained in a region Ω ⊆ R n , where n = 2, 3, whose boundary ∂Ω is electrically charged; we will denote respectively by Z + and Z -their valences, i.e. the number of extra/missing electrons, and with c = (c + , c -) their concentrations. We will initially suppose that Ω is sufficiently large to make the influence on the electrolyte of the boundary ∂Ω negligible; this is equivalent to consider the limit case Ω = R n and an electrolyte in this condition is called a bulk electrolyte. At equilibrium, we have by symmetry that the concentration c : Ω → R 2 ≥0 and the electrostatic potential ψ : Ω → R are constant; for simplicity we can take ψ = 0, being the potential determined up to an additive constant.

At the equilibrium ψ and c must be such that µ + (ψ, c) and µ -(ψ, c) are both constant on Ω, where µ ± (ψ, c) are the electrochemical potentials of the two ions; these potentials are given by

µ i (ψ, c) = k B T log(σ 3 c i ) + k B T log(γ i (c)) + Z i eψ, i = ±,
where k B is the Boltzmann constant, e is the elementary charge, T is the temperature, σ is the mean ion diameter, which we suppose the same for both species, and γ i (c) is the activity coefficient of species i which is used to account for non-ideal behaviour (in the ideal case we have γ ± (c) ≡ 1). In the case Ω = R n we have seen that ψ = 0 and c is constant and thus the condition on the electrochemical potentials is satisfied for every c constant.

Non-dimensional formulation

It is convenient to have a non-dimensional formulation, for example in order to normalize numerical values and simplify the equations through the omission of physical constants. This means substituting each quantity with the dimensionless ratio between it and a reference value and then finding the equations that this ratios satisfy; these reference values are where the reference length L * can be chosen arbitrarily. We will also define the so called Bjerrum length

L B := e 2 4πεk B T ,
where ε = ε 0 ε r is the solvent permittivity (ε 0 is the vacuum permittivity and ε r the solvent relative permittivity), and the dimensionless ratio

λ := L * 4πL B .
Denoting for simplicity the new dimensionless quantities with the same symbols used before, the expression for the electrochemical potentials becomes µ i (ψ, c) = log(σ 3 c i ) + log(γ i (c)) + Z i ψ, i = ±.

Non-ideality

In this section we specify the activity coefficients γ ± (c). Each of them can be split into two parts as log(γ i (c)) = log(γ Coul i (c)) + log(γ Steric (c + + c -)), i = ±;

the first contribution is due to Coloumb interactions, while the second accounts for steric effects, i.e. effects which appear when the ions are very close to each another. The Coulomb term is given by log(γ Coul i (c)) = Z 2 i log(γ 0 (I(c))), i = ±, where I(c) is the ionic strength defined as

η i := 1 2 Z 2 i , I(c) := i=± η i c i ,
while the function γ 0 : R ≥0 → R ≥0 is defined as

Υ MSA (θ) := 1 2σ   2σ 2θ λ + 1 -1   , log(γ 0 (θ)) := - 1 4πλ Υ MSA (θ) 1 + σΥ MSA (θ)
,

where Υ MSA is called the screening parameter and the acronym MSA stands for "mean spherical approximation". We present two version of the steric term. The first is called hard-sphere approximation and is given by log(γ HS (u)) := 4πσ 3 3 u.

We thus have that log(γ HS (u)) is proportional to the fraction of the volume occupied by the ions, but it is finite for every concentration u = c + + c -, no matter how high; this is not what we expect because it should not be possible to fit any number of ions in the same space and thus there should be a limit concentration. This problem is resolved by using the Carnahan-Starling approximation, defined as r(u) := πσ 3 6 u log(γ CS (u)) := 3r(u) 3 -9r(u) 2 +8r(u) (1-r(u))

3 if 0 ≤ r(u) < 1 +∞ if r(u) ≥ 1 ,
where r is the so called packing fraction. With this approximation we have that log(γ CS (u)) is +∞ when beyond a certain total concentration, while for small concentrations, i.e. for r(u) near 0, we have that log(γ CS (u)) ≈ 8r(u) = log(γ HS (u)).

Bulk free-energy density

We indicate with f (c) the bulk free-energy density; f is a function R 2 ≥0 → R such that ∂f ∂c i (c) = µ i (0, c) on R 2 >0 , i = ±.

(1.1)

Note the f is thus defined up to an additive constant. We can decompose f as

f (c) = f id (c + ) + f id (c -) + f ex (c),
where f id : R ≥0 → R is the contribution due to the ideal term in µ ± and f ex : R 2 ≥0 → R (ex stands for "excess") the one resulting from non-ideality; in particular we ask that ∂f id ∂u (u) = log(σ 3 u) and ∂f ex ∂c i (c) = log(γ i (c)), i = ±.

Then we have that also f id and f ex are defined up to an additive constant.

We can take f id as

f id (u) = u(log(σ 3 u) -1) if u > 0 0 if u = 0 ,
while we further decompose f ex as

f ex (c) = 2Γ Coul (I(c)) + Γ Steric (c + + c -),
where we require that ∂Γ Coul ∂θ (θ) = log(γ 0 (θ))

and ∂Γ Steric ∂u (u) = log(γ Steric (u)).

We then have

∂f ex ∂c i (c) = 2 ∂Γ Coul ∂θ (I(c)) ∂I ∂c i (c) + ∂Γ Steric ∂u (c + + c -)
= Z 2 i log(γ 0 (I(c))) + log(γ Steric (c + + c -)) = log(γ i (c)), for i = ±, as wanted. We can then take

Γ 0 (θ) = - 1 4πσλ θ - 8λσ 3 (Υ MSA (θ)) 3 -2λ(Υ MSA (θ)) 2 , Γ HS (u) = 2πσ 3 3 u 2 , Γ CS (u) = -6r(u) 2 πσ 3 3r(u)-4 (1-r(u)) 2 if 0 ≤ r(u) < 1 +∞ if r(u) ≥ 1 ,
and the requested relations hold; in the following we will always use the more accurate Carnahan-Starling approximation. Observe finally that the ideal free-energy density is continuous in R ≥0 and continuously differentiable in R >0 , while the excess free-energy is continuously differentiable in R 2 ≥0 ; the bulk free-energy density is thus continuous in R ≥0 and continuously differentiable in R >0 and ∂f ∂c i (c) → -∞ when c i → 0, i = ±.

Convexity of f

If f is convex, then in [START_REF] Ern | Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes[END_REF] it is proved that there exists one and only one equilibrium solution when the effect of the charged walls is no more negligible; moreover they showed that f is convex for values of σ which are above a threshold σ 0 depending on the valences Z ± , on the temperature T and on the relative permittivity ε r (the values for σ 0 for certain values of the parameters are reported in Table 1.1). When f is not convex, the region T of the state space c = (c + , c -) where f differs from its convex hull is thermodynamically instable; we then have that T divides the state space in different phases, which can instead coexist inside T . When one species of ion is present, Z + : Z -T = 300 K and ε r = 78.3 T = 350 K and ε r = 62.0 +1 : -1 0.0560 nm 0.0606 nm +2 : -1 0.2329 nm 0.2521 nm +2 : -2 0.2239 nm 0.2424 nm +3 : -3 0.5039 nm 0.5454 nm +3 : -1 0.7352 nm 0.7958 nm this construction is equivalent to applying Maxwell equal area rule to the derivative of f , i.e. the electrochemical potential µ, in order to make the function µ monotone; since µ and c are conjugate variables, as well as P and V in gas thermodynamics, this situation is identical to the Maxwell's original construction, which has been applied to the isotherm P = P (V ) of the van der Waals equation (for Maxwell's original article see [START_REF] Clerk | On the Dynamical Evidence of the Molecular Constitution of Bodies[END_REF]). In order to study the behaviour of the electrolyte when f is not convex, it is then essential to find the region T . Since f is difficult to treat analytically, we proceed numerically and derive an algorithm to compute the convex hull of f .

The Discrete Legendre-Fenchel Transform

As highlighted in Section 1.5, in order to study the behaviour of electrolytes with an arbitrary ionic diameter σ, it is necessary to devise an algorithm to calculate the convex hull of the bulk free-energy density. Our approach to build such algorithm is based on the properties of the Legendre-Fenchel transformation (LFT), an important concept in convex analysis, and of its discrete counterpart, the Discrete Legendre-Fenchel Transform (DLFT). In the first part of this chapter we present the main results concerning the LFT and DLFT, the second part deals with the exact form of the DLFT in one-dimension, while the last part is devoted to the study of the convergence of the DLFT to the LFT.

Legendre-Fenchel transformation: basics

We present a brief introduction on convex functions and on Legendre-Fenchel transformation; for more details see respectively Appendices A and B, or any introductory book on convex analysis, such as [START_REF] Rockafellar | Convex Analysis[END_REF][START_REF] Heinz | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF].

Definition 2.1. Let f : R n → R := R ∪ {-∞, +∞}. The set epi f := {(x, y) ∈ R n × R | y ≥ f (x)} is called epigraph of f . Definition 2.2. A function f : R n → R is said to be convex if epi f is convex as a subset of R n+1 . Definition 2.3. Let f : R n → R be a convex function. The set dom f = {x ∈ R n | f (x) < +∞} is called the effective domain of f . Definition 2.4. A convex function f is said to be proper if • f (x) < +∞ for at least one x ∈ R n • f (x) > -∞ for all x ∈ R n
Definition 2.5. The convex hull of a function f , denoted by conv f , is the greatest convex function majorized by f . Definition 2.6. The lower semicontinuous hull of a function f , denoted by f , is the greatest lower semicontinuous function majorized by f . Definition 2.7. The closure of a convex function f , denoted by cl f , is

• the lower semicontinuous hull of f if f (x) > -∞ for all x ∈ R n • the constant function -∞ otherwise Definition 2.8. Given f : R n → R convex and x ∈ R n , a vector ξ ∈ R n is called a subgradient of f at x if the affine function z → f (x) + ξ, z -x is majorized by f .
Definition 2.9. The collection of all subgradients of f at x is called the subdifferential of f at x and is denoted by ∂f (x).

Definition 2.10. Let f : R n → R. The function

f * : R n → R ξ → sup x∈R n [ x, ξ -f (x)] = -inf x∈R n [f (x) -x, ξ ] ,
where

•, • is the scalar product of R n , is called the Legendre-Fenchel Transform (LFT), or conjugate, of f . Proposition 2.11. Let f : R n → R. The function f * is then a closed convex function.
The two main results involving the LFT are the following, respectively linking the double transformation with the convex hull operation and showing how the transformation can be factorized along each dimension. Theorem 2.12. Let f : R n → R. We then have that f * * = cl (conv f ). Theorem 2.13. Given f : R n → R and an index i = 1, . . . n, let f * i be the LFT along the ith-dimension, i.e.

f * i : R n → R (x 1 , . . . , x i-1 , ξ i , x i+1 , . . . , x n ) → sup x i ∈R [x i ξ i -f (x 1 , . . . , x i , . . . x n )] = [f (x 1 , . . . , x i-1 , •, x i , . . . x n )] * (ξ i ).
We then have that

f * = -• • • --f * 1 * 2 * 3 • • • * (n-1) * n .

Discrete Legendre-Fenchel Transform

To compute the convex hull of a given function f , the number of evaluation points must be finite. Therefore, it is useful to introduce the discrete version of the LFT.

Definition 2.14. Given a function f : R n → R and Ω ⊆ R n we define the function

f Ω : R n → R as f Ω (x) = f (x) if x ∈ Ω +∞ elsewhere .
Proposition 2.15. Given a function f : R n → R and Ω ⊆ R n we have that

f * Ω (ξ) = sup x∈Ω [ x, ξ -f (x)] .
Proof. Fix ξ ∈ R n ; by Definition B.1 we have that

f * Ω (ξ) = sup x∈R n [ x, ξ -f Ω (x)] .
If Ω = ∅, then f Ω ≡ +∞ and the thesis follows trivially from the fact that the supremum of an empty set is -∞. If there is x 0 ∈ Ω, we then have for every

x ∈ R n \ Ω that f Ω (x) = +∞ and thus x, ξ -f Ω (x) ≤ x 0 , ξ -f (x 0 );
this implies that the two suprema have the same value.

Proposition 2.16. Let f : R n → R and Ω ⊆ Ω ⊆ R n . Then f * Ω ≥ f * Ω .
Proof. We have that f Ω ≤ f Ω by construction; we can then apply Proposition B.5 and obtain the thesis.

Proposition 2.17. Let f : R n → R and let Ω, Ω ⊆ R n . Then

f * Ω∪Ω = max {f * Ω , f * Ω } .
Proof. By Proposition 2.15 we have that

f * Ω∪Ω (ξ) = sup x∈Ω∪Ω [ x, ξ -f (x)] = max sup x∈Ω [ x, ξ -f (x)] , sup x∈Ω [ x, ξ -f (x)] = max {f * Ω (ξ), f * Ω (ξ)} .
Definition 2.18. Let f : R n → R and let Ω N ⊂ R n be finite; the subscript N is used to highlight the finiteness of Ω N and in general does not mean that |Ω N | = N . The function f * Ω N is then called the Discrete Legendre-Fenchel Transform (DLFT) of f with respect to the set Ω N ; in particular we have

f * Ω N : R n → R ξ → max x∈Ω N [ x, ξ -f (x)] .
Remark 2.19. We could in principle have that f (x) = +∞ for some x ∈ Ω N , but in this case we would have f * Ω N = f * Ω N \{x} ; we could also have f (x) = -∞ for some x ∈ Ω N , but then we would have f * Ω N = +∞. For simplicity we will omit in all results involving the DLFT the assumption "f (x) is finite for all x ∈ Ω N " which excludes these trivial cases.

Conjugation of piecewise linear functions

In the one-dimensional case the DLFT is equivalent to a LFT of a piecewise linear function; in order to highlight the fact that we are considering functions defined on R, we will denote finite sets in R by the symbol X N . Definition 2.20. Given f : R → R and

X N = {x 1 , . . . , x N } ⊂ R with x 1 < • • • < x N ,
we denote by I X N (f ) the function which coincides on the interval [x 1 , x N ] with the piecewise linear interpolant of f on the nodes X N and is +∞ elsewhere.

Proposition 2.21. Let f : R → R and let X N ⊂ R be finite. Then conv f X N = conv I X N (f ). Proof. Because I X N (f ) ≤ f X N , we have by definition of convex hull that also conv I X N (f ) ≤ conv f X N . It can be easily seen that epi I X N (f ) ⊆ conv epi f X N ; thus conv f X N ≤ I X N (f )
and, by applying the convex hull operator, we obtain conv f X N ≤ conv I X N (f ).

Corollary 2.22. Let f : R → R and let X N ⊂ R be finite. Then we have [conv

I X N (f )] * = [I X N (f )] * = f * X N . Proof.
The thesis follows from Proposition 2.21 and Lemma B.15. This characterization is very important because the LFT of a convex piecewise linear function can be easily computed; the following theorem is the basis for an efficient onedimensional algorithm for the DLFT ( [START_REF] Lucet | Faster than the Fast Legendre Transform, the Linear-time Legendre Transform[END_REF]).

Theorem 2.23. Given a finite collection of points

P i = (x i , y i ) ∈ R 2 , i = 1, . . . , N , such that x 1 < • • • < x N
and given c 0 , c N ∈ R, let g be the piecewise linear continuous function which interpolates the points P i and is extended to the left and the right with slopes respectively c 0 and c N (possibly infinite), i.e.

g(x) =      y 1 + c 0 (x -x 1 ) if x < x 1 y i + c i (x -x i ) if x i ≤ x ≤ x i+1 , i = 1, . . . , N -1 y N + c N (x -x N ) if x > x N , (2.1) 
where the values c i , the slopes of the linear segments of g, are given by

c i = y i+1 -y i x i+1 -x i , i = 1, . . . , N -1. Suppose that g is convex, i.e. c 0 ≤ • • • ≤ c N ; then g * (ξ) = +∞ if ξ < c 0 or ξ > c N x i ξ -y i if c i-1 ≤ ξ ≤ c i , i = 1, . . . , N . (2.2) 
Proof. By Proposition A.35 we have that

∂g(x i ) = [c i-1 , c i ], i = 1, . . . , N ;
then the thesis follows for each c 0 ≤ ξ ≤ c N by applying Theorem B.26.

If there exists ξ < c 0 , by (2.1) we obtain that

g * (ξ) = sup x∈R [xξ -g(x)] ≥ sup x<x 1 [xξ -y 1 -c 0 (x -x 1 )] = sup x<x 1 [(ξ -c 0 )x -y 1 + c 0 x 1 ] ,
which is +∞ because ξ -c 0 < 0. The case ξ > c N is similar.

By Theorem 2.23 the conjugate of a piecewise-linear convex function g with nodes {x i } and slopes {c i } is a piecewise-linear convex function with nodes {c i } and slopes {x i }.

The conjugate is just a different "coding" of the some information: the values defining the function, i.e. its slopes and its nodes, do not vary after the conjugation, but just swap roles. In Figure 2.1 we plot g and g * defined as in Theorem 2.23 where x i = -3 + i for i = 1, . . . 5, y 1 = 1.75, y 2 = 0.6, y 3 = 0.1, y 4 = 0, y 5 = 0.33, c 0 = -∞, c 5 = 1; observe in particular that on the side on which g is +∞ its LFT is extended linearly, and conversely on the side on which g is extended linearly its FLT is +∞.

Convergence to the Legendre-Fenchel transform

The convergence properties of the DLFT, including its more complex versions considered in the next chapter, are based on Theorem (2.27). This result is due to Corrias 3; our proof has been adapted to our notation and extended explicitly to the case Ω is not closed.

Lemma 2.24. Let f : R n → R be such that f (x 0 ) < +∞ for at least one point

x 0 ∈ R n . Then f * > -∞.
Proof. Let ξ ∈ R n ; by definition of conjugation we then have Lemma 2.25. Let f : R n → R and let Ω ⊆ R n . Then we have

f * (ξ) = sup x∈R n [ x, ξ -f (x)] ≥ x 0 , ξ -f (x 0 ) > -∞. c 1 =-1.15 c 2 =-0.5 c 3 =-0.1 c 4 =0.33 c 5 =1 x x 1 =-2 x 2 =-1 x 3 =0 x 4 =1 x 5 =2 x 1 x 2 x 3 x 4 x 5 ξ c 1 c 2 c 3 c 4 c 5
f Ω * (ξ) = sup x∈Ω x, ξ -f Ω (x) .
Proof. Since the right hand side is equal to f Ω * Ω , it suffices to prove that f Ω = f Ω Ω . Since f Ω ≥ f Ω , we have that f Ω (x) = +∞ for every x /

∈ Ω; being f Ω = f Ω Ω on Ω, the thesis follows.

Definition 2.26. Let (Ω N ) N be an increasing sequence of finite subsets of Ω ⊆ R n . We say that the sequence converges to Ω if min x ∈Ω N x -x → 0 as N → ∞ for all x ∈ Ω; we denote this fact by the notation Ω N → Ω. If we also have that sup x∈Ω min x ∈X N x -x → 0 as N → ∞, we say that the convergence is uniform.

Theorem 2.27. Let ∅ = Ω ⊆ R n and let f : R n → R be such that f Ω = f Ω . Let (Ω N ) N a sequence of finite subsets of R n such that Ω N → Ω. Then, f * Ω N converges pointwise to f * Ω .
Moreover, if we also have that f | Ω is uniformly continuous and that Ω N → Ω uniformly, then the convergence is uniform on every bounded subset S of dom

f * Ω . Proof. If f = +∞ on Ω we have that both f Ω and f Ω N are +∞ on R n ; thus f * Ω N = f * Ω = -∞ on R n
and the thesis follows. Assume then that there exists

x f ∈ Ω such that f (x f ) < +∞.
Fix ξ ∈ R n . Firstly we prove that f * Ω N (ξ) has a limit. Since Ω N ⊂ Ω N +1 ⊂ Ω for every N , we have by Proposition 2.16 that

f * Ω (ξ) ≥ f * Ω N +1 (ξ) ≥ f * Ω N (ξ).
The sequence f * Ω N (ξ) is increasing and the limit of f * Ω N (ξ) as N → ∞ exists. Now we prove that this limit is f * Ω (ξ). By Lemma B.9 we have f

* Ω = (f Ω ) * and f Ω * = f Ω *
. By the hypothesis we get f * Ω = f Ω * and applying Lemma 2.25 we

obtain that f * Ω (ξ) = sup x∈Ω x, ξ -f Ω (x) ∀ξ ∈ R n . (2.3)
Fix ε > 0. By Lemma (2.24) we have that f * Ω (ξ) > -∞; we then have to consider only two cases: f * Ω (ξ) = +∞ and f * Ω (ξ) finite. First suppose that f * Ω (ξ) is finite; by the properties of the supremum in (2.3), we can find z ∈ Ω such that

f * Ω (ξ) ≤ z, ξ -f Ω (z) + ε 3 ≤ f * Ω (ξ) + ε 3 ,
which implies that f Ω (z) is finite. Then, by the upper semicontinuity of f Ω , there exists r > 0 such that

f Ω (x) -f Ω (z) ≤ ε 3 ∀x ∈ B(z, r),
where B(z, r) is the open ball with center z and radius r.

Let ε ≤ min{ ε 3 ξ , r}. We denote by ẑN the point of Ω N nearest to z, i.e. ẑN := arg min x∈Ω N x -z . By hypothesis we have that z -ẑN ≤ ε for sufficiently large values of N and thus ẑN ∈ B(z, r) and ẑN

-z ≤ ε 3 ξ . Since f Ω ≤ f Ω and f = f Ω on Ω N ⊂ Ω, we have that 0 ≤ f * Ω (ξ) -f * Ω N (ξ) = sup x∈Ω x, ξ -f Ω (x) -max x∈Ω N [ x, ξ -f Ω (x)] ≤ z, ξ -f Ω (z) + ε 3 -ẑN , ξ + f Ω (ẑ N ) ≤ z -ẑN , ξ + f Ω (ẑ N ) -f Ω (z) + ε 3 ≤ z -ẑN ξ + 2 3 ε ≤ ε, (2.4) 
and thus f * Ω N (ξ) converges to f * Ω (ξ). Now consider f * Ω (ξ) = +∞ and fix γ ∈ R. By the properties of the supremum in (2.3), we can find z ∈ Ω such that z, ξ -f Ω (z) > γ. Being •, ξ -f Ω lower semicontinuous, we can find, for N sufficiently large, ẑN ∈ Ω N sufficiently close to z to make ẑN , ξf Ω (ẑ N ) > γ. We have

f * Ω N (ξ) = max x∈Ω N [ x, ξ -f (x)] ≥ ẑN , ξ -f Ω (ẑ N ) ≥ = ẑN , ξ -f Ω (ẑ N ) > γ,
and thus f * Ω N (ξ) converges to +∞. Assume that f | Ω is uniformly continuous and consider a bounded subset S of dom f * Ω . By uniform continuity we can find δ > 0 such that for any x, z ∈ Ω with x -z < δ we have that |f (x) -f (z)| ≤ ε/3. For any z ∈ Ω we have that ẑN -z < min{δ, ε 3K } for sufficiently large N , where K = sup ξ∈S ξ < +∞. The inequality (2.4) holds for any ξ ∈ S, thus proving uniform convergence on S.

Sufficient conditions for convergence

It is interesting to note we cannot substitute the hypothesis f Ω = f Ω of Theorem (2.27) with the mere lower semicontinuity of f or f Ω , as is shown in the following example from 3.

Example 2.28 [START_REF] Corrias | Fast Legendre-Fenchel Transform and Applications to Hamilton-Jacobi Equations and Conservation Laws[END_REF]. Consider f (x) = |x -k| with k ∈]0, 1[; it is continuous, thus also upper semicontinuous and moreover satisfies the hypothesis f Ω = f Ω . By Theorem 2.23 we have

f * (ξ) = kξ if ξ ∈ [-1, 1] +∞ elsewhere , f * [0,1] (ξ) =      kξ if ξ ∈ [-1, 1] -k if ξ ≤ -1 ξ + k -1 if ξ ≥ 1 . Let (X N ) N be a sequence of finite grids such that X N → [0, 1]. We can choose k ∈]0, 1[ such that k /
∈ X N for every N and consider the lower semicontinuous function

g(x) = |x -k| if x = k -1 if x = k ;
observe that (g Ω ) = g Ω . By geometric construction, we can easily find

g * (ξ) = kξ + 1 if ξ ∈ [-1, 1] +∞ elsewhere , g * [0,1] (ξ) =      kξ + 1 if ξ ∈ [-k+1 k , 2-k 1-k ] -k if ξ < -k+1 k ξ + k -1 if ξ > 2-k 1-k . By Theorem 2.27 we have f * X N → f * [0,1] pointwise as N → ∞. Being k / ∈ X N for every N , we have f X N = g X N for every N and thus also f * X N = g * X N for every N ; this means that g * X N → f * [0,1] = g * [0,1]
and thus Theorem 2.27 cannot be applied to functions which are just lower semicontinuous. Now we give a necessary condition on the set Ω in order to have

f Ω = f Ω . Theorem 2.29. Let f : R n → R and Ω ⊆ R n be such that f Ω = f Ω . Then Ω ⊆ cl int Ω , where Ω = {x ∈ Ω | f (x) < +∞}.
Proof. Since f Ω = f Ω we can suppose without loss of generality that f (x) < +∞ for all x ∈ Ω, i.e., Ω = Ω .

Suppose that Ω cl int Ω and let x 0 ∈ Ω be such that x 0 / ∈ cl int Ω. Since we have that f Ω (x 0 ) < +∞, also f Ω (x 0 ) < +∞. Since x 0 / ∈ int Ω, in every neighbourhood of x 0 there is a point x such that x / ∈ Ω and thus f Ω (x) = +∞. This implies that f Ω (x 0 ) = +∞.

There exists an open neighbourhood U of x 0 such that x / ∈ cl int Ω for every x ∈ U . If this were not true, then in every open neighbourhood V of x 0 there would be a point of cl int Ω and thus, by openness of V , also a point of int Ω. This would mean that x 0 ∈ cl int Ω and we have reached a contradiction.

As we have seen, we have that f Ω (x) = +∞ for every x ∈ U ∩ Ω and, being f Ω ≥ f Ω , this holds also for every x ∈ U \ Ω. This means that f Ω is +∞ on a neighbourhood of x 0 and thus f Ω (x 0 ) = +∞. We then get that f Ω (x 0 ) = f Ω (x 0 ), which is in contradiction with our hypothesis.

We also give a sufficient condition on f in order for f Ω = f Ω to hold. Lemma 2.30. Let f : R n → R and let Ω ⊆ R n be an open set. Suppose that f | Ω is upper semicontinuous; then f Ω is upper semicontinuous.

Proof.

Since Ω is open, any point x ∈ Ω is an internal point of Ω and thus there is a neighbourhood U of x such that U ⊂ Ω and f Ω = f on U ; being semicontinuity a local property, we then have that f Ω is upper semicontinuous at x. If instead x ∈ R n \ Ω, we have f Ω (x) = +∞, which gives us that f Ω is upper semicontinuous at x.

Lemma 2.31. Let f : R n → R and let Ω ⊆ R n . Suppose that f | int Ω is upper semicon- tinuous; then f Ω = f int Ω .
Proof. By Lemma 2.30 we have that f int Ω is upper semicontinuous. Then we have

f int Ω ≥ f Ω ≥ f Ω ; since f Ω = f int Ω on int Ω ∪ (R n \ Ω), we also have f int Ω = f Ω on the same set.
Let x 0 ∈ Ω \ int Ω. This means that for every neighbourhood of x 0 there is a point x /

∈ Ω for which we have f Ω (x) = +∞; then, we have that f Ω (x 0 ) = +∞. Since we trivially have that f int Ω (x 0 ) = +∞, we get the thesis. Theorem 2.32. Let f : R n → R and let Ω ⊆ R n be such that Ω ⊆ cl int Ω. Suppose that f | Ω is upper semicontinuous; then f Ω = f Ω .

Proof. By Lemma 2.31 we have that f Ω = f int Ω ; thus we have to prove that f int Ω = f Ω .

Being

f int Ω ≥ f Ω , we have that f int Ω ≥ f Ω . Thus, if we prove that f Ω ≥ f int Ω , then we have that f int Ω = f Ω . Since f Ω = f int Ω on int Ω ∪ (R n \ Ω), we have that f Ω ≥ f int Ω on the same set. Let x 0 ∈ Ω \ int Ω and suppose that f Ω (x 0 ) < f int Ω (x 0 ). This implies that there exists c ∈ R such that f Ω (x 0 ) < c < f int Ω (x 0 ).
By lower semicontinuity of f int Ω , there exists a neighbourhood U of x 0 such that f int Ω (x) > c for every x ∈ U . Let U N a sequence of open balls centered in x 0 , having decreasing radius and contained in U . Since by hypothesis x 0 ∈ cl int Ω, there is a point x N ∈ int Ω ∩ U N for all N ; such points satisfy f Ω (x N ) ≥ f int Ω (x N ) > c, where the left inequality follows from the fact that x N ∈ int Ω.

By upper semicontinuity of f | Ω , there exists a neighbourhood V of x 0 such that f Ω (x) = f (x) < c for every x ∈ V ∩ Ω. But for N sufficiently large we have U N ⊂ V and thus x N ∈ V ∩ Ω, which leads to a contradiction. Theorem 2.32 shows that upper semicontinuity is a sufficient condition for f Ω = f Ω ; however, it is not a necessary one, as shown in the next example.

Example 2.33. Let

f (x) = sin(1/x) if x = 0 0 if x = 0 and Ω = [-1, 1]
. The function f is continuous everywhere but in 0, where it is neither lower or upper semicontinuous. Nonetheless, we have that f Ω = f Ω .

The double Discrete Legendre-Fenchel Transform

According to the results in the previous chapter, the application of two successive LFT to a function gives its convex hull. Similarly the algorithm to approximate the convex hull can be constructed by applying two successive DLFT; we call it double DLFT. In the literature the most of the papers focuses on the computation of the conjugate, which has many pratical applications in physics; on the contrary there are few theoretical results on the double DLFT, mainly dealing with convex functions. For the same reasons, one of the main problems regarding a correct discretization of the double LFT, i.e. the choice of the grid on which the second DLFT is computed, called the dual grid, is rarely treated.

In this chapter we present an attempt to generalize the results of the previous chapter to the double DLFT, with particular attention payed to the choice of the dual grid.

Properties of the double DLFT

Lemma 3.1. Let Ω ⊂ R n be bounded and let f : R n → R. Suppose that there exists

L ∈ R such that f (x) > L for every x ∈ Ω. Then dom f * Ω = R n .
Proof. Fix ξ ∈ R n . We have that

ξ ∈ dom f * Ω ⇐⇒ f * Ω (ξ) < +∞ ⇐⇒ sup x∈Ω [ ξ, x -f (x)] < +∞.
Being Ω bounded, there is a constant K > 0 such that for every x ∈ Ω we have x ≤ K; we then have that for any

x ∈ Ω ξ, x -f (x) < | ξ, x | -L ≤ ξ x -L ≤ K ξ -L, and thus sup x∈Ω [ ξ, x -f (x)] ≤ K ξ -L < +∞. Corollary 3.2. Let f : R n → R be such that f > -∞. Then dom f * Ω N = R n for any Ω N ⊂ R n finite. Corollary 3.3. Let Ω N ⊂ R n be finite and let f : R n → R be such that f (x 0 ) < +∞ for at least one point x 0 ∈ Ω N . Then dom f * Ω N * S N = R n for any S N ⊆ R n finite.
Proof. Follows from Lemma 2.24 and Corollary 3.2. Lemma 3.4. Let f : R n → R and let Ω, S, S ⊆ R n be such that S ⊆ S . Then

(f * Ω ) * S ≤ (f * Ω ) * S ≤ cl conv f Ω on R n .
Proof. By observing that cl conv f Ω = (f * Ω ) * = (f * Ω ) * R n , the thesis follows immediately from Proposition 2.16. Corollary 3.5. Let f : R n → R and let Ω N , S, S ⊆ R n be such that Ω N is finite and

S ⊆ S . Then f * Ω N * S ≤ f * Ω N * S ≤ conv f Ω N on R n .
Proof. By Theorem A.56 conv f Ω N is closed; the thesis follows from Lemma 3.4.

Remark 3.6. The last two corollaries show that if we enlarge the dual grid then the resulting double DLFT/LFT always improves as an approximation of the convex hull.

Corollary 3.7. Let f : R n → R and let Ω, S ⊆ R n . Then (f * Ω ) * S ≤ f on Ω.
Proof. We have that cl conv f Ω ≤ f Ω and by Lemma 3.4 that (f * Ω ) * S ≤ cl conv f Ω ; since f Ω = f on Ω, we get the thesis.

In general, the inequality of Corollary 3.7 does not hold everywhere; this is reasonable, because by restricting f to the set Ω every information on the behaviour of f outside Ω is discarded.

Example 3.8. Let f : R → R be the piecewise linear function with nodes {-1, -1 /2, 0, 1 /2, 1} and values {2, 0, 1, 0, 2}. By choosing

X N = {-1, 0, 1} and C N = {-1, 1}, we have that f * X N * C N
is the piecewise linear function with nodes {-1, 0, 1} and values {2, 1, 2}, which is strictly greater than f outside of X N .

If we try to compare (f * Ω ) * S with the exact convex hull cl conv f = f * * , no inequality can be established, not even by considering only the points of Ω.

Example 3.9. Let f and X N be defined as in previous example, whereas let C N = {0, 1}; then we have that

f * X N * C N (x) = 1 if x ≤ 1 2 1 + 2(x -1 2 ) if x ≥ 1 2 ,
which is somewhere greater than f * * and somewhere smaller.

Optimal dual grids

In the applications we usually need to compute the convex hull of functions of the type A correct choice of the grid S N is essential to obtain a good approximation. We begin by observing that, being the behaviour of f unknown outside Ω N , the function we are actually trying to compute is conv f Ω N , which we then take as an approximation of conv f . Since by Corollary 3. = conv f Ω N as functions defined on R n . Nonetheless in this section we will show that there exists a set S N such that f *

g : Ω → R \ {-∞}, where Ω ⊂ R n is
Ω N * S N (x) = conv f Ω N (x) for every x ∈ Ω N .
Lemma 3.10. Let f : R n → R be a convex function, let Ω N ⊂ R n be a finite set and let

ξ 0 ∈ R n such that f * Ω N (ξ 0 ) = f * (ξ 0 ). Then ∂f * (ξ 0 ) ∩ Ω N = ∅.
Proof. By hypothesis we have

max x∈Ω N [ x, ξ 0 -f (x)] = sup x∈R n [ x, ξ 0 -f (x)] . Let x 0 := arg max x∈Ω N [ x, ξ 0 -f (x)]; then for every x ∈ R n we have that x, ξ 0 -f (x) ≤ x 0 , ξ 0 -f (x 0 ) f (x 0 ) + x -x 0 , ξ 0 ≤ f (x),
i.e. ξ 0 ∈ ∂f (x 0 ). From Corollary B.20 we get x 0 ∈ ∂f * (ξ 0 ) and thus ∂f * (ξ 0 )∩Ω N = ∅.

In Lemma 3.10 the converse implication does not hold in general, as shown in the next example.

Example 3.11. Let Ω N = {0, 1} and let f : R → R be such that

f (x) =      1 if x = 0 0 if 0 < x ≤ 1 +∞ elsewhere ;
observe that f is convex, but not closed. By Corollary B.10 we have that f * = (cl f ) * and by applying Theorem 2.23 we obtain that

f * (ξ) = 0 if ξ ≤ 0 ξ if ξ > 0 ,
whereas, again by Theorem 2.23, we have that

f * Ω N (ξ) = -1 if ξ ≤ -1 ξ if ξ > -1 .
If we take ξ = -1 we have that 0 ∈ ∂f * (-1) ∩ Ω N but f * Ω N (-1) = f * (-1).

Theorem 3.12. Let f : R n → R be a closed convex function, let Ω N ⊂ R n be a finite set, and let ξ 0 ∈ R n . Then, ∂f * (ξ 0 ) ∩ Ω N = ∅ if and only if f * Ω N (ξ 0 ) = f * (ξ 0 ). Proof. Necessity follows from Lemma 3.10. In order to prove sufficiency suppose ∂f * (ξ 0 )∩ Ω N = ∅ and let x 0 ∈ ∂f * (ξ 0 ) ∩ Ω N . By Corollary B.23 we have ξ 0 ∈ ∂f (x 0 ), i.e. h ≤ f , where h is the affine function whose gradient is ξ 0 and whose value at 

x 0 is f (x 0 ). Since h ≤ f ≤ f Ω N and f (x 0 ) = f Ω N (x 0 ),
f * Ω N (ξ 0 ) = (conv f Ω N ) * (ξ 0 ) = f * (ξ 0 ).
Remark 3.13. Theorem 3.12 is inspired by Proposition 2.3 of [START_REF] Hiriart-Urruty | Lipschitz r -continuity of the approximate subdifferential of a convex function[END_REF].

Corollary 3.14. Let f : R n → R, let Ω N , S N ⊂ R n be finite sets, and let

x 0 ∈ Ω N . Then ∂ conv f Ω N (x 0 ) ∩ S N = ∅ if and only if f * Ω N * S N (x 0 ) = conv f Ω N (x 0 ).
Proof. We have that f * Ω N is a closed convex function and that f *

Ω N * = cl conv f Ω N = conv f Ω N
by applications of Theorem B.17 and Theorem A.56. By Theorem 3.12 we get the thesis. Definition 3.15. Given f : R n → R and Ω N ⊂ R n finite, we call an optimal dual grid any set S N such that ∂ conv f Ω N (x) ∩ S N = ∅ for every x ∈ Ω N By Corollary 3.14 requiring that S N is optimal is equivalent to asking that f *

Ω N * S N (x) = conv f Ω N (x) for every x ∈ Ω N .
It can be shown that such an optimal set always exists. Corollary 3.16. Let f : R n → R and let Ω N ⊂ R n be finite. Then, there exists a dual grid S N ⊂ R n finite and optimal.

Proof. Fix x ∈ Ω N . By Theorem A.56 we have that

∂ conv f Ω N (x) = ∅; then we can find ξ x ∈ ∂ conv f Ω N (x). Thus we can take S N = {ξ x | x ∈ Ω N }, which is finite by finiteness of Ω N .
Corollary 3.17. Given f : R → R not necessarily convex and X N ⊂ R finite, we have that C := {c 1 , . . . , c n-1 } is an optimal dual grid, where {c i } are the slopes of conv I X N (f ) as defined in Theorem 2.23.

Proof. By Proposition 2.21 we have conv

f X N = conv I X N (f ) and thus for every x ∈ X N we have that ∂ conv f X N (x) ∩ C = ∅.

Optimal dual grids in the non-finite case

Now we extend Theorem 3.12 to the case in which Ω and S are not necessarily finite.

Theorem 3.18. Let f : R n → R be a closed convex function, let Ω ⊆ R n , and let ξ 0 ∈ R n be such that ∂f * (ξ 0 ) ∩ Ω = ∅. Then, f * Ω (ξ 0 ) = f * (ξ 0 ). Proof. Let x 0 ∈ ∂f * (ξ 0 ) ∩ Ω and consider the finite set Ω N = {x 0 }. Being Ω N ⊆ Ω ⊆ R n ,
by applying Proposition 2.16 we obtain

f * Ω N (ξ 0 ) ≤ f * Ω (ξ 0 ) ≤ f * (ξ 0 );
since by Theorem 3.12 we have f * Ω N (ξ 0 ) = f * (ξ 0 ), we get the thesis.

Example 3.19. In Theorem 3.12 we had a necessary and sufficient condition, whereas for Theorem 3.18 only one direction is true. Consider for example

f (x) = 0 if x ∈ [-1, 1] +∞ elsewhere ;
by Theorem 2.23 we have that

f * (ξ) = |ξ| . Fix ξ 0 > 0; we have ∂f * (ξ 0 ) = {1}. Take Ω = R \ {1} open; we have f = cl f Ω and thus by Corollary B.10 we obtain that f * Ω = f * . Consequently we have f * Ω (ξ 0 ) = f * (ξ 0 ), but ∂f * (ξ 0 ) ∩ Ω = ∅ . Corollary 3.20. Let f : R n → R and let Ω, S ⊆ R n . Let x 0 ∈ Ω such that ∂ cl conv f Ω (x 0 )∩ S = ∅; then (f * Ω ) * S (x 0 ) = cl conv f Ω (x 0 ).
Proof. Being a LFT, the function f * Ω is a closed convex function. By Theorem B.17 we have that (f * Ω ) * = cl conv f Ω . Then, by applying Theorem 3.18 to the function f * Ω and to the set S, we get the thesis.

Corollary 3.21. Let f : R n → R, let Ω N ⊂ R n be finite and let S ⊆ R n . Let x 0 ∈ Ω N such that ∂ conv f Ω N (x 0 ) ∩ S = ∅; then f * Ω N * S (x 0 ) = conv f Ω N (x 0 ).
Proof. It follows from Corollary 3.20 after observing that cl conv f Ω N = conv f Ω N by Theorem A.56.

Convergence to the discretized convex hull

There are two main difficulties in the use of optimal dual grids as defined in the previous section. The first and more obvious one is that we need to know something about conv f Ω N before being able to find an optimal grid. The second is that for efficiency reasons the algorithm for the DLFT in two dimensions works on grids of the form

Ω N = X N × Y N and S N = C N × D N ⊂ R 2 ,
whereas the optimal grid is not necessarily of this form; we could build opportune C N and D N such that S N contains the optimal grid, but in the worst case we would have

|S N | = |Ω N | 2 . In the general case when S N is not optimal, f * Ω N * S N (x)
is only an approximation of conv f Ω N (x), but by refining S N this approximation becomes better, as we will show in Theorem 3.22.

Theorem 3.22. Let f : R n → R, let Ω M be a finite subset of R n and let S ⊆ R n be such that S ⊆ cl int S and ∂ conv f Ω M (x) ∩ S = ∅ for every x ∈ Ω M . Let (S N ) N be a sequence of finite subsets of R n such that S N → S. Then f * Ω M * S N (x) → conv f Ω M (x) for every x ∈ Ω M . Proof. By Lemma 3.1 dom f * Ω M = R n ; then, by Theorem A.25, f * Ω M is continuous on all R n
. By applying Theorem 2.32 we obtain that f *

Ω M S = f * Ω M S
. By applying Theorem 2.27 to the function f * Ω M and the set S, we obtain that f *

Ω M * S N (x) → f * Ω M * S (x)
for every x ∈ Ω M . Finally, from Corollary 3.21 we get that f *

Ω M * S (x) = conv f Ω M (x) for every x ∈ Ω M .
By Corollary 3.16 a set S with the required properties always exists. Since the points which are required to be in S are finite, S can be chosen bounded; for instance we could choose S as a union of neighbourhoods of these points or, should we be interested in the value of conv f Ω M in only one x 0 ∈ Ω M , as a neighbourhood of a point of ∂ conv f Ω M (x 0 ). All these points are unknown, but if we are able to choose S sufficiently large to include them all, we can achieve convergence by simply refining the grid on which the second DLFT is computed. Corollary 3.23. In the hypothesis of Theorem 3.22, let x 0 , ξ 0 ∈ R n be such that ξ 0 ∈ ∂ conv f Ω M (x 0 ) ∩ S. We then have

conv f Ω M (x 0 ) -f * Ω M * S N (x 0 ) ≤ ξ 0 -ξN x 0 + f * Ω M ( ξN ) -f * Ω M (ξ 0 ) , where ξN = arg min ξ∈S N ξ 0 -ξ . Proof. Since ξ 0 ∈ ∂ conv f Ω M (x 0 ) = ∂ f * Ω M * (x 0 ), we have by Corollary B.23 that x 0 ∈ ∂f * Ω M (ξ 0 ); thus by Lemma B.26 follows that f * Ω M * (x 0 ) = x 0 , ξ 0 -f * Ω M (ξ 0 )
and, being ξ 0 ∈ S, by Theorem 3.12 we have f *

Ω M * S (x 0 ) = f * Ω M * (x 0 )
. Following the proof of Theorem 2.27, we can then write

0 ≤ f * Ω M * S (x 0 ) -f * Ω M * S N (x 0 ) = x 0 , ξ 0 -f * Ω M (ξ 0 ) -max ξ∈S N x 0 , ξ -f * Ω M (ξ) ≤ x 0 , ξ 0 -f * Ω M (ξ 0 ) -x 0 , ξN + f * Ω M ( ξN ) ≤ ξ 0 -ξN , x 0 + f * Ω M ( ξN ) -f * Ω M (ξ 0 ) ≤ ξ 0 -ξN x 0 + f * Ω M ( ξN ) -f * Ω M (ξ 0 ) ,
and the thesis is proved.

Corollary 3.23 shows that the error in the approximation of conv f Ω M at the point x 0 is determined only by the properties of the grid S N in its vicinities: a finer grid around ξ 0 gives us a point ξN nearer to ξ 0 and by continuity of f * Ω M we can also expect

f * Ω M ( ξN ) -f * Ω M (ξ 0
) to be smaller; the points of S N far away from ξ 0 do not modify our estimate. Therefore, we can use this result in the case we are interested in the value of conv f Ω M on all points of Ω M but want a better approximation for a particular point: this objective can be achieved by using a fine dual grid around a subgradient of such point and a coarse grid elsewhere.

An algorithm for the convex hull of two-dimensional functions

The multi-dimensional DLFT can be reduced by factorization to several one-dimensional DLFTs; since we are interested in the convex hull of the bulk free-energy density (see Section 1.5), which is a two-dimensional function, we study this case in detail. Then we consider a factorized double DLFT and we show that a better approximation of the convex hull can be obtained by swapping dimensions in the second transform; the symmetry properties of this modified transformation are also studied. The factorization is used as a basis of an algorithm for computing the two-dimensional convex hull, using as the fundamental building block the fast, i.e. O(n), DLFT algorithm by Lucet [START_REF] Lucet | Faster than the Fast Legendre Transform, the Linear-time Legendre Transform[END_REF]; the algorithms based respectively on the standard and modified factorization are then compared. Finally, we propose an adaptive dual grid construction and explain how dual grids of arbitrary length can be used without incurring in an increased memory usage.

Factorization of the DLFT

The DLFT, being a special case of LFT, can be factorized in a similar way. For simplicity, we will restrict to the case n = 2, which is the case of interest in the physical model presented in Chapter 1. Let f : R 2 → R and Ω ⊂ R 2 , not necessarily finite; again for the sake of simplicity, we will suppose that Ω = X × Y . By Theorem B.18 we have

f * Ω = -(f Ω ) * 1 * 2 .
Since for every y ∈ R we can have f Ω (x, y) < +∞ only if x ∈ X, we obtain

g(ξ, y) := (f Ω ) * 1 (ξ, y) = [f Ω (•, y)] * (ξ) = [f (•, y)] * X (ξ);
in particular, when y / ∈ Y , we have that f Ω (•, y) ≡ +∞ and thus g(•, y) ≡ -∞. Finally we obtain that

f * Ω (ξ, η) = (-g) * 2 (ξ, η) = [-g(ξ, •)] * (η) = [-g(ξ, •)] * Y (η),
where the last equality follows from the fact that, fixed ξ, the function

-g(ξ, •) is +∞ outside of Y .
In the case of the DLFT, i.e. when Ω = Ω N = X N × Y N , where X N = {x 1 , . . . , x n } and Y N = {y 1 , . . . , y m }, we then have

f * Ω N (ξ, η) = [-g(ξ, •)] * Y N (η), where g(ξ, y) = [f (•, y)] * X N (ξ). (4.1) 
For any y ∈ Y N the function g(•, y) is a closed convex piecewise linear function whose domain is the entire real line and whose nodes are the slopes of conv f Ω N (•, y); for every ξ ∈ R the function f * Ω N (ξ, •) is a piecewise linear function whose domain is the whole real line and whose slopes are a subset of Y N , in particular they are the nodes of conv [-g(ξ, •)]. Moreover, we could swap the ordering of the directions in the factorization and obtain the same resulting f * Ω N ; this means that for every η ∈ R the function f * Ω N (•, η) is a piecewise linear function whose domain is the whole real line and whose slopes are a subset of X N . Now we have a factorization of the two-dimensional DLFT in one-dimensional DLFTs. In particular, in order to compute f * Ω N (ξ, η) for a given (ξ, η) ∈ R 2 we need to compute g(ξ, y j ) for every j = 1, . . . , m using m one-dimensional DLFTs along the x-direction (each on data whose length is n) and then applying one one-dimensional DLFT along the y-direction (on data long m); if we want to compute the transform on a grid of size n × m, we then have in total m DLFTs on data of size n and n DLFTs on data of size m. Having the one-dimensional DLFT algorithm linear complexity, the complexity of a two-dimensional algorithm based on this factorization is O(nm), again linear in time.

Factorization of the double DLFT with alternating dimensions

Let f : R 2 → R and let 

Ω N = X N × Y N ⊂ R 2 and S N = C N × D N ⊂ R
f * Ω N * S N = -f * Ω N * 2 * 1 , obtaining that f * Ω N * S N (x, y) = [-h(•, y)] * C N (x), (4.2) 
where

h(ξ, y) = f * Ω N (ξ, •) * D N (y) (4.3) = (-g(ξ, •)) * Y N * D N (y).
This means that h(ξ, •) is an approximation of the convex hull of (-g(ξ, •)) Y N ; we want to know if substituting h with the true convex hull (which is easily calculable in onedimension) gives us a better final result. Since by Theorem B.17 and Theorem A.56

conv (-g(ξ, •)) Y N = (-g(ξ, •)) * Y N * , we have that this new approximation for conv f Ω N is the function f * Ω N * C N ×R
; we now show that it is a better approximation than f *

Ω N * S N . Proposition 4.1. Let f : R 2 → R and let Ω N = X N ×Y N ⊂ R 2 and S N = C N ×D N ⊂ R 2 be both finite. Then f * Ω N * S N ≤ f * Ω N * C N ×R ≤ conv f Ω N . Proof. It is a straightforward consequence of Corollary 3.5. One possible drawback of f * Ω N * C N ×R
is that the transformation no longer preserves symmetry, due to the fact that the computation of f *

Ω N * C N ×R
is not invariant under swap of dimensions. Let g T (x, y) := g(y, x) for every x, y ∈ R 2 and any function g : R → R. Being the order in which the dimensions are processed irrelevant to the final result, we have that

f * X N ×Y N * C N ×D N = f T * Y N ×X N * D N ×C N T ;
in particular, when f = f T (i.e. the graph of f is symmetric with respect to the plane

x = y), X N = Y N and C N = D N we also have that f * X 2 N * C 2 N = f * X 2 N * C 2 N T ,
which is a desiderable property since the exact convex hull itself satisfies it (as we will prove in Corollary 4.6). In the general case, i.e. when the subsets of R 2 on which the transform is computed are not factorizable, the same results hold.

Definition 4.2. Let A ⊆ R 2 . We will denote by A T the set {(x, y) ∈ R 2 | (y, x) ∈ A}.

Proposition 4.3. Let f : R 2 → R and let Ω ⊆ R 2 . Then we have

f * Ω = f T * Ω T T .
Proof. We have that

f T * Ω T (ξ, η) = sup (x,y)∈Ω T xξ + yη -f T (x, y) = sup (y,x)∈Ω [yη + xξ -f (y, x)] = f * Ω (η, ξ).
Corollary 4.4. Let f : R 2 → R and let Ω, S ⊆ R 2 . Then we have that

(f * Ω ) * S = f T * Ω T * S T T .
Proof. It follows from applying Proposition 4.3 twice.

Corollary 4.5. Let f : R 2 → R such that f T = f and let Ω, S ⊆ R 2 such that Ω T = Ω and S T = S. Then we have that

(f * Ω ) * S = ((f * Ω ) * S ) T .
Corollary 4.6. Let f : R 2 → R such that f T = f . Then

cl conv f = (cl conv f ) T .
In the case D = R = C N , this reasoning is no longer applicable and f *

X 2 N * C N ×R
is not symmetric, even when f is such; nonetheless it can be applied to the transformation

f * X 2 N * (C N ×R)∪(R×C N )
. This last transformation is easily obtained from transformations of the type f *

Ω N * C N ×R
thanks to the Proposition 2.17, which gives

f * Ω N * (C N ×R)∪(R×D N ) = max f * Ω N * C N ×R , f * Ω N * R×D N ;
in addition the result is more accurate than the previous versions of the transformation, again by Proposition 2.16.

Estimation of the dual set S

In this section we provide an estimate for a set S = C × D containing an optimal dual grid for the two-dimensional problem. We begin with some results linking the subdifferentiability properties of one-dimensional convex functions (see Section A.5) with the general case.

Definition 4.7. Let f : R n → R, let x 0 ∈ R n and let u ∈ R n such that u = 1. Then

f u (x 0 ) := lim λ→0 + f (x 0 + λu) -f (x 0 ) λ is called the one-sided directional derivative of f at x 0 with respect to u. Proposition 4.8. If f : R n → R is convex and x 0 ∈ dom f then f u (x 0 ) exists for every u ∈ R n such that u = 1. Moreover, if we also have that x 0 ∈ int dom f , then f u (x 0 ) is finite.
Proof. The restriction of f to the direction of u, i.e. the one-dimensional function g(λ) := f (x 0 + λu), is a convex function by convexity of f ; in particular we have that g + (0) = f u (x 0 ). Then the thesis follows from the differentiability properties of one-dimensional convex functions (see Theorem A.30).

Theorem 4.9. Let f : R n → R a convex function, let x 0 ∈ dom f and let ξ ∈ R n . Then we have f u (x 0 ) ≥ ξ, u for all u ∈ R n such that u = 1 if and only if ξ ∈ ∂f (x 0 ).

Proof. Suppose ξ ∈ ∂f (x 0 ). This is equivalent to requiring that for all λ > 0 and u ∈ R n such that u = 1 the following inequality holds

f (x 0 ) + ξ, x 0 + λu -x 0 ≤ f (x 0 + λu) ξ, u ≤ f (x 0 + λu) -f (x 0 ) λ ; (4.4)
by taking the limit for λ → 0 + we obtain that f u (x 0 ) ≥ ξ, u for every u ∈ R n such that u = 1. Now suppose that f u (x 0 ) ≥ ξ, u for every u ∈ R n such that u = 1. Consider the function λ → f (x 0 + λu), which is convex by convexity of f ; then the function

λ → f (x 0 +λu)-f (x 0 ) λ is increasing (see Theorem A.27). This implies that f u (x 0 ) ≤ f (x 0 +λu)-f (x 0 ) λ
for every λ > 0 and every u ∈ R n such that u = 1; thus we have obtained inequality (4.4) which is equivalent to ξ ∈ ∂f (x).

Corollary 4.10. Let f : R n → R be a convex function, let x 0 ∈ dom f and let u ∈ R n be such that u = 1. Let α, β > 0 be such that x α := x 0 -αu, x β := x 0 + βu ∈ dom f . Then for every ξ 0 ∈ ∂f (x 0 ), ξ α ∈ ∂f (x α ) and ξ β ∈ ∂f (x β ) we have that

ξ α , u ≤ ξ 0 , u ≤ ξ β , u .
Proof. Consider again the convex function g(λ) := f (x 0 + λu); the following equalities hold:

g + (0) = f u (x 0 ), g -(0) = -f -u (x 0 ), g + (α) = f u (x α ) and g -(β) = -f -u (x β )
. Since for a one-dimensional convex function the derivative is increasing (see Corollary A.34), we have that

g + (α) ≤ g -(0) ≤ g + (0) ≤ g -(β).
From Theorem 4.9 we obtain that g + (α) ≥ ξ α , u , g -(0) ≤ ξ 0 , u , g + (0) ≥ ξ 0 , u and g -(β) ≤ ξ β , u . By combining all the inequalities the thesis follows.

The following propositions give a method for the estimation of the subgradient inside the domain based on the subdifferential on the border of the domain.

Proposition 4.11. Let f : R n → R be a convex function, let u ∈ R n be such that u = 1 and let x 0 ∈ dom f . Suppose for simplicity that dom f is closed and bounded. We then have that for every ξ ∈ ∂f

(x 0 ) inf x∈∂ dom f sup ξ ∈∂f (x) ξ , u ≤ ξ, u ≤ sup x∈∂ dom f inf ξ ∈∂f (x) ξ , u .
Proof. It is a straightforward application of Corollary 4.10, where we take α and β such that x α and x β belong to the border of dom f . Proposition 4.12. Let f : R 2 → R and let Ω N = X N × Y N be a finite subset of R 2 . We will suppose for simplicity that f is finite on Ω N . Then for every (x, y) ∈ Ω N and every

(ξ, η) ∈ ∂ conv f Ω N (x, y) we have that inf y ∈Y N sup (ξ ,η ) ∈ ∂ conv f Ω N (min X N ,y ) ξ ≤ ξ ≤ sup y ∈Y N inf (ξ ,η ) ∈ ∂ conv f Ω N (max X N ,y ) ξ , inf x ∈X N sup (ξ ,η ) ∈ ∂ conv f Ω N (x ,min Y N ) η ≤ η ≤ sup x ∈X N inf (ξ ,η ) ∈ ∂ conv f Ω N (x ,max Y N ) η .
Proof. Let (x, y) ∈ Ω N and let (ξ, η) ∈ ∂ conv f Ω N (x, y). By applying Corollary 4.10, where we take u = (1, 0), we obtain that

ξ ≤ ξ ≤ ξ holds for every (ξ , η ) ∈ ∂ conv f Ω N (min X N , y) and every (ξ , η ) ∈ ∂ conv f Ω N (max X N , y). Then we have that sup (ξ ,η )∈∂ conv f Ω N (min X N ,y) ξ ≤ ξ ≤ inf (ξ ,η )∈∂ conv f Ω N (max X N ,y)
ξ and by taking on each side respectively the infimum and the supremum over y ∈ Y N we obtain the first part of the thesis; the second part can be proved similarly. Now we can apply Proposition 4.11 to the problem of finding a set S which contains at least one optimal grid in the case of the factorized two-dimensional transformations; it is firstly necessary to provide estimates of

∂ conv f on Ω N ∩ ∂ conv Ω N . Lemma 4.13. Let f : R 2 → R and let Ω N = X N × Y N be a finite subset of R 2 .
We suppose for simplicity that f is finite on Ω N . Given y ∈ R, let g y := f Ω N (•, y), ξ - y := max ∂ conv g y (min X N ) and ξ + y := min ∂ conv g y (max X N ). Then we have that for every y ∈ Y N there exist η - y , η + y ∈ R such that

(ξ -, η - y ) ∈ ∂ conv f Ω N (min X N , y), (ξ + , η + y ) ∈ ∂ conv f Ω N (max X N , y),
where ξ -= min y∈Y N ξ - y and ξ + = max y∈Y N ξ + y .

Proof. We consider only the boundary min X N × Y N ; the proof for the other boundary is the same. Firstly we prove that ξ - y is well defined for every y ∈ Y N . Since f is finite on Ω N , for each y ∈ Y N the function g y is finite on X N and is +∞ elsewhere; its convex hull is then a piecewise linear function finite on the interval [min X N , max X N ] and thus ξ - y exists and is equal to the right slope in min X N (see Proposition A.35). We observe that being ξ - y ∈ ∂ conv g y (min X N ) we have that for every

x ∈ R conv g y (min X) + ξ - y (x -min X N ) ≤ conv g y (x). (4.5)
By convexity of conv f Ω N we have that conv f Ω N (x, y) ≤ conv g y (x) for every (x, y) ∈ R 2 and thus conv f Ω N = conv g, where g(x, y) := conv g y (x) (observe that g(x, y) = +∞ if y / ∈ Y N ); then inequality (4.5) becomes

g(min X, y) + ξ - y (x -min X) ≤ g(x, y) ∀(x, y) ∈ R × Y N . (4.6)
Moreover, by convexity of conv g we have that conv g(min

X N , •) ≤ conv h -, where h -= g(min X N , •); observe that, being h -< +∞ only on Y N , we have that conv h -= I Y N (h -) for a certain Y N ⊆ Y N .
We have that conv g = conv g, where

g(x, y) := conv h -(y) if x = min X N g(x, y) elsewhere . Since g = g on (R \ {min X N }) × R and g ≤ g on {min X N } × R, inequality (4.6) implies that g(min X N , y) + ξ - y (x -min X) ≤ g(x, y) ∀(x, y) ∈ R × Y N . (4.7)
Now fix y 0 ∈ Y N . Since g(min X N , •) = conv h -is convex and piecewise linear, there exists η y 0 ∈ ∂ conv h -(y 0 ); for such η y 0 we have that g(min X N , y 0 ) + η y 0 (y -y 0 ) ≤ g(min X N , y) ∀y ∈ R.

(4.8)

By combining inequalities (4.7) and (4.8) we obtain that for every

(x, y) ∈ X N × Y N g(min X N , y 0 ) + ξ - y (x -min X N ) + η y 0 (y -y 0 ) ≤ g(x, y);
being ξ -≤ ξ - y for every y ∈ Y N and x -min X ≥ 0 for every x ∈ X N , we have that g(min X N , y 0 ) + ξ -(x -min X N ) + η y 0 (y -y 0 ) ≤ g(x, y).

By Proposition A.20 we conclude that (ξ -, η y 0 ) ∈ ∂ conv g(min X N , y 0 ) and thus (ξ -, η y 0 ) ∈ ∂ conv f Ω N (min X N , y 0 ) by equality of the two hulls.

Lemma 4.14. Let f : R 2 → R and let

Ω N = X N × Y N be a finite subset of R 2 .
We suppose for simplicity that f is finite on

Ω N . Given x ∈ R, let h x := f Ω N (x, •), η - x := max ∂ conv h x (min Y N ) and η + x := min ∂ conv h x (max Y N ). Then we have that for every x ∈ X N there exist ξ - x , ξ + x ∈ R such that (ξ - x , η -) ∈ ∂ conv f Ω N (x, min Y N ), (ξ + x , η + ) ∈ ∂ conv f Ω N (x, max Y N ),
where

η -= min x∈X N η - x and η + = max x∈X N η + x .
By combining Lemmas 4.13 and 4.14 with Proposition 4.12 we have an estimate for the set S. Theorem 4.15. With the hypothesis and notation of Lemmas 4.13 and 4.14, we have that the set S = C × D := [ξ -, ξ + ] × [η -, η + ] contains an optimal dual grid relative to the primal grid Ω N . In particular this means that for all (x, y)

∈ Ω N conv f Ω N (x, y) = f * Ω N * S (x, y).
Proof. Fix (x, y) ∈ Ω N ; by Lemma A.56 there exists a subgradient (ξ, η) ∈ ∂ conv f Ω N (x, y). By Lemmas 4.13 and 4.14, we have that for all x ∈ X N and all y ∈ Y N sup

(ξ ,η )∈∂ conv f Ω N (min X N ,y ) ≥ ξ -, inf (ξ ,η )∈∂ conv f Ω N (max X N ,y ) ≤ ξ + , sup (ξ ,η )∈∂ conv f Ω N (x ,min Y N ) ≥ η -, inf (ξ ,η )∈∂ conv f Ω N (x ,max Y N ) ≤ η + .
We can then apply Proposition 4.12 and obtain our thesis.

Implementation details

As we have seen in Section 4.1, the basic building block for the multidimensional DLFT is the one-dimensional DLFT. We will use the fast algorithm for the one-dimensional DLFT developed by Lucet in 10, which has complexity O(n); older algorithms inspired by the FFT have complexity O(n log n) ( [START_REF] Lucet | A fast computational algorithm for the Legendre-Fenchel transform[END_REF]). In 10 the extension to the multidimensional DLFT is also treated. An explicit convex hull algorithm based on Lucet's multidimensional DLFT is found in 6; in the following, we will call it the standard algorithm for the convex hull. We restrict to the two-dimensional case, mainly because the function we consider in the physical problem is two-dimensional (see Section 1.4) and because generalization to any number of dimensions is straightforward. Moreover, we present a modified version of the standard algorithm which takes into account the results of Section 4.2.

Firstly we describe the fast one-dimensional DLFT algorithm by Lucet [START_REF] Lucet | Faster than the Fast Legendre Transform, the Linear-time Legendre Transform[END_REF]. Let us consider a function f : R → R, a grid X N = {x 1 , . . . , x N } and the set of values {f (x 1 ), . . . , f (x N )}. By Corollary 2.22 we have that f * X N = [conv I X N (f )] * . We assume that the points of X N are already ordered. Thus conv I X N (f ) is easily calculable in linear time through a Graham's scan ( [START_REF] Graham | An efficient algorithm for determining the convex hull of a finite planar set[END_REF][START_REF] Andrew | Another efficient algorithm for convex hulls in two dimensions[END_REF]) or a divide et impera approach ( [START_REF] Preparata | Convex hulls of finite sets of points in two and three dimensions[END_REF]); moreover, conv I X N (f ) is still a piecewise linear function. Then, by Theorem 2.23, where we take c 0 = -∞ and c N = +∞, the DLFT f * X N is a piecewise linear function and its nodes, values and external slopes can be easily computed by (2.2). A pseudocode description of this algorithm follows (fast_dlft). We denote by convexhull_1d(grid, values) the subroutine which computes the convex hull of the piecewise linear interpolant on the nodes grid and the values values. Moreover, we denote by pcw_dlft(grid, values) the subroutine which computes the DLFT of a convex interpolant. Both subroutines return a piecewise linear function, which is represented by an object pcw whose components are pcw.grid, pcw.values, pcw.left_slope and pcw.right_slope. The last two values, which represents the external slopes, are infinite in the convex hull case and finite in the DLFT case. In what follows we denote by pcw(grid) the evaluation of the piecewise linear function on the points of pcw(grid).

By the factorization of the DLFT presented in Section 4.1, the fast one-dimensional DLFT algorithm can be used as the basis for the computation of the multidimensional DLFT [START_REF] Lucet | Faster than the Fast Legendre Transform, the Linear-time Legendre Transform[END_REF]. Then we can apply the resulting algorithm twice, obtaining the convex hull algorithm presented in 6, which we describe in the two-dimensional case. Let us consider a function f : R 2 → R, a primal grid

Ω N = X N × Y N , a dual grid S N = C N × D N and
suppose that the values of f on the grid Ω N are given. By factorizing the DLFT and applying the fast one-dimensional algorithm, we can evaluate f * Ω N on the grid S N and then evaluate (f * Ω N ) * S N on the grid Ω N . If the grids Ω N and S N have the same size, the matrix which initially contains the values of f on the grid Ω N can be used for all the successive computations: we substitute each row with its DLFT and then do the same for the columns of the matrix so obtained. If the sizes of the grids differ, it is still possible to use one matrix by choosing it sufficiently large to accomodate both grids.

The grid S N can be chosen as a uniform discretization of the grid S = C × D given in Theorem 4.15. We notice that C and D can be easily found easily by computing the interval containing all the natural grids of the one-dimensional DLFTs respectively along the rows and along the columns, since in one dimension those grids correspond to the slopes of the convex hull. We observe that, since we are computing the double DLFT (f * Ω N ) * S N exactly (except for numerical errors), the output data of the algorithm, i.e. the approximation of conv f Ω , is always convex (being a Legendre-Fenchel transform) and less than or equal to the input data (by Corollary 3.7); the same is true also for the modified transforms. Now we present the pseudocode for the standard two-dimensional convex hull algorithm (convexhull_std). We use an array notation where indexes start from 1 and where the index -1 is a shortcut for the last index; the function size(array) gives the size of an array. Moreover, we denote by linspace(start,stop,N) the grid which discretizes the interval [start, end] with N points evenly spaced. Finally, we denote by the keyword parallel the loops whose iterations are independent and which we compute in parallel. is not only slightly better (by Theorem 4.1), but also slightly faster (see, for instance, the results in Table 4.3).

The same idea can be applied even if the number of dimensions is higher than two, but the improvements in speed and precision could be the less relevant the higher the number of dimensions, since the number of loops is always reduced by one independently from the number of dimensions.

As we have seen f * 

Numerical comparisons

In this section we present some numerical tests to compare the three variants of the algorithm presented in the previous section, which we denote by dDLFT ("double DLFT"), mdDLFT ("modified" dDLFT) and smdDLFT ("symmetric" mdDLFT) respectively. For simplicity we test the algorithms on functions of the form f (x, y) = f (r), where r is the distance from the origin of the point (x, y), i.e. r = x 2 + y 2 . The first test function (see Figure 4.1) we use is

f 1 test (x, y) = (r 2 -1) 2 , whose convex hull is conv f 1 test (x, y) = (r 2 -1) 2 if r > 1 0 if 0 ≤ r ≤ 1 ;
the grid on which the function is evaluated has 1000 × 1000 points uniformly distributed on the square [-1.5, 1.5] 2 . A simple way to assess the quality of the obtained results is by comparing the regions the different algorithms have classified as non-convex, i.e. where the computed convex hull differs from the value of the function; in the case of the exact hull this region is the unit circle. The regions detected by the dDLFT, mdDLFT and smdDLFT are shown in white in Figure 4.2; the loss of symmetry due to the mdDLFT is visible in the different shape of the region around the two axes. In Figure 4.3 the error between the computed hull and the exact hull is shown (here the asymmetric behaviour of mdDLFT is even more evident), whereas in Table 4.1 some quantitative information about the same error is reported. Finally we analyze the restriction of the transforms to the axes (see Figure 4.4). As an experimental proof for Corollary 3.14, we have also studied the case in which the value 0 is inserted in the dual grid manually; being 0 the value of the gradient in the non-convex region, we obtain an almost exact result inside the region of non-convexity as predicted by Corollary 3.14.

The second test function (see Figure 4.5) is we can build a reasonable approximation of the convex hull by a computation in only one dimension (we denote by s the value of the one-dimensional derivative inside the nonconvex region); we treat this hull as the "exact" one in order to test the two-dimensional codes. The domain is the square [-3.75, 3.75] 2 and is discretized by a 1000×1000 uniform grid. The exact non-convex region is an annulus with radii 0.47 and 2.87, whereas the regions computed numerically are presented in Figure 4.6. We take the opportunity to stress that the convex hull, and thus the shape of the non-convex region, depends heavily on the domain considered; this phenomenon is evident in Figure 4.7 where a different domain is used for computing the convex hull of f 2 test . Finally we present the same comparisons we did for f 1 test (x, y). Since in this case the gradient in the non-convex region is not constant (only its norm is constantly s), we have chosen the s (positive) as the value to insert in the grid manually; thus the gain in accuracy is limited to the points of the non-convex region where one of the components of the gradient is s, as seen both in Figure 4.8 and Figure 4.9.

f 2 test (x, y) = exp r + 25 • sin (2.5 -r) • exp -(2.5 -r)
As a last comparison between the algorithms, in Table 4.3 the computation times in seconds for the two test functions are presented; they are averaged on several runs of the algorithms with the test functions f 1 test and f 2 test on the same domains considered above, but discretized with a 10 4 × 10 4 uniform grid. The convex hull algorithm has been implemented in Fortran and OpenMP has been used to provide easy parallelization. Because this compiled code is invoked from Python, there may be present some additional overhead; anyway, this overhead should be small and identical for all three versions of the algorithm. Then the code was run under Mac OS X 10.6 on a 2.93 GHz Intel Core i7 (4 cores, HT).

In order to properly compare the algorithms, we have to account not only for the computational time, but also for the quality of the results. A rough way to do so is the following. We fix the grid size at 1000 2 for the smdDLFT; the computation time (excluding grid generation and function evaluation) is 0.785 s for f 1 test and 0.788 s for f 2 test . Then gradually we increase the size of the grid used for the mdDLFT until a result of quality comparable to the smdDLFT is found. For the test function f 1 test this happens for a grid of 1212 2 points, when the mean error and the standard deviation become both (0,

•)-conv f 2 test (0,

•)

Figure 4.9.: Restriction to the axes of the error between the exact convex hull of f 2 test and the one computed respectively by dDLFT (blue line), mdDLFT (the solid red line is the restriction to the y-axis, while the dashed red line is the restriction to the x-axis), smdDLFT (green line) and smdDLFT using a dual grid containing s (black dashed line); observe that the black line is near 0 only on the right part of the plot, due to the positivity of s. better than their counterparts for the smdDLFT; the time expended is 0.575 s, better than the smdDLFT. In the case of f 2 test the mean value becomes better for the first time at 2498 2 points, but the maximum error at this stage is still about two times the one for the smdDLT; the time in this case is 2.628 s, much larger than for the smdDLFT, and again does not include grid generation and function evaluation. Thus we conclude tentatively that using the smdDLFT in the general case is worth the extra computational time; more rigorous and extensive tests should be done to confirm this assessment.

The choice of the dual grid

In the following we always use the more accurate smdDLFT transform, but similar problems and solutions arise also in the other two cases. The main problem in the computation of the convex hull is the choice of the dual grids C N and D N ; as seen in Theorem 3.22 it is sufficient to cover a certain bounded set S, which can be estimated thanks to Theorem 4.15. Until now we have used a uniform discretization of this set; this can be a poor choice when the derivatives of the function grow rapidly, causing S to be large and the points of C N and D N to be too sparse. This is the case for both the test functions f 1 test and f 2 test (defined in Section 4.5) if we enlarge the domain on which the convex hull is computed (see respectively Figures 4.11 and 4.10); note that even increasing the size of the grid, while certainly improving the result, is not a definitive answer (see the right plot in Figure 4.11).

It is interesting to observe that the plots are composed of black lines whose spacing is greater the nearer they are to the origin: each of these lines corresponds to a point in the dual grid. Consider for example ξ ∈ C N ; being C N × R the actual set on which the second transform is computed, by Corollary 3.21 for every point (x, y) ∈ Ω N , such that

(ξ, η) ∈ ∂ conv f Ω N (x, y) for a certain η ∈ R, we have that conv f Ω N (x, y) = f * Ω N * C N ×R
. Since in our case the test functions and their hulls are differentiable, the locus of the points where the first component of the gradient is ξ is one of the black lines, i.e. is composed of points where the algorithm gives the exact result. By observing that for our test functions the gradient is always directed radially and has module dependent only on the distance from the origin and increasing with it, the shape and origin of the black lines which are asymptotically tangent to the y-axis is explained easily; a similar reasoning can be done for the lines asymptotically tangent to the x-axis, which are related to the points η ∈ D N . Since for our test functions the second derivative increases with the distance from the origin, our interpretation of the black lines explains also why they are more spaced close to the origin: the distance between successive points of the dual grids is always the same, but the distance in primal space needed for the same increase in the gradient is smaller as we move away from the origin. This explains why the lines are denser, and the result of the algorithm better, far away from the origin.

Since we are more interested in detecting the shape of the region of non-convexity and in computing the values of the convex hull inside it, we would like our dual grid to be denser around the slopes of the convex hull in that region. The problem is, as usual, that we cannot know the values of these slopes without knowing the convex hull. A possible solution to this problem consists in using a less precise approximation to the convex hull in order to detect the region of non-convexity and computing its slopes. A very simple approximation for the convex hull can be obtained by computing one-dimensional convex hulls on all the rows of the data matrix and then on all its columns. Since the convex for which the heuristic method does not give the exact result; f is convex along all the rows and all the columns, but not along the main diagonal.

hull, differently from the DLFT, is not factorizable, this method is purely heuristic: the result can be greater than the exact convex hull (see Table 4.4), which implies that the detected region of non-convexity is smaller than the true one. The reason for the failure of this simple algorithm is that it makes the function convex along all the rows and all the columns, but not along all the other directions; for a differentiable funtion, this is equivalent to forgetting the role of mixed derivatives in determining convexity at a given point.

The heuristic detection can be implemented inside the convex hull step of the first pass of DLFTs, by saving for each row which slopes are inserted in order to make it convex. These values are transformed in intervals by enlarging each of them by a fixed window size; then the resulting intervals are joined when they are close, for example nearer than a certain multiple of the windows size. In this way we have partitioned the set C defined in Theorem 4.15 in intervals relative to the region of non-convexity and intervals relative to the region where the function is already convex. Then we fix a fraction of the available points to be assigned to intervals of the first type: these points are distributed evenly among all such intervals independently from their length (we assign at least three points to each interval). Finally, the remaining points are distributed evenly among the intervals of the second type, again independently of their length. The results obtained using dual grids of this kind are shown in Figures 4. [START_REF] Preparata | Convex hulls of finite sets of points in two and three dimensions[END_REF] of the adapted region is in accordance with the interpretation of the black lines as loci of points corresponding to each dual grid point); the same method works well also for larger domains than those considered so far, as shown in Figure 4.14.

We will now consider a more complex function f 3 test defined as

f 3 test (x, y) := H i if (x, y) ∈ B(10i, 10i, 1), i ∈ N \ {0} f 1 test (x, y) elsewhere
, where B(x, y, r) is the open ball with radius r centered in (x, y) and H i ∈ R is such that H i ≥ max (x,y)∈B(10i,10i,1) f 1 test (x, y); the region of non-convexity of f 3 test on R 2 is i∈N B(10i, 10i, 1) and thus is not connected. As expected, a uniform discretization of the domain does not allow to clearly detect all the connected components of the region of non-convexity (see the first plot in Figure 4.15). Now consider an adaptive grid built with a window size of 10 and by reserving just the 10% of points for the intervals flagged as non convex; the corresponding result is shown in the second plot of though only a small fraction of the points is assigned to the non-convex region, the density of the black points away from that region is very low, against our expectations. This is due to the fact the window size is very low compared to the distance between the flagged slopes, distance that increases rapidly away from the origin, and thus there is no merging of intervals; then we have a large number of intervals flagged as non-convex and, since we assign to each of them at least 3 points, there are few points left for the other intervals, explaining the poor result away from the non-convexity region. The situation is particularly bad in the upper left quadrant, which does not contain any part of the non-convexity region and thus corresponds to a single interval in dual space; being the number of points assigned to each interval the same independently of its length, the resulting density of black points in this quadrant is less than elsewhere. Moreover, by examining the region of non-convexity detected by the algorithm, we observe that their borders are not entirely captured; in order to better capture them we should increase the number of points outside the flagged regions, by increasing the window size. Doing so by modifying the adaptation parameters (see the third and fourth plot of Figure 4.15) improves the result, but is against the two main objectives of our adaptive method: being automatic, i.e. being independent of the function given, and using only a subset of the entire estimated dual set S for the computation.

It is interesting to understand why our method fails to wholly capture the border of the non-convexity region; in order to visualize better this situation, consider the upper left region of non-convexity in Figure 4.16, which is obtained by modifying f 1 test in a way similar to the one used for f 3 test . The red circle is the exact boundary of the region of non-convexity, while the colored area is the region detected as non-convex by the heuristic method; in this case the two coincide. Observe that the boundary lines of the black stripes, on which the convex hull is computed exactly, touch the non-convexity region respectively on its topmost, bottom, leftmost and rightmost point; this is due to the fact that they correspond to the values of the components of the gradient in those points. Since the change we made to f 1 test is discontinuous, the derivatives of the convex hull are discontinuos too; this means that the black stripes cannot cover the zone of non-convexity wholly, as was the case for f 1 test . A possible modification to the method in order to account for non-continuous derivatives of the hull could be implemented by flagging as non-convex also the slopes immediately preceding and following an actual onedimensional non-convex region. Nonetheless, this modification is not resolutive, because the same problem can arise even if the change to the function is done preserving continuity and differentiability; consider for example the lower right region of non-convexity in Figure 4.16, which is obtained by modifying f 1 test by adding a gaussian function centered in (20, 20). The problem in this case is due to the fact that the region detected by the heuristic is different from the exact region of non-convexity; as an effect of the adaptive construction of the dual grid, the black stripes would cover completely the colored region, but they are hidden by the larger true non-convexity region, which they are not able to cover. For certain functions, as we will see in Section 5.2, the difference between the two regions is even greater.

Until now we have searched a method to efficiently use a fixed number of points available for the dual grid. Another approach to deal with large dual sets S, which at first 52 sight may appear naïve, is using a dual grid with a higher number of points; in this case, a potential problem could be memory usage since a larger matrix has to be stored in memory. This problem can be easily resolved thanks to Proposition 2.17: the dual grid is partitioned in smaller grids, each of these grids is used for a computation of the convex hull and finally the partial results are merged by a maximum operation; it is even possible to perform the first pass of DLFTs only once and sample them each time on a different grid. The problem is how to partition the large grid; since equal intervals in dual space can correspond to varying intervals in primal space, this is again a problem which cannot easily resolved independently of the given function. A possible heuristic solution is using as the dual grid all the slopes of the functions obtained in the first pass of one-dimensional convex hulls; this time we take every slope, instead of only the non-convex ones. This large grid in dual space, which has about the same size as the whole primal grid, can be partitioned naturally in correspondence to each line on which the one-dimensional hull has been computed; not all the lines have to be taken and results are usually good even when only a few of them are taken (see Figure 4.17). It is worthwhile observing in Figure 4.17 that, when the number of steps is small, the quality of the results is better for odd numbers; in this case in fact the central line is also taken and thus we obtain a better result in the central region. 

Non-convex free-energies

In this chapter we apply the convex hull algorithm to the bulk free-energy density f defined in Section 1.4. Our aim is finding the region of the state space c = (c + , c -) where f differs from its convex hull, i.e. the region thermodynamically unstable, which we denote by T .

Symmetric case

First we study the case |Z + | = |Z -|, which ensures that f is invariant with respect to the exchange of c -and c + , i.e. its graph (and also its convex hull) is symmetric with respect to the plane of equation c + = c -. Consider for example the case Z ± = ±2: the qualitative behaviour of f on a large scale is the same whatever the value of the ion diameter σ is (see Figure 5.1). The main difference is the domain of f , which is the larger the smaller is σ; this is due to the fact that the smaller the ions, the higher the concentrations at which steric effects become relevant (smaller atoms can be more tightly "packed" together). All the three functions in Figure 5.1 seem to be convex, but this is actually true only in the case σ = 0.3 nm; we may see this by computing the difference between f and its convex hull. Now we examine the case σ = 0.2 nm in detail. The region of non-convexity for such a diameter is shown in white in the left plot of Figure5.2: observe that the shape of T is symmetric as expected. What is not evident is whether the region T extends all the way to the origin. By observing the enlargement presented in the right plot of Figure 5.2, it appears that the region around the origin is indeed convex; the boundary of T closest to the origin appears to be contained in [0, 0.25] 2 and to have the same shape of the other boundary; in spite of that, by computing the convex hull of f on the domain [0, 0.25] 2 , it seems that the function is convex there (see the top left image in Figure 5.3). If we gradually enlarge the domain (see the rest of Figure 5.3), a region of non-convexity appears and progressively increases, while its boundary tends to the line we observed in the right plot of Figure 5.2. This behaviour is not surprising: the convex hull of a function depends on the set on which that function is considered; if we enlarge this set, there is the possibility that the region of non-convexity increases (obviously it cannot become smaller). We are interested in the convex hull of f on its whole domain, which is finite because for large concentration f becomes +∞; fortunately we can restrict the computation to a smaller set because the non-convex terms of f are negligible at high concentration and thus the growth of the region of non-convexity ceases for c sufficiently large (this enable us to use this method even if we had used the hardsphere approximation which gives a free-energy defined on the whole R 2 ). As we have observed, the correct shape of T is captured only when the set on which the convex hull is computed is sufficiently large. If the grid used is uniform, the larger the computational domain the fewer the points of the grid on which the boundary of T close to the origin lies. It is then useful to adopt a non-uniform grid in order to achieve higher resolution in the area near the origin, without reducing the computational domain and thus changing the shape of T (see Figure 5.4). We observe that if we restrict f to one of the axes, we obtain the free-energy density arising in the case only one ion species is present. Moreover, if we fix Z + and restrict f to the c + axis, we obtain the same function for every value of Z -; its non-convexity region as a one-dimensional function coincides with the intersection of T with the axis considered (see Theorem A.57).

Z + = +2, Z -=-2, σ =0.3, T =300, ε r =78.3
We may be interested in obtaining a characteristic function for the set T , i.e. a function 1 T such that 1 T (x) = 1 when x ∈ T and is equal to 0 elsewhere. This is useful for a memory-efficient representation of the convex hull of f , because we need to save only the values inside the region T , whereas the values outside of T can be computed from the analytical expression of f . A simple approach to the computation of 1 T is the application of a threshold to the difference f -conv f , i.e. taking c ∈ T if and only if f (c) -conv f (c) > TOL, where TOL is a given tolerance. In general, the value of TOL should be chosen on a case by case basis, because if it is too large the shape of T could be enlarged too much (see Figure 5.5). If the region T can be already recognized well from the plot of the binary matrix f = conv f (as it has been the case up to now), a better solution is using the closing operation from mathematical morphology ( [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]), which eliminates the problem of the spurious enlargement of T typical of the threshold operation (see Figure 5 

Z + = +2, Z -=-1, σ =0.3, T =300, ε r =78.3 Figure 5.7.:
The behavior of f at large scale for Z + = +2, Z -= -1 and σ equal respectively to 0.2 nm (left) and 0.3 nm (right); be aware that f is convex only in the second case.

Non-symmetric case

Now we consider the case where |Z + | = |Z -|, which implies that f is no more symmetric; in particular, as an example we take Z + = +2 and Z -= -1. In Figure 5.7 we present the plots of f for respectively σ = 0.2 nm (left) and σ = 0.3 nm (right): on a large scale the qualitative behavior of the convex (σ = 0.3 nm) and non-convex cases is still very similar. In Figure 5.8 is plotted the non-convexity region in the non-convex case: as expected, the region T becomes asymmetric. Observe that, differently from the symmetric case, the region T does not divide the plane (c + , c -) into two parts; the reason for this is easily understood by considering the restriction of f on the axes. The restriction of f on the c + axis is the free-energy density when we have only one ion species with |Z| = 2 and σ = 0.2 nm. Thus, by Theorem A.57, the restriction of conv f on the c + axis is the convex hull of such one-dimensional density; thus, if we fix Z + , the intersection of T with the c + axis is the same for any value of Z -(observe for example Figures 5.8 and 5.2). On the other hand, the restriction of conv f on the c -axis is the convex hull of the freeenergy density for |Z| = 1 and σ = 0.2 nm; as seen in Table 1.1, for such a combination the one-dimensional density is already convex and thus there is no intersection between T and the c -axis. If σ decreases below the value of σ 0 corresponding to |Z| = 1 , then the intersection between T and the c -axis becomes non empty and T divides the state space into two parts. In this case σ 0 = 0.0560 nm is very small for an ion diameter and thus is not physically acceptable; however, if we consider the case Z + = +3 and Z -= -2, the threshold is σ 0 = 0.2239 nm, which is acceptable (see Figure 5.9 for an evolution of the non-convexity region as σ varies). Now consider the case Z + = +3, Z -= -1 and σ = 0.17 nm. For these values of the parameters, the region of non-convexity covers an area so large that it is close to the boundary of the domain of the free energy density, where its values and derivatives go rapidly to infinite. Moreover, the area detected as non-convex by a heuristic factorization 

Phase separation in electrolytes

In this chapter the model presented in Chapter 1 is extended to a two-species electrolyte confined in a negatively charged medium ( [START_REF] Ern | Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes[END_REF]); the equations for such a model involve the convex hull of the bulk free-energy density, which we have computed in Chapter 5.

The equations are then solved with a numerical procedure based on a finite elements discretization and on the Newton-Raphson method (8).

The general model

We consider a two-species electrolyte for which the interaction with the charged walls is no more neglegible. For simplicity we assume a periodic setting consisting in the repetition of an elementary cell [0, L * ] n , with n = 2, 3. Inside the elementary cell there are inclusions Ω S whose boundary ∂Ω S is negatively charged with surface density Σ S ; the electrolyte is contained in the remaining region Ω := [0, L * ] n \ Ω S . The resulting differential equations are

-ψ = e ε i=± Z i c i in Ω, (6.1) 
µ + (ψ, c) and µ -(ψ, c) are constant in Ω.
With respect to the bulk electrolyte case studied in Chapter 1, we have that ψ is not constant and thus the Poisson equation (6.1) is no longer satisfied trivially.

We have the following boundary conditions

ψ is periodic on ∂Ω \ ∂Ω S , ∇ψ • n = - 1 ε Σ S on ∂Ω S , (6.2) 
where n is the outward-pointing normal versor to ∂Ω S ; we also fix the mean ionic concentration, i.e. require that c i Ω = c 0 i , i = ±, where c 0 + and c 0 -are given positive real numbers and where f Ω := 1 |Ω| ´Ω f for every f ∈ L 1 (Ω). We must take c 0 ± such that they satisfy the global electro-neutrality condition

i=± Z i c 0 i = 1 |Ω| ˆ∂Ω S 1 e Σ S ; (6.3) 
this is a necessary and sufficient condition for the solvability of the Poisson equation (6.1) together with the boundary conditions. Finally we require that

ψ Ω = 0,
which is always possible because ψ is determined up to an addictive constant.

In the non-dimensional formulation we take the quantity Σ S * := k B T ε eL * as the reference value for the surface charge density; we then have that equations (6.1), (6.2) and ( 6.3) become

-λ ψ = i=± Z i c i in Ω, ∇ψ • n = -Σ S on ∂Ω S , i=± Z i c 0 i = λ |Ω| ˆ∂Ω S Σ S .

The free-energy functional

We define the free-energy functional F as

F(ψ, c) := S(c) + B(c, ψ) -U(ψ), (6.4) 
where

S(c) := ˆΩ f (c) B(ψ, c) := i=± ˆΩ Z i c i ψ U(ψ) := λ 2 ˆΩ |∇ψ| 2 + λ ˆ∂Ω S Σ S ψ.
We also define the correct functional spaces to which the electrostatic potential ψ and the concentration c must belong. We define

H := {ψ ∈ H 1 per (Ω) | ψ Ω = 0} K := {c ∈ L 2 per (Ω) 2 | c ≥ 0 a.e. in Ω and c Ω = c 0 },
where H 1 per (Ω) and L 2 per (Ω) are, respectively, the closure of C ∞ per (Ω), the space of periodic and infinitely differentiable functions in Ω, for the norms • H 1 (Ω) and • L 2 (Ω) . In 4 it is shown that if F admits a minimum point on the set H × K, then that point is a solution of the model equations; it is also proved that, under some hypotheses which assure the convexity of f , there is one and only one minimum point of F. As we mentioned in Section 1.5, these sufficient conditions for the convexity of f consist in a lower limit on the ion diameter σ; this limit value depends on the valences Z ± , on the temperature T and on the relative permittivity ε r (the values for some of this lower limits were given in Table 1.1).

When f is no longer convex, phase separation appears in the electrolyte. In order to solve the problem numerically, since we do not know where the sharp interface between the phases lies, we add the following regularization term to the free energy

ε reg 2 ˆΩ |∇c + | 2 + |∇c -| 2 ;
this term penalizes high values of the gradient of c, making thus the phase transition the smoother the greater the parameter ε reg is. Thanks to the regularization, we can solve numerically our problem for each ε reg > 0 without knowing a priori where the sharp interface lies and then consider the limit behaviour for ε reg → 0 as the correct solution for the phase separation problem; this procedure is common in phase-field theory and is known as the sharp interface limit.

Finite elements discretization

In order to resolve the minimization problem we follow the same approach of 8, which is based on a finite elements discretization and on a Newton-Raphson method. We will briefly highlight the main points of the procedure; for a more exhaustive presentation we refer to 8. In order to account for the constraints contained in the definitions of H and K, we will employ Lagrange multipliers; the actual minimization will involve the functional 3 . Now we write the derivatives of F with respect to each variable

F(ψ, c, λ, λ + , λ -) : = F(ψ) + ε reg ˆΩ |∇c + | 2 + |∇c -| 2 + λ ψ Ω + λ + c + Ω -c 0 + + λ -c -Ω -c 0 - on the set H 1 per (Ω)×{c ∈ L 2 per (Ω) 2 | c ≥ 0 a.e. in Ω}×R
∂ F ∂ψ : φ → i=± ˆΩ Z i c i φ -λ ˆΩ ∇ψ • ∇φ -λ ˆ∂Ω S Σ S ψ + λ φ Ω , ∂ F ∂c + : φ + → ˆΩ ∂f ∂c + (c)φ + + ˆΩ Z + ψφ + + ε reg ˆΩ ∇c + • ∇φ + + λ + φ + Ω , ∂ F ∂c - : φ -→ ˆΩ ∂f ∂c - (c)φ -+ ˆΩ Z -ψφ -+ ε reg ˆΩ ∇c -• ∇φ -+ λ -φ -Ω , ∂ F ∂λ = ψ Ω , ∂ F ∂λ + = c + Ω -c 0 + , ∂ F ∂λ - = c -Ω -c 0 -.
We must require that all the derivatives are zero, obtaining

                 i=± ´Ω Z i c i φ -λ ´Ω ∇ψ • ∇φ -λ ´∂Ω S Σ S ψ + λ φ Ω = 0 ´Ω ∂f ∂c + (c)φ + + ´Ω Z + ψφ + + ε reg ´Ω ∇c + • ∇φ + + λ + φ + Ω = 0 ´Ω ∂f ∂c -(c)φ -+ ´Ω Z -ψφ -+ ε reg ´Ω ∇c -• ∇φ -+ λ -φ -Ω = 0 ψ Ω = 0 c + Ω = c 0 + c -Ω = c 0 - for all φ ∈ H 1
per and all φ + , φ -∈ L 2 per . In order to discretize these equations, we restrict them to a periodic finite elements space V h of dimension N , for example the space of periodic conforming piecewise P 1 functions; we can thus reduce the number of equations to 3N + 3, by taking φ only among the basis vectors of V h , and change the domain of the problem from a functional one to R 3N +3 , by decomposing ψ, c + and c -with respect to the basis of V h . Unfortunately, the derivatives of f are not linear and thus the resulting system of equations is not linear; we have to use an iterative method for its solution, such as the Newton-Raphson method. Since the second derivatives of f are discontinuous, it may happen that after an iteration the values of the concentrations become negative or large enough to make f (c) = +∞; in order to avoid this problem, we clip the function c at each step, forcing its values to lie in the correct domain of f . The sharp interface limit process is implemented by gradually decreasing the value of ε reg , each time starting the iterative method from the last computed solution; moreover, the grid is refined in the area where the last solution for c had values inside the region of non-convexity of f , in order to be able to capture the phase transition, which is steeper for small values of ε reg . When the regularization parameter is sufficiently small and the interface sufficiently sharp, it is also possible to set ε reg = 0 and solve the problem without regularization.

Test cases

As a test case we will consider an electrolyte in a flat nanochannel, i.e. an electrolyte confined between two planes negatively charged whose distance is L * = 1 nm; we will suppose that the solvent is water at a temperature of T = 300 K (at this temperature we have ε r = 78.3). Because of the symmetry of model, ψ and c depend only on the distance from the nearest wall; thus we can consider the one-dimensional case in which Ω is a segment whose length is half the distance between the planes and only one extreme of Ω is charged. In 8 solutions are computed for the one-species and symmetric two-species cases: in the former the exact one-dimensional hull for f is used, while in the latter an approximation for the two-dimensional hull of f is obtained by reducing the problem to a one-dimensional one by making use of the symmetry of f . First we will check our code in the one-species case, then we will try to validate the approximate result in the symmetric two-species case and finally we will study an asymmetric two-species case not considered in 8.

We begin with the case in which only one ionic species is present; let Z + = +3, σ = 0.45 nm and Σ S = 0.1 C/m 2 . The results for decreasing values of ε reg down to 0 are shown in Figure 6.1 (x = 0.5 nm corresponds to the center of the nanochannel, while x = 1 nm corresponds to any one of the walls); as expected, they agree with the results found in 8.

Unlike the one-species case, where the mean concentration c 0 is completely determined by the electro-neutrality condition, in the two-species case we have to specify in what proportion the two ions are present; we will codify this information in a parameter c salt ≥ 0, which represents the concentration of added salt with respect to the situation in which there is only one ion species. Since there were no negatively charged ions before the addition of salt and the salt itself is electrically neutral, we must have that As a final example, we take an asymmetric electrolyte; this case was not considered in 8, because it requires the computation of the two-dimensional convex hull. The situation considered is described by Z + = +3, Z -= -1, σ = 0.45 nm, Σ S = 0.1 C/m 2 and c salt = 0.1 mol/l; the solution, shown in Figure 6.3, is obtained for ε reg = 0. The asymmetric case is increasingly challenging from the numerical point of view as we decrease the value of σ and the height of the phase transition grows; obtaining a solution for σ ≤ 0.4 nm could be the focus of further studies.

Z + c salt + Z -c 0 -= 0,

Conclusions

In the thesis we have studied an algorithm for the approximation of convex hull of a multi-dimensional function which is based on the discrete Legendre-Fenchel transform. Our interest was motivated by the applications to the model of a two-species electrolyte in a porous and electrically charged medium. After recalling the basic results for the Legendre-Fenchel transform and its discrete version, we have analyzed the properties of two successive applications of such transforms. We have also treated some problems, which are often neglected in the literature, such as the relevance of the dual grid, and proved some results. After the description of the standard algorithm for the convex hull approximation found in the literature, we have introduced some improvements and we have tested the new versions against the standard one. By applying it to the electrolyte bulk free-energy density in two dimensions, we have obtained the shape of the region of non-convexity; this region is thermodynamically unstable and divides the state space in different phases. Finally, by these results we have approximated the solution of the equations for two-species electrolytes, showing clearly that phase separation arises when the free-energy is not convex. However, we were not able to obtain the solution when the mixture is asymmetric and the ion diameter is small. Further improvements to the numerical solver are needed in order to treat successfully any kind of electrolyte.

Definition A.6. The convex hull of a function f : R n → R, indicated by conv f , is the greatest convex function majorized by f or, equivalently, the function whose epigraph is the convex hull of epi f . Proposition A.7. Let f : R n → R convex such that f (x 0 ) = -∞ for a certain x 0 ∈ R n . Then f = -∞ on int dom f . Proof. Let x 1 ∈ int dom f . Because x 1 is an internal point of dom f , the point x 1 +ε(x 1x 0 ) lies in dom f for ε > 0 small enough; we will denote such a point by the symbol x 2 . Let x λ := (1 -λ)x 0 + λx 2 ; for a certain λ 1 ∈]0, 1[ we have that

x λ 1 = x 1 . Because epi f is convex, we must have that f (x 1 ) = f (x λ 1 ) ≤ (1 -λ 1 )f (x 0 ) + λ 1 f (x 2 ) = -∞ and thus f (x 1 ) = -∞.

A.2. Semicontinuous hulls

Definition A.8. Given f : R n → R, we indicate with the symbol f the lower semicontinuous hull of f , i.e. the greatest lower semicontinuous function majorized by f ; similarly, we denote by f the upper semicontinuous hull of f , i.e. the smallest upper semicontinuous function minorized by f . The semicontinuous hulls have an important characterization, presented in the following Theorem.

Theorem A.9. Let f : R n → R and let x 0 ∈ R n . We then have

f (x 0 ) = sup V ∈U (x 0 ) inf x∈V f (x),
where U(x 0 ) is the collection of all neighbourhoods of x 0 . Moreover, fixed U ∈ U(x 0 ), we have that f (x 0 ) = sup

V ∈U (x 0 )|V ⊆U inf x∈V f (x).
The same characterization holds for the upper semicontinuous hull.

Thanks to the characterization presented, it is easy to highlight the local nature of the semicontinuous hull operation.

Lemma A.10. Let f, g : R n → R be such that f ≥ g on a neighbourhood U of x 0 . Then f (x 0 ) ≥ g(x 0 ), f (x 0 ) ≥ g(x 0 ) and f (x 0 ) ≥ (g)(x 0 ). Proof. By Theorem A.9 we have that

f (x 0 ) = sup V ∈U (x 0 )|V ⊆U inf x∈V f (x) ≥ sup V ∈U (x 0 )|V ⊆U inf x∈V g(x)
= g(x 0 ); the same proof can be used for the inequality involving the upper semicontinuous hull. In order to prove the third inequality, observe that by definition of neighbourhood we can find an open set V such that x 0 ∈ V ⊂ U ; we obviously have that f ≥ g on V . The open set V is a neighbourhood of any point x ∈ V and thus by the second part of the lemma we have f ≥ g on V ; by the first part we then have f (x 0 ) ≥ (g)(x 0 ).

Corollary A.11. Let f, g : R n → R be such that f = g on a neighbourhood U of x 0 . Then f (x 0 ) = g(x 0 ), f (x 0 ) = g(x 0 ) and f (x 0 ) = (g)(x 0 ).

A.3. Closure

The notion of lower semicontinuity in the case of a convex function is often called closedness; this is due to the following result.

Proposition A.12. Let f : R n → R, not necessarily convex. Then the following conditions are equivalent:

(i) epi f is closed as a subset of R n+1 ;

(ii) f is lower semicontinuous in R n .

Proof. Suppose (i) true. Consider two sequences x n ∈ R n e y n ∈ R such that lim x n = x, lim y n = y and y n ≥ f (x n ) for all n; this means (x n , y n ) is a sequence of points of epi f tending in R n+1 to (x, y). Because f is lower semicontinuous f (x) ≤ lim f (x n ) ≤ lim y n = y and thus (x, y) ∈ epi f . Suppose (ii) true. In order to demonstrate (i) is sufficient to show that the set L α := {x ∈ R n | f (x) ≤ α} is closed for all α ∈ R. Let x n ∈ L α a sequence tending to x ∈ R n and consider the sequence (x n , α). This sequence is in epi f , its limit is still in epi f for closedness and thus x ∈ L α .

Fact A.13. Let f : R n → R. Then epi f = cl epi f .

We can now define the notion of closedness of convex functions. Definition A.14. Let f be a convex function. If f (x) > -∞ for all x ∈ R n , the closure of f is defined to be the lower semicontinuous hull of f and is indicated by cl f . Otherwise, cl f is defined as the constant function -∞.

Definition A.15. A convex function f is said to be closed if cl f = f . For proper functions (and the constant +∞), closedness is equivalent to lower semicontinuity (or closedness of the epigraph); moreover, it can be proved that if f is proper then it can differ from cl f only on the boundary of dom f (on open subsets of dom f the convex function f is even continuous). The exception made in the definition for functions assuming the value -∞ is needed to make Theorem B.12 valid even when the function is improper and limits the possibile improper closed functions to the constants +∞ e -∞.

Proposition A.20. Let f : R n → R not necessarily convex and let x, ξ ∈ R n be such that f

(x) + ξ, z -x ≤ f (z) for every z ∈ R n . Then ξ ∈ ∂ conv f (x).
Proof. The function z → f (x) + ξ, z -x is affine and thus convex; by definition of convex hull we then have that f

(x) + ξ, z -x ≤ conv f (z) for every z ∈ R n . Because conv f (x) ≤ f (x), we conclude that conv f (x) + ξ, z -x ≤ conv f (z) for every z ∈ R n , i.e. ξ ∈ ∂ conv f (x).
Proposition A.21. Let f : R n → R a proper convex function and let x ∈ R n . We have that

(i) ∂f (x) is a closed convex set; (ii) if x / ∈ dom f then ∂f (x) = ∅; (iii) if x ∈ int dom f then ∂f (x) = ∅. Proof. Let ξ 1 , ξ 2 ∈ ∂f (x) and 0 ≤ λ ≤ 1; we will show that λξ 1 + (1 -λ)ξ 2 ∈ ∂f (x). We have indeed for any z ∈ R n that f (x) + λξ 1 + (1 -λ)ξ 2 , z -x = λ [f (x) + ξ 1 , z -x ] + (1 -λ) [f (x) + ξ 2 , z -x ] ≤ λf (z) + (1 -λ)f (z) = f (z).
Let now ξ n a sequence in ∂f (x) such that ξ n → ξ; we will show that ξ ∈ ∂f (x). For any z ∈ R n and for every n it holds f (x) + ξ n , z -x ≤ f (z); by limiting, we immediately obtain that f (x) + ξ, z -x ≤ f (z) for every z. Suppose x / ∈ dom f and let x 0 ∈ dom f , which exists because f is proper. By hypothesis there exists ξ ∈ R n such that ξ ∈ ∂f (x); we then have

+∞ = f (x) + ξ, x 0 -x ≤ f (x 0 ) < +∞,
which is contradictory.

Suppose x ∈ int dom f . We have that epi f is a convex set and (x, f (x)) ∈ ∂ epi f ; by the known properties of convex sets, there is an hyperplane through (x, f (x)) such that epi f lies entirely in one of the semispaces in which R n+1 results divided. This hyperplane cannot be of the form {(z, y) ∈ R n+1 | ξ, z -x = 0} because x is an internal point of dom f ; then it has to be the graph of an affine function through (x, f (x)) majorized by f , and thus ∂f (x) = ∅.

Remark A.22. In the case x ∈ ∂ dom f it may be possible that ∂f (x) = ∅. Consider for example f (x) = -√ x for x ≥ 0 and +∞ elsewhere; we have ∂f (0) = ∅.

Theorem A.23. Let f : R n → R a proper convex function and let

x 0 ∈ R n such that ∂f (x 0 ) = ∅. Then cl f (x 0 ) = f (x 0 ).
Proof. Because ∂f (x 0 ) = ∅, there is an affine function h such that h(x 0 ) = f (x 0 ) and h ≤ f . Because f is proper, we have cl f = f and thus, being h a lower semicontinuous function, we have h ≤ cl f ≤ f ; the thesis follows from evaluating the last inequality in x 0 . 

A.5. Subdifferentiability: the one-dimensional case

Now we study in detail and give the proofs for the one dimensional case.

Definition A.26. Let f : R → R. For every x 1 , x 2 ∈ R we define

R f (x 1 , x 2 ) := f (x 2 ) -f (x 1 ) x 2 -x 1 . Theorem A.27. Let f : R → R convex and x 1 , x 2 , x 3 ∈ dom f such that x 1 < x 2 < x 3 . Then R f (x 1 , x 2 ) ≤ R f (x 1 , x 3 ) ≤ R f (x 2 , x 3 ).
Proof. Because f is convex, the points of the segment joining (x 1 , f (x 1 )) and (x 3 , f (x 3 )) are in epi f ; the slope of the line containing this segment is R f (x 1 , x 3 ). Thus, for all x 1 ≤ x ≤ x 3 , we have

f (x 1 ) + R f (x 1 , x 3 )(x -x 1 ) = f (x 3 ) + R f (x 1 , x 3 )(x -x 3 ) ≥ f (x); in particular f (x 1 ) + R f (x 1 , x 3 )(x 2 -x 1 ) = f (x 3 ) + R f (x 1 , x 3 )(x 2 -x 3 ) ≥ f (x 2 ),
from which the thesis immediately follows.

Corollary A.28.

Let f : R → R convex. Let x 1 , x 2 , x 3 , x 4 ∈ dom f such that x 1 < x 2 < x 3 < x 4 . Then R f (x 1 , x 2 ) ≤ R f (x 3 , x 4 ). Corollary A.29. Let f : R → R convex. Fix x 1 ∈ dom f ; then R f (x 1 , x 2 ) is a increasing function in x 2 on R. Proof. When x 2 ∈ dom f it is sufficient to apply Theorem A.27 by observing that R f (x, x ) = R f (x , x) for all x, x ∈ dom f ; otherwise, R(x 1 x 2 ) is +∞ when x 2 > x 1
and -∞ when x 2 < x 1 , and thus globally increasing.

Theorem A.30. Let f : R → R convex and let x 0 ∈ int dom f , where int dom f is the interior of dom f ; then the left and right derivatives of f in x 0 , denoted by f -(x 0 ) and f + (x 0 ), exist, are finite and satisfy f -(x 0 ) ≤ f + (x 0 ).

Proof. By definition

f + (x 0 ) = lim x→x + 0 f (x) -f (x 0 ) x -x 0 = lim x→x + 0 R f (x 0 , x).
This limits exists because the R f (x 0 , •) is monotone by Corollary A.29; it is finite because for all x > x 0 we have R f (x 0 , x) ≤ R f (x 0 , x 0 -ε) < +∞ where ε > 0 is such that x 0 -ε ∈ dom f (such a ε exists because x 0 is an internal point of dom f ). The same reasoning can be applied to f -(x 0 ), while the inequality f

-(x 0 ) ≤ f + (x 0 ) follows by limiting the inequality R f (x 0 , x 0 -h) ≤ R f (x 0 , x 0 + h) for h → 0 + .
Remark A.31. Because dom f is a convex set of R, it is an interval or a half-line; for x 0 ∈ ∂ dom f only one of f -(x 0 ) and f + (x 0 ) exists, by the same reasoning of Theorem A.30, but it can be also +∞ or -∞.

Corollary A.32. Let f : R → R convex. Then f is continuous on int dom f .

Remark A.33. The finiteness of f -(x 0 ) and f + (x 0 ) is necessary; for

x 0 ∈ ∂ dom f , if f -(x 0 ) (f + (x 0 ) ) is +∞ (-∞), then f is not necessarily left (right) continuous. Corollary A.34. Let f : R → R convex and let x 1 , x 2 ∈ int dom f such that x 1 < x 2 . Then f -(x 1 ) ≤ f + (x 1 ) ≤ f -(x 2 ) ≤ f + (x 2 ).
Proof. By Theorem A.30, it suffices to prove f + (x 1 ) ≤ f -(x 2 ), i.e.

f + (x 1 ) = lim h→0 + R f (x 1 , x 1 + h) ≤ lim h→0 + R f (x 2 , x 2 -h) = f -(x 2 );
this is true by limiting the inequality obtained by Corollary A.28 (which is applicable because for h sufficiently small we have x 1 + h < x 2 -h).

Proposition A.35. Let f : R → R convex and x 0 ∈ dom f . Then

(i) if f -(x 0 ) is finite, then f -(x 0 ) = min ∂f (x 0 ); (ii) if f + (x 0 ) is finite, then f + (x 0 ) = max ∂f (x 0 ); (iii) if x 0 ∈ int dom f , then ∂f (x 0 ) = [f -(x 0 ), f + (x 0 )]; (iv) if x 0 is the left extreme of dom f , then ∂f (x 0 ) =] -∞, f + (x 0 )] if f + (x 0 ) is finite and it is ∅ otherwise; (v) if x 0 is the right extreme of dom f , then ∂f (x 0 ) = [f -(x 0 ), +∞[ if f -(x 0 ) is finite and it is ∅ otherwise.
convex and that g ≤ f , because by definition conv f is the largest of the convex functions majorized by f . The fact that g ≤ f is trivial because among the sets on which the infimus is taken there is {(1, x)}; in order to prove convexity, let then (x 1 , y 1 ), (x 2 , y 2 ) ∈ epi g. Being y 1 ≥ g(x 1 ), for any ε > 0 by the properties of the infimum we can find I 1 such that i∈I 1 α i f (x i ) < y 1 + ε; similarly we can find I 2 such that i∈I 2 α i f (x i ) < y 2 + ε. By weighting the (x i ) i∈I 1 with weights (λα i ) i∈I 1 and the (x i ) i∈I 2 with weights ((1 -λ)α i ) i∈I 2 we obtain a convex combination of λx 1 + (1 -λ)x 2 ; we then have

g(λx 1 + (1 -λ)x 2 ) ≤ λ i∈I 1 α i f (x i ) + (1 -λ) i∈I 2 α i f (x i ) < λy 1 + (1 -λ)y 2 + ε. Because ε > 0 is arbitrary, we then have λ(x 1 , y 1 ) + (1 -λ)(x 2 , y 2 ) ∈ epi g, i.e. g is convex. Corollary A.37. Let f : R n → R. Then dom conv f = conv{x ∈ R n | f (x) < +∞}. Corollary A.38. Let f : R n → R. Then f is convex if and only if for any x 1 , x 2 ∈ R n and α ∈ [0, 1] we have that f (αx 1 + (1 -α)x 2 ) ≤ αf (x 1 ) + (1 -α)f (x 2 ),
where the conventions established in Lemma A.36 are again used.

Proof. Necessity follows immediately from Lemma A.36. We will now prove sufficiency. Fix x ∈ R n and {(α i , x i )} i=1,...,N such that x is convex combination of the points x i weighted by coefficients α i ∈ [0, 1]. We will now prove that f (x) ≤ N i=1 α i f (x i ); by Lemma A.36 we can then conclude that f (x) ≤ conv f (x) and thus f (x) = conv f (x). We will proceed by induction on N . The case N = 1 is trivial; suppose then that the property holds for a certain N and consider the case N + 1. We can decompose x as the convex combination with coefficient α 1 of x 1 and x2 := 1 1-α 1 N i=2 α i x i ; we can then apply to x2 the induction hypothesis, obtaining that f (

x 2 ) ≤ 1 1-α 1 N i=2 α i f (x i ).
Applying the hypothesis we can then conclude by observing that

f (x) = f (α 1 x 1 + (1 -α 1 )x 2 ) ≤ α 1 f (x 1 ) + (1 -α 1 )f (x 2 ) ≤ N i=1 α i f (x i ). Corollary A.39. Let f, g : R n → R convex. Then f + g is convex. Proof. Fix x 1 , x 2 ∈ R n , α ∈ [0, 1]
and denote by the symbol x the convex combination αx 1 + (1 -α)x 2 . By applying Corollary A.38 to the convex functions f and g we obtain that

(f + g)(x) = f (x) + g(x) ≤ αf (x 1 ) + (1 -α)f (x 2 ) + αg(x 1 ) + (1 -α)g(x 2 ) ≤ α(f + g)(x 1 ) + (1 -α)(f + g)(x 2 );
we can then conclude by applying again Corollary A.38.

Corollary A.40. Let f, g : R n → R. Then conv f + conv g ≤ conv(f + g).

Proof. Because conv f + conv g ≤ f + g, after observing that by Corollary A.39 conv f + conv g is convex, we can immediately conclude by definition of convex hull.

Remark A.41. Equality does not hold in general. Consider for example the functions

f (x) = 0 if x ∈ [0, 1] 1 elsewhere and g(x) = 1 if x ∈ [0, 1] 0 elsewhere . 
We have that conv f = conv g ≡ 0, while conv(f + g) = f + g ≡ 1.

Theorem A.42 (Carathéodory). Let Ω ⊆ R n and x ∈ conv Ω. Then there is m ≤ n + 1 such that x can be expressed as a convex combination of m elements of Ω.

Proof. Because x ∈ conv Ω there are x 1 , . . . , x m ∈ Ω and α 1 , . . . , α m ∈ [0, 1] such that m i=1 α i x i = x. We can suppose that m is the minimal number of points for which such a representation is possible; we thus also have that α i > 0 for all i. We will now prove that m ≤ n + 1. If it were m > n + 1, the vectors {x i -x 1 } i=2,...,m would be linearly dependent, i.e. there would be some scalars {λ i } i=2,...,m such that m i=2 λ i (x i -x 1 ) = 0 and λ i > 0 for at least one i (at least one coefficient is not zero by linear dependence; if it is negative, we can change the sign of all λ i obtaing a strictly positive coefficient). Defining λ 1 = -m i=2 λ i , we then have observe that we have m i=1 (α i + βλ i ) = 1. We now want to choose a β ∈ R such that α i + βλ i ≥ 0 for every i; by taking β ≤ 0 the required property is true for every i such that λ i ≤ 0. In order to make it hold also for all i such that λ i > 0 (as we have seen there is at least one such i), we need also to satisfy β ≥ -α i λ i for all such i; being α i λ i ≥ 0 this is possible. We can in particular take β = -max i:λ i >0 α i λ i ; with this choice at least one of the m coefficients α i + βλ i is zero. We have thus expressed x a convex combination of less than m elements of Ω, in contradiction with the minimality of m.

Corollary A.43. Let f : R n → R. Then

conv f (x) = inf {(α i ,x i )} i ∈C n+2 (x) n+2 i=1 α i f (x i ),
where C n+2 (x) is the collection of the sets {(α i , x i )} i∈{1,...,n+2} such that x is the convex combination of the points x i weighted by coefficients α i ∈ [0, 1]. In the sum n+2 i=1 α i f (x i ) the conventions +∞ -∞ = +∞ and 0 × ±∞ = 0 are used. Proof. By Lemma A.36, we have to prove that inf {(α i ,x i )} i ∈C(x) i∈I

α i f (x i ) = inf {(α i ,x i )} i ∈C n+2 (x) n+2 i=1 α i f (x i ).
The inequality ≤ is easily proved because C n+2 (x) ⊂ C(x); to prove the other direction we will show that for every element of C(x) there is an element of C n+2 (x) for which the value of the sum is lower equal. Let {(α i , x i )} i∈I ∈ C(x). Consider the point (x, y) ∈ R n+1 , where y = i∈I α i f (x i ); we have that (x, y) = i∈I α i (x i , f (x i )). By Theorem A.42 we can then find J ⊆ I such that |J| = n + 2 and (x, y) = i∈J α i (x i , f (x i )); then {(α i , x i )} i∈J ∈ C n+2 (x) and the values of the two sums are equal. because Ω is convex, we must have that x ∈ Ω. However, because α m > 0, the point x must lie on the opposite side of h with respect to x m : by hypothesis x and x m cannot be both in Ω and thus we have a contradiction.

A.7. Convex hulls of compact sets

Then x 0 can only be expressed as a convex combination of points of Ω if those points all lie on h; by the characterization of Corollary A.43 we then have the thesis. Proof. If the collection is empty, then we have that f (x) = -∞, which is a closed convex function; if f i (x) = -∞ for a certain i ∈ I, then it is possible to remove f i from the collection without affecting f . It is easily verifiable, even for generic functions f i , that epi f = i∈I epi f i ; for the ipothesis epi f i are convex and closed and thus their (arbitrary) intersection is also convex and closed. is then the intersection of all closed half-spaces of R n+1 containing it. The closed halfspaces of R n+1 can be of one of three forms: y ≥ h(x), y ≤ h(x) or h(x) ≤ 0, where h and h are affine functions R n → R and h is not constantly 0; we note that the half-spaces of the first form can also be indicated by epi h. The collection whose intersection is epi f cannot contain half-spaces of the second form and must contain at least one half-space of the first form because f is proper; the half-spaces of the first form containing epi f are the ones characterized by an affine function majorized by f . Thus if we prove that by not including the half-spaces of the third form in the intersection we still obtain epi f , we can conclude that epi f = h affine, h≤f epi h and thus f is the pointwise supremum of all h.

Let V = {(x, y) ∈ R n × R | h(x) ≤ 0}
where h is a non-null affine function. If V is to be not influent on the intersection, we have to find for each (x 0 , y 0 ) / ∈ V an affine function h ≤ f such that (x 0 , y 0 ) / ∈ epi h. As we have highlighted before, if f is proper there is at least one affine function h ≤ f . Fixed λ > 0, we define the function h λ (x) := λh(x) + h(x), which, as a sum of two affine function, is itself affine. For every x ∈ dom f we have that h(x) ≤ 0 and h(x) ≤ f (x) and thus h λ ≤ f on dom f ; the same is trivially true also outside dom f , where f (x) = +∞. Because h(x 0 ) > 0, we can take λ sufficiently large to ensure that hλ(x 0 ) > y 0 and thus (x 0 , y 0 ) / ∈ epi hλ; hλ is then the affine function needed. 
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Because h ξ,µ 1 ≥ h ξ,µ 2 when µ 1 ≤ µ 2 and because, fixed ξ, the minimum value of µ such that (ξ, µ) ∈ epi f * is f * (ξ), the supremum simplifies to

f (x) = sup ξ∈R n [ ξ, x -f * (ξ)] ,
which is equal by definition to f * * (x).

Corollary B.13. Let f, g : R n → R be closed convex functions. Then f = g if and only if f * = g * .

We can now immediately prove a converse to Lemma B.7. 

B.4. Multi-dimensional conjugation

An important property of the Legendre-Fenchel conjugation is that the general transformation in dimension n can be reduced to a sequence of one-dimensional transformations; this property sets it apart from the convex hull operation and makes a double conjugation a more practical option for computing convex hulls in more than one dimension. To simplify notation, given f : R n → R and an index i ∈ {1, . . . n}, we use the symbol f * i for the transformation along the ith-dimension, i.e.

f * i : R n → R (x 1 , . . . , x i-1 , ξ i , x i+1 , . . . , x n ) → sup

x i ∈R [x i ξ i -f (x 1 , . . . , x i , . . . x n )]
= [f (x 1 , . . . , x i-1 , •, x i , . . . x n )] * (ξ i ).

We then have the following theorem. x n ξ n + sup

x n-1 ∈R

x n-1 ξ n-1

+ • • • • • • sup x 3 ∈R
x 3 ξ 3 + sup

x 2 ∈R
x 2 ξ 2 + sup

x 1 ∈R [x 1 ξ 1 -f (x)] .

B.5. Subdifferentials

Lemma B.19. Let f : R n → R be a convex function. Then for all x 0 , ξ 0 ∈ R n the following propositions are true:

(i) if ξ 0 ∈ ∂f (x 0 ) then ξ 0 ∈ ∂ (cl f ) (x 0 );

(ii) if ξ 0 ∈ ∂ (cl f ) (x 0 ) and cl f (x 0 ) = f (x 0 ) then ξ 0 ∈ ∂f (x 0 );

(iii) ξ 0 ∈ ∂ (cl f ) (x 0 ) if and only if x 0 ∈ ∂f * (ξ 0 );

Proof. Suppose ξ 0 ∈ ∂f (x 0 ); we then know that h 1 (x) = f (x 0 )+ ξ 0 , x -x 0 is majorized by f and we have to prove that h 2 (x) = cl f (x 0 ) + ξ 0 , x -x 0 is majorized by cl f . Because cl f ≤ f , we have that h 2 ≤ h 1 ; then, because we have supposed that h 1 ≤ f , we also have h 2 ≤ f . Because h 2 is a lower semicontinuous, we then have h 2 ≤ cl f by definition of closure. Suppose now that ξ 0 ∈ ∂ (cl f ) (x 0 ) and cl f (x 0 ) = f (x 0 ); we then know that h 1 = h 2 ≤ cl f and we have to prove that h 1 ≤ f , which is true because cl f ≤ f . By application of Lemma B.7 and Lemma B.10we have

ξ 0 ∈ ∂ (cl f ) (x 0 ) ⇐⇒ cl f (x 0 ) + ξ 0 , • -x 0 ≤ cl f ⇐⇒ (ξ 0 , ξ 0 , x 0 -cl f (x 0 )) ∈ epi (cl f ) * ⇐⇒ ξ 0 , x 0 -cl f (x 0 ) ≥ (cl f ) * (ξ 0 ) = f * (ξ 0 ),
while by application of Lemma B.14 we have

x 0 ∈ ∂f * (ξ 0 ) ⇐⇒ f * (ξ 0 ) + x 0 , • -ξ 0 ≤ f * ⇐⇒ (x 0 , x 0 , ξ 0 -f * (ξ 0 )) ∈ epi cl f ⇐⇒ x 0 , ξ 0 -f * (ξ 0 ) ≥ cl f (x 0 ).
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Figure 2 . 1 .

 21 Figure 2.1.: The plots of the piecewise linear convex function g (top) and its LFT g * (bottom); the correspondence between nodes and slopes is highlighted.

  2 the domain dom f * Ω N is the whole R n , the functions f * Ω N and cl conv f * Ω N S N are necessarily different by finiteness of S N ; by applying Corollary B.16 and Corollary B.13 we obtain f *

2

 2 both finite; by proceeding as in the previous section, we can compute f * Ω N * S N (x, y) . However, now we decompose the second DLFT as

  function fast_dlft ( grid , values ) pcw = convexhull_1d ( grid , values ) pcw = pcw_dlft ( pcw . grid , pcw . values ) return pcw end function

  function convexhull_std ( xgrid , ygrid , values ) ! compute the DLFT along each column lwb = + Inf upb = -Inf parallel do j = 1 , size ( ygrid ) pcws ( j ) = fast_dlft ( xgrid , values (: , j )) lwb = min ( lwb , pcws ( j ). grid (1)) upb = max ( upb , pcws ( j ). grid ( -1)) end do ! build the dual grid C_N ! and evaluate each of the DLFTs on it cgrid = linspace ( lwb , upb , size ( xgrid )) pallel do j = 1 , size ( ygrid ) values (: , j ) = -pcws ( j )( cgrid ) end do ! now compute the DLFT ! along each row of the updated matrix lwb = + Inf upb = -Inf parallel do i = 1 , size ( cgrid ) pcws ( i ) = fast_dlft ( ygrid , values (i ,:)) lwb = min ( lwb , pcws ( i ). grid (1)) upb = max ( upb , pcws ( i ). grid ( -1)) end do ! build the dual grid D_N ! and evaluate each of the DLFTs on it dgrid = linspace ( lwb , upb , size ( ygrid )) parallel do i = 1 , size ( cgrid ) values (i ,:) = pcws ( i )( dgrid ) end do ! we have thus built the two -dimensional DLFT ! now compute the second 2 d DLFT on Omega_N parallel do j = 1 , size ( dgrid ) pcw = fast_dlft ( cgrid , values (: , j )) values (: , j ) = -pcw ( xgrid ) end do parallel do i = 1 , size ( xgrid ) pcw = fast_dlft ( dgrid , values (i ,:)) values (i ,:) = pcw ( ygrid ) end do return values end function In order to build an algorithm which computes the modified double DLFT f * Ω N * C N ×R , it is sufficient to adapt the standard algorithm by condensing two one-dimensional DLFTs in a single application of the convex hull operation; thus the computation of f * Ω N * C N ×R

  necessary to implement a new function, because by Corollary 4.4 we can change the order of the dimension (i.e. transpose the data matrices) and compute it as f T * Y N ×X N * D N ×R T . Finally we present the pseudocodes of the two variants of the algorithm (respectively convexhull_mod and convexhull_sym). function convexhull_mod ( xgrid , ygrid , values ) ! compute the DLFT along each column lwb = + Inf upb = -Inf parallel do j = 1 , size ( ygrid ) pcws ( j ) = fast_dlft ( xgrid , values (: , j )) lwb = min ( lwb , pcws ( j ). grid (1)) upb = max ( upb , pcws ( j ). grid ( -1)) end do ! build the dual grid C_N ! and evaluate each of the DLFTs on it cgrid = linspace ( lwb , upb , size ( xgrid )) pallel do j = 1 , size ( ygrid ) values (: , j ) = -pcws ( j )( cgrid ) end do ! up to now it is identical to ! the standard algorithm ; ! now we compute the 2 nd and 3 rd steps ! of the std algorithm in only one loop parallel do i = 1 , size ( cgrid ) pcw = convexhull_1d ( ygrid , values (i ,:)) values (i ,:) = -pcw ( ygrid ) end do ! and finally the last pass of DLFTs parallel do j = 1 , size ( ygrid ) pcw = fast_dlft ( cgrid , values (: , j )) values (: , j ) = pcw ( xgrid ) end do return values end function function convexhull_sym ( xgrid , ygrid , values ) newValues = convexhull_mod ( xgrid , ygrid , values ) ! now we swap dimensions values = transpose ( values ) symValues = convexhull_mod ( ygrid , xygrid , values ) symValues = transpose ( symValues ) ! finally we merge the results with a maximum return max ( newValues , symValues ) end function
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 5 Figure 4.2.: Non-convexity region of the function f 1 test on the domain [-1.5, 1.5] 2 , computed respectively through the dDLFT, mdDLFT and smdDLFT; the points where the computed convex hull differs from the function f 1 test are shown in white.
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 434445 Figure 4.3.: Error between the exact convex hull of f 1test and its value computed respectively from left to right and from top to bottom by the dDLFT, mdDLFT, smdDLFT and smdDLFT using a dual grid containing 0.

Figure 4 .

 4 Figure 4.6.: Non-convexity region of the function f 2 test on the domain [-3.75, 3.75] 2 , computed respectively through the dDLFT, mdDLFT and smdDLFT; the points where the computed convex hull differs from the function f 2 test are shown in white.

Figure 4 . 7 .

 47 Figure 4.7.: Non-convexity region of the function f 2 test on the domain [-1, 3.75] 2 computed through the smdDLFT; the points where the computed convex hull differs from the function f 2 test are shown in white.

Figure 4 . 8 .

 48 Figure 4.8.: Error between the exact convex hull of f 2test and its value computed respectively from left to right and from top to bottom by the dDLFT, mdDLFT, smdDLFT and smdDLFT using a dual grid containing s.
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 4 Figure 4.10.: Non-convexity region of the function f 2 test respectively from left to right and from top to bottom on the domains [-5, 5] 2 , [-6, 6] 2 , [-7, 7] 2 and [-8, 8] 2 ; the points where the computed convex hull differs from the function f 2 test are shown in white, while the boundary of the exact non-convexity region is shown in red.

Figure 4 .

 4 Figure 4.11.: Non-convexity region of the function f 1 test on the domain [-10, 10] 2 discretized with a uniform grid of size respectively 1000 × 1000 (left) and 5000 × 5000 (right); the points where the computed convex hull differs from the function f 1 test are shown in white, while the boundary of the exact non-convexity region is shown in red.

Figure 4 .

 4 Figure 4.12.: Plots of the non-convex regions of the test function f 1 test on the domain [-10, 10] 2 covered by a uniform 1000×1000 grid. An adaptive dual grid is used; the fraction of points inside the intervals flagged as non-convex is respectively from left to right and from top to bottom 0.2, 0.6, 0.9 and 1.

Figure 4 Figure 4 .Figure 4 .

 444 Figure 4.13.: Plots of the non-convex regions of the test function f 2 test on the domain [-8, 8] 2 covered by a uniform 1000×1000 grid. An adaptive dual grid is used; the fraction of points inside the intervals flagged as non-convex is respectively from left to right and from top to bottom 0.1, 0.2, 0.8 and 1.
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 44 Figure 4.15.: Non-convexity region of the function f 3 test on the domain [-65, 65] 2 covered by a uniform 1000 × 1000 grid; the points where the computed convex hull differs from the function f 3 test are shown in white.In the first (from left to right and top to bottom) plot a uniform dual grid is used, whereas in the others an adaptive dual grid is used; the fraction of points inside the interval flagged as non-convex is respectively 0.1, 0.1 and 0.5 and the window size is respectively 10, 250 and 1000.

Figure 4 .

 4 Figure 4.17.: Plots of the non-convex regions of the test function f 3 test on the domain [-65, 65] 2 covered by a uniform 1000 × 1000 grid. A progressive construction of the result is made, respectively from left to right and from top to bottom in 2, 3, 4, 5, 10, 11, 75 and 150 steps.
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 5152535 Figure 5.1.: The behavior of f at large scale when Z ± = ±2 and the ion diameter σ is equal respectively to 0.1 nm (left), 0.2 nm (right) and 0.3 nm (bottom); be aware that f is convex only in the last case.
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 5556 Figure 5.5.: These are the same computations as the third plot of Figure 5.3 and as Figure 5.4, where TOL is 10 -3 times the maximum difference between f and conv f (computed separatedly for each figure).

Figure 5 . 9 .

 59 Figure 5.9.: The non-convexity region for model parameters Z + = +3 and Z -= -2; from top to bottom and from left to right, the value of σ is respectively 0.5 nm, 0.48 nm, 0.3 nm, 0.3 nm (enlargement of the region close to the origin), 0.225 nm, 0.224 nm, 0.2235 nm, 0.221 nm, 0.2 nm and 0.2 nm (enlargement of the region close to the origin).

Figure 5 .Figure 5 .

 55 Figure 5.10.: The non-convexity convexity region for model parameters Z + = +3, Z -= -1 and σ = 0.17. In the left figure a uniform dual grid is used, whereas in the right figure an adaptive dual grid is used; in color the region detected by the euristic flagging.

Figure 6

 6 Figure 6.1.: Values of the concentration c + for a trivalent counterion of diameter 0.45 nm; the right plot is an enlargement of the interface between the two phases. The values of ε reg used are 10 -i with i = -5, . . . , -10 and 0 (blue line).

Figure 6 . 2 .Figure 6 . 3 .

 6263 Figure 6.2.: Values of the concentrations c + and c -for a symmetric mixture with Z ± = ±2 and an ion diameter of 0.22 nm; the regularization parameter has value ε reg = 10 -17 .

Corollary A. 24 .

 24 Let f : R n → R a proper convex function. Then cl f = f on int dom f . Proof. By joint application of Proposition A.21 and Theorem A.23. Theorem A.25. Let f : R n → R a proper convex function. Then f is continuous on any open convex set contained in dom f .

  + βλ i )x i ;

α i = 1 .

 1 Lemma A.44. Let Ω ⊂ R n a bounded set. Then conv Ω is a bounded set.Proof. Let x ∈ conv Ω; we can then write it asx = N i=1 α i x i , where x i ∈ Ω and α i ∈ [0, 1] for every i ∈ {1, . . . N } and N i=1 α i = 1.Because Ω is bounded, there exists R ∈ R such that y ≤ R for every y ∈ Ω; we thus havex ≤ N i=1 α i x i ≤ N i=1 α i R = R,which, by generality of x, means that conv Ω is bounded.(ii) ∂ conv f Ω N (x) = ∅ for every x ∈ Ω N .Proof. By the characterization of Theorem A.36 we have thatconv f Ω N (x) = inf α N i=1 α i f (x i ),where the infimum is taken on the setα ∈ [0, 1] N | N i=1 α i x i = x ∧ N i=1Then by Corollary 19.1.2 of[START_REF] Rockafellar | Convex Analysis[END_REF] (pag. 173) the function conv f Ω N is polyhedral, i.e. epi conv f Ω N is polyhedral. Since conv f Ω N (x) is finite when x ∈ Ω N , from Corollary 19.1.2 we get the first part of the thesis and from Theorem 23.10 of[START_REF] Rockafellar | Convex Analysis[END_REF] (pag. 226) we get its second part.Theorem A.57. Let f : R n → R be finite on a closed convex set Ω and +∞ elsewhere. Let x 0 ∈ ∂Ω and let h an hyperplane such that x 0 ∈ h and that Ω lies entirely on one side of h.Then (conv f ) | h = conv (f | h ).Proof. Because x 0 ∈ Ω, by Theorem A.42 we can write it asx 0 = m i=1 α i x i ,where m ≤ n + 1, α i ∈]0, 1[, x i ∈ Ω and m i=1 α i = 1. Suppose that x k / ∈ h for a certain index k; without loss of generality we can suppose k = m. If m = 1 this is obviously contradictory because x 0 = x m . If m ≥ 2, we then havex 0 = α m x m + (1 -α m )x,

B

  . The Legendre-Fenchel transformation B.1. Definition and basic properties Definition B.1. Let f : R n → R. The functionf * : R n → R ξ → sup x∈R n [ x, ξ -f (x)] = -inf x∈R n [f (x) -x, ξ ] ,where•, • is the scalar product of R n , is called the Legendre-Fenchel transform, or conjugate, of f . Remark B.2. We have f * (0) = -inf x∈R n f (x).Proposition B.3. Let {f i } i∈I an arbitrary collection of closed convex functions. The function f (x) := sup i∈I [f i (x)] is then a closed convex function.

Corollary B. 4 .

 4 Let f : R n → R, not necessarily convex. Then f * is a closed convex function. Proof. By definition f * is the pointwise supremum of a collection of affine functions (which may include the constants +∞ e -∞); because these are closed convex functions, f * is also convex and closed by the previous definition. Proposition B.5. Let f, g : R n → R such that f ≤ g. Then f * ≥ g * . Proof. It follows trivially from the Definition B.1. Remark B.6 (Geometric construction). Let f : R n → R, let ξ ∈ R n and let h be the hyperplane through the origin having equation y = ξ, x . Then, by Definition B.1, f * (ξ) is the supremum value of the signed distance along the y-axis between the graph of f and h; for an example in R see Figure B.1.

Lemma B. 9 .

 9 Let f : R n → R, not necessarily convex. Then f * = f * .Proof. For Lemma B.7 it suffices to show that the collections of affine functions which are majorized respectively by f and by f are the same. Let g be an affine function. If g ≤ f then g ≤ f , because by definition of f we have f ≤ f . If g ≤ f , we have g ≤ f because an affine function is lower semicontinuous and f is the greatest among all the lower semicontinuous functions majorized by f . Corollary B.10. Let f be a convex function. Then f * = (cl f ) * . Definition B.11. If f (x) > -∞ for all x ∈ R n , by definition we have cl f = f and thus Lemma B.9 applies; otherwise, we have that cl f is the constant function -∞. If there is a point x 0 such that f (x 0 ) = -∞, then no affine function can be majorized by f and thus by Lemma B.7 we have epi f * = ∅; this means f * is the constant function +∞, which is the conjugate of the constant function -∞. Theorem B.12. Let f : R n → R be a convex function. Then cl f = f * * . Proof. In Corollary B.10, it will be proved that f * = (cl f ) * ; we can then assume without loss of generality that f is closed. Because trivially (+∞) * = -∞ and (-∞) * = +∞, the result is immediate if f is improper. If f is proper and closed, Lemma B.8 says that f (x) = sup h affine, h ≤ f h(x), which, by Lemma B.7, becomes f (x) = sup (ξ,µ)∈epi f * ( ξ, x -µ) .

Lemma B. 14 .

 14 Let f : R n → R be a convex function. Then an affine function h x,y (ξ) := x, ξ -y, where x ∈ R n and y ∈ R, is majorized by f * if and only if (x, y) ∈ epi cl f .B.3. Conjugation of general functionsLemma B.15. Let f : R n → R. Then f * = (conv f ) * .Proof. We again apply Lemma B.7 and show that, given g an affine function, we have g ≤ f if and only if g ≤ conv f .If g ≤ conv f then g ≤ f , because by definition of convex hull conv f ≤ f . If g ≤ f , we have g ≤ conv f because affine functions are convex. Corollary B.16. Let f : R n → R. Then f * = [cl (conv f )] * . Proof. It follows from Lemma B.15 and Corollary B.10. Theorem B.17. Let f : R n → R, not necessarily convex. Then f * * = cl (conv f ). Proof. It follows directly by Lemma B.16 and Theorem B.12.

Theorem B. 18 .

 18 Let f : R n → R. Thenf * = -• • • --f * 1 * 2 * 3 • • • * (n-1) * n .Proof. It can be shown easily through factorization of the supremum operator:f * (ξ) = sup x∈R n [ x, ξ -f (x)] = sup xn∈R

Table 1 .

 1 1.: Minimum values of σ for which f is convex.

  = conv g on Ω; then we discretize this problem by considering a finite set Ω N ⊂ Ω and supposing that the values of f are known only on the points of Ω N , i.e. by taking the function f Ω N . Finally we take the double DLFT f * , where S N ⊂ R n is a finite set.

	and observing that conv f Ω N approximation for conv f	* S N	as an
	bounded. We can easily translate this problem on
	Ω into a problem on the whole R n by taking	
	f (x) :=	g(x) if x ∈ Ω +∞ elsewhere	

  by Proposition A.20 we obtain that ξ 0 ∈ ∂ conv f Ω N (x 0 ). Applying Lemma B.15 and Corollary B.27 we get

  Figure 4.1.: The graph of the test function f 1 test (x, y) = (r 2 -1) 2 . Medium value 2.883 • 10 -5 1.035 • 10 -5 8.763 • 10 -7 Standard deviation 8.565 • 10 -5 5.311 • 10 -5 3.535 • 10 -6

	f 1 test	0.0 0 1 2 3 4 9 8 7 6 5	0.5 Distance from the origin 1.0 1.5	2.0
	on [-1.5, 1.5] 2	dDLFT	mdDLFT	smdDLFT
	Maximum value	0.0297	0.021	0.021
	Medium value	0.0041	0.0031	0.0026
	Standard deviation	0.0068	0.0054	0.0046
	on the unit circle	dDLFT	mdDLFT	smdDLFT
	Maximum value	0.0297	0.021	0.021
	Medium value	0.0117	0.009	0.0074
	Standard deviation	0.0068	0.0055	0.0051
	outside the unit circle	dDLFT	mdDLFT	smdDLFT
	Maximum value	0.0026	0.0025	4.834 • 10 -5
					2 ,
	and, by observing that			
		conv f 2 test (x, y) = conv f 2 test (r),

Table 4 .

 4 1.: Distribution of the error between the exact convex hull of f 1 test and its computed value.

  3.75 2.87 2.00 1.000.47 0.000.471.00 2.00 2.87 3.75

		3.75
		2.87
		2.00
		1.00
		0.47
	x	0.00
		0.47
		1.00
		2.00
		2.87
		3.75	y
			3.75 2.87 2.00 1.000.47 0.000.471.00 2.00 2.87 3.75
		3.75
		2.87
		2.00
		1.00
		0.47
	x	0.00
		0.47
		1.00
		2.00
		2.87
		3.75	y
			3.75 2.87 2.00 1.000.47 0.000.471.00 2.00 2.87 3.75
		3.75
		2.87
		2.00
		1.00
		0.47
	x	0.00
		0.47
		1.00
		2.00
		2.87
		3.75	y

Table 4 .

 4 10 -4 8.747 • 10 -5 1.009 • 10 -5 Standard deviation 3.725 • 10 -4 2.466 • 10 -4 5.898 • 10 -5 2.: Distribution of the error between the exact convex hull of f 2 test and its computed value.

	on [-3.75, 3.75] 2	dDLFT	mdDLFT	smdDLFT
	Maximum value	0.0855	0.0827	0.0134
	Medium value	0.0125	0.0043	9.542 • 10 -4
	Standard deviation	0.0182	0.0111	0.0019
	on the annulus	dDLFT	mdDLFT	smdDLFT
	Maximum value	0.0855	0.0827	0.0134
	Medium value	0.0276	0.0096	0.0021
	Standard deviation	0.0181	0.015	0.0023
	outside the annulus	dDLFT	mdDLFT	smdDLFT
	Maximum value	0.0081	0.0081	0.0015
	Medium value	2.219 •		

Table 4 .

 4 3.: Computational times in seconds of the three different versions of the convex hull algorithm.

		f 1 test	f 2 test
	dDLFT	73 s	73.4 s
	mdDLFT	49.6 s	50.4 s
		-32% of dDLFT	-31% of dDLFT
	smdDLFT	108.6 s	109.2 s
		+119% of mdDLFT +117% of mdDLFT
		+49% of dDLFT	+49% of dDLFT

Table 4 .

 4 

4.: A function f and a grid {1, 2, 3}

  2 

of the convex hull is extremely different from the real one. For these reasons approaches based on uniform dual grids or adapted dual grids fail (see Figure 5.10) and approaches based on larger dual grids built progressively are the only way to capture the geometry of the region of non-convexity (see Figure 5.11).

A. Convex Functions

The brief theoretical introduction about convex functions and their conjugates is adapted from 13; another introductory book on convex analysis is 2.

A.1. Definition

Definition A.1. Let f : R n → R := R ∪ {-∞, +∞}. The set

It is possible to define convexity for a finite function defined on a subset S of R n , but with the definition given above it is no longer necessary to keep track of the function domains. Moreover, a function g : S → R can be extended to R n by taking

then epi g = epi g as subsets of R n+1 and g is convex as a function on S if and only if g is convex according to Definition A.2.

Remark A.3. In general conv epi f = epi conv f ; consider for example a gaussian function.

Definition A.4. Let f be a convex function. The projection of epi f on R n is called the effective domain of f and is denoted by dom f .

It is immediately observed that

and that dom f is a convex subset of R n , since it is the image of epi f under a linear transformation, i.e. the projection on R n .

Thus a proper function is finite and convex on the not-empty convex set dom f , whereas it is +∞ elsewhere.

Example A.16. The following function is convex and proper, but not closed.

Remark A.17. If f is a closed convex function, we do not necessarily have that dom f is a closed set. Consider for example

we have that f is a closed convex function, but that dom f =] -1, 1[.

A.4. Subdifferentiability

Definition A.18. Given f : R n → R convex and

The collection of all subgradients of f at x is called the subdifferential of f at x and is denoted by ∂f (x).

The subdifferential is a local notion, as shown in the next result.

Lemma A.19. Let f, g : R n → R be convex functions such that f = g on a neighbourhood

Proof. By symmetry of the enunciate, it suffices to prove that if ξ ∈ ∂f (x 0 ) then ξ ∈ ∂g(x 0 ). We will suppose ξ / ∈ ∂g(x 0 ) and show that this takes us to a contradiction. If ξ / ∈ ∂g(x 0 ) then there exists x ∈ R n such that

By convexity of g the segment with extremes (x 0 , g(x 0 )) and (x, g(x)) lies in epi g, i.e. for all x ∈ R n on the segment with extremes x and x 0 we have by (A.1) that

where x = x, x and the last equality holds because x -x 0 and x -x 0 lies on the same line through the origin. Because U is a neighbourhood of x 0 , we can find x ∈ U which lies on the segment with extremes x and x 0 ; for such a point we have

in contradiction with the hypothesis ξ ∈ ∂f (x 0 ).

Proof. We first prove that f -(x 0 ) ∈ ∂f (x 0 ), i.e.

this means proving (the case x = x 0 is trivial)

which follows immediately from Corollary A.29. If x 0 ∈ ∂ dom f , equation (A.2) is trivial on one of the half-lines originating from x 0 , while on the other Corollary A.29 is again applicable.

We now prove that for every ξ < f -(x 0 ) we have ξ / ∈ ∂f (x 0 ). As seen before, we have that R(x 0 , x)

f -(x 0 ) for x → x - 0 ; by definition of limit we can find

). The same reasoning can also be applied to (ii). In order to demonstrate (iii), observe that if x 0 ∈ int dom f then, thanks to Theorem A.30, we can conclude by (i) and (ii) that f -(x 0 ) = min ∂f (x 0 ) and f + (x 0 ) = max ∂f (x 0 ). We can now conclude thanks to Proposition (A.21).

In order to prove (iv), suppose initially that if f + (x 0 ) exists finite. Then (ii) is applicable and all that is left to prove is that for all

is -∞ and by a reasoning similar to the one used in the proof of (i) we can show that ξ / ∈ ∂f (x 0 ) ∀ξ ∈ R. The proof of (v) is similar.

A.6. A characterization of the convex hull

where C(x) is the collection of the finite sets {(α i , x i )} i∈I such that x is convex combination of the points x i weighted by coefficients α i ∈ [0, 1]. In the sum i∈I α i f (x i ) the conventions +∞ -∞ = +∞ and 0 × ±∞ = 0 are used.

Proof. Fixed x ∈ R n , for every set I with the required properties we must have conv f (x) ≤ i∈I α i f (x i ) by convexity of the epigraph and thanks to the the special conventions used in the sum; thus we have conv f (x) ≤ inf i∈I α i f (x i ) for every x. In order to prove the other inequality, it suffices to show that the right side, which we will denote by g(x), is Example A.45. If Ω is closed, conv Ω is not in general closed. Take for example Ω ⊂ R 2 as the epigraph of a gaussian function; we have that conv Ω is the open set {(x, y) ∈ R 2 | y > 0}.

Corollary A.46. If f : R n → R is finite on a bounded set Ω ⊆ R n and +∞ elsewhere, then dom conv f = conv Ω is a bounded set.

Proof. By Corollary A.37 we have that dom conv f = conv Ω; it is then sufficient to apply Lemma A.44.

Proof. Consider a sequence of points x (N ) ∈ conv Ω; by Theorem A.42 we can write them as

∈ Ω for every N and every i = 1, . . . , n + 1. We then have that (α n+1) ; there is thus a subsequence (α

. By the properties of limits, we have that n+1 i=1 α

= 1 tends to n+1 i=1 ᾱi ; we thus have that the point x := n+1 i=1 ᾱi xi is a convex combination of points of Ω. Again by the properties of limits, x (k N ) converges then to x ∈ conv Ω; thus every sequence in conv Ω admits a subsequence converging to an element of Ω, i.e. conv Ω is compact.

Corollary A.48. If f : R n → R is finite on a compact set Ω ⊂ R n and +∞ elsewhere, then dom conv f = conv Ω is a compact set.

Proof. By Corollary A.37 we have that dom conv f = conv Ω; it is then sufficient to apply Lemma A.47.

A.8. Closedness of convex hulls

Theorem A.49. Let f : R n → R lower semicontinuous. Suppose that Ω := {x ∈ R n | f (x) < +∞} is compact and that there exists L ∈ R such that f ≥ L; then conv f is closed.

Proof. Because f ≥ L, being the constant L a convex function we have that conv f ≥ L; then proving that conv f is closed is equivalent to prove that conv f is lower semicontinuous, i.e. to prove that the set S γ := {x ∈ R n | conv f (x) ≤ γ} is closed for every γ ∈ R. Consider a sequence of points x (N ) ∈ S γ converging to x ∈ R n ; we need to prove that x ∈ S γ . Being L ≤ conv f (x (N ) ) ≤ γ and thus finite, by the characterization of Corollary A.43 and the properties of the infimum, for every N we can find α

By compactness of [0, 1] n+2 ×Ω n+2 we can extract a subsequence (which again for simplicity will be denoted by the same symbol) such that α

→ xi ∈ Ω; moreover, by the properties of limits, we have that n+2 i=1 ᾱi = 1 and x = n+2 i=1 ᾱi x i . If the function

is lower semicontiuous, we could apply Corollary A.43 and inequality (A.49) to obtain

by generality of ε we could then obtain conv f (x) ≤ ε as needed.

We will now prove the lower semicontinuity of (A.4); because the sum of lower semicontinuous functions is lower semicontinuous, it is sufficient to prove that the function (α, x) → αf (x) is lower semicontinuous. Let (x N , α N ) → (x, ᾱ) such that α N f (x N ) ≤ γ for every N . We have α N , ᾱ ∈ [0, 1]; suppose ᾱ = 0. By convergence, for N sufficiently large and ε < ᾱ we have that α N > ᾱ -ε > 0; then have f (x N ) ≤ γ α N < γ ᾱ-ε ; by lower semicontinuity of f we then have f (x) ≤ γ ᾱ-ε and thus ᾱf (x) ≤ ᾱ ᾱ-ε γ for every ε < ᾱ, which means ᾱf (x) ≤ γ. If instead ᾱ = 0, we have to prove that γ ≥ 0; if there is an N such that α N = 0 or α N = 0 and f (x N ) ≥ 0 we have finished. Otherwise, by convergence for every M > 0 we can find N such that 0 < α N < 1 L+M ; we then have -L ≤ f (x N ) < 0 and thus γ ≥ α N f (x N ) ≥ -L L+M , which by generality of M implies γ ≥ 0. Now we present several situation which can occur when the hypothesis of Theorem A.49 do not hold.

Example A.50. A convex function which is not lower semicontinuous even if it is uniformly continuous when restricted to its domain (because dom f is open, f cannot be closed).

Example A.51. A function which is uniformly continuous on R, but whose convex hull is nowhere finite.

f (x) = -|x|

Example A.52. A lower semicontinuous function whose convex hull is not lower semicontinuous.

The function f is lower semicontinuous, but its convex hull conv f is -∞ on the open set ] -∞, π/2[ and +∞ elsewhere, and thus not lower semicontinuous.

Example A.53. A convex, proper and closed function which is not continuous.

The function f is convex, proper and closed, but it is not continuous in (0, 0), point on the boundary of dom f . This can be seen, for example, approaching the origin along the curve x = y 2 2α with α = 0: on this curve f is α constantly. Example A.54. A function finite on a bounded set and continuous on it whose convex hull is not continuous on its domain and not even lower semicontinuous.

1[ +∞ elsewhere

Example A.55. A function finite on a close unbounded set and continuous on it (and thus lower semicontinuous on R n ) whose convex hull is again not even lower semicontinuous on its domain.

A.9. Two more results on convex hulls Proof. Suppose that h ξ,µ is majorized by f . Then for all x ∈ R n we have that f (x) ≥ h ξ,µ (x) and thus µ ≥ ξ, x -f (x); by definition of f * , we conclude that µ ≥ f * (ξ), i.e.(ξ, µ) ∈ epi f * . The other direction is similar.

In the conjugate of f is thus coded the information necessary to determine the collection of affine functions which are majorized by f . It is possible to demonstrate that if f is convex then it coincides with the pointwise supremum of that collection; f * is thus another rappresentation of the function f and it should be possible to find an inverse transform capable to reconstruct f starting from f * : it will be shown that this inverse transform is the conjugate itself.

Lemma B.8. Let f : R n → R be a closed convex function. Then f is the pointwise supremum of the collection of all affine functions majorized by f . Proof. If f is improper, then the thesis is trivially true. If f is proper, then epi f is a non-empty closed convex subset of R n+1 . By the known properties of convex sets, epi f Corollary B.20. Let f : R n → R be a convex function and let x 0 , ξ 0 ∈ R n such that ξ 0 ∈ ∂f (x 0 ). Then x 0 ∈ ∂f * (ξ 0 ).

Remark B.21. The converse is not true. Consider for example

Then, for any ξ ≤ 0, we have 0 ∈ ∂f * (ξ), but not ξ ∈ ∂f (0 

Proof. It follows directly from the joint application of Lemma B.19 and Proposition A.21.

Remark B.25. Converse propositions such as "if ξ 0 ∈ dom f * then there exists x ∈ R n such that ξ 0 ∈ ∂f (x)" are not true in general; if the one presented were for example true, we would then have by Corollary B.20 that x ∈ ∂f * (ξ 0 ), i.e. ∂f * (ξ 0 ) = ∅ which is not necessarily true, as seen in Remark A.22.

Theorem B.26. Let f : R n → R be a convex function and let x 0 ∈ dom f and ξ 0 ∈ R n . Then f * (ξ 0 ) = x 0 , ξ 0 -f (x 0 )

if and only if ξ 0 ∈ ∂f (x 0 ).

Proof. Suppose ξ 0 ∈ ∂f (x 0 ); then

This means ξ 0 , x -f (x) ≤ ξ 0 , x 0 -f (x 0 ) ∀x ∈ R n , from which follows that f * (ξ 0 ) = sup

x∈R n

[ x, ξ 0 -f (x)] = ξ 0 , x 0 -f (x 0 ).

Suppose that f * (ξ 0 ) = x 0 , ξ 0 -f (x 0 ); by definition of conjugation we then have

x, ξ 0 -f (x) ≤ x 0 , ξ 0 -f (x 0 ) for all x ∈ R n . By rearranging we obtain that

x -x 0 , ξ 0 + f (x 0 ) ≤ f (x) for all x ∈ R n , i.e. ξ 0 ∈ ∂f (x 0 ).

Corollary B.27. Let f, g : R n → R be convex functions such that f (x 0 ) = g(x 0 ) for a certain x 0 ∈ R n . Then for all ξ ∈ ∂f (x 0 ) ∩ ∂g(x 0 ) we have that f * (ξ) = g * (ξ).

Corollary B.28. Let f, g : R n → R be convex functions such that f = g on a neighbourhood U of a point x 0 ∈ R n . Then f * = g * on ∂f (x 0 ).